
OpenSCADA v. 0.7.0
(http://oscada.org)

November 22, 2010

http://oscada.org.ua/

Contents table
Introduction..10

Project targets...10
Policy of development. License...10
Scopes...10
Architecture...11

Functional characteristics and demands of OpenSCADA system..12
 1. The employment area of system OpenSCADA ...12

 1.1. SCADA system's server: ...12
 1.2. Station of the operator of technological process, the board of the dispatcher, the panel
of monitoring, etc.:..14
 1.3. The environment of execution of controllers (PLC): ...14

 2. Requirements for OpenSCADA ...16
 2.1. Execution ..16
 2.2. Building ...17

OpenSCADA program description..19
 1. Functions of the system. ..20

 1.1. Modularity. ...20
 1.2. Subsystems. ...21
 1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition". 21
 1.4. Databases. A subsystem of "Database" ...22
 1.5. Archives. A subsystem "Archives". ...22
 1.6. Communications. Subsystems "Transports" and "Transport protocols". 23
 1.7. Interfaces of the user. A subsystem "Interfaces of the user". ...24
 1.8. Security of system. A subsystem "Security". ..25
 1.9. Management of libraries of modules and modules. A subsystem "Management of
modules"...25
 1.10. Unforeseen opportunities. A subsystem "Special". ..25
 1.11. The user functions. Objective model and the environment of programming of system.
..25

 2. SCADA systems and their structure. ...27
 3. Ways of configuration and using of OpenSCADA system. ..29

 3.1. Simple server connection. ..29
 3.2. The duplicated server connection. ..30
 3.3. The duplicated server connection on one server. ..30
 4.4. Client access by means of the Web-interface. A place of the manager. 31
 3.5. The automated workplace (place of the manager/operator). ...31
 3.6. Automated workplace with a server of acquisition and archiving on the single machine
(a place of the operator, model...)...32
 3.7. The elementary mixed connection (model, demonstration, configurator...). 33
 3.8. The steady, allocated configuration. ...34

 4. Configuration and adjustment of the system. ..36
 4.1. "DB" subsystem ..41
 4.2. Subsystem "Security" ..46
 4.3. Subsystem "Transports" ...49
 4.4. Subsystem "Transport protocols" ...53
 4.5. Subsystem "Data acquisition" ...54
 4.6. Subsystem "Archives" ...66
 4.7. Subsystem "User interfaces" ..77
 4.8. Subsystem "Specials" ...78
 4.9. Subsystem "Modules sheduler" ..79
 4.10. Configuration file of the OpenSCADA and parameters of command-line OpenSCADA

 2

execution...80
 5. System-wide API of user programming. ..90

 5.1. System-wide user objects. ..90
Array object...90
XMLNodeObj object..91

 5.2. System (SYS) ...91
 5.3. Any object of OpenSCADA objects tree (SYS.*) ..92
 5.4. "DB" subsystem (SYS.BD) ..92
 5.5. Subsystem "DAQ" (SYS.DAQ) ...93
 5.6. "Archives" subsystem (SYS.Archive) ..93
 5.7. "Transports" subsystem (SYS.Transport) ...93

Data acquisition in OpenSCADA...94
 1. Data acquisition methods ...96

 1.1. Simple synchronous acquisition mechanism ..96
 1.2. Simple asynchronous acquisition mechanism ..97
 1.3. Package acquisition mechanism ..98
 1.4. Passive acquisition mechanism ..99

 2. Virtual data sources ...100
 3. Logic level of data processing ..102
 4. Redundancy of the data sources ...106

Quick start OpenSCADA...110
 1. Terms, definitions and abbreviations ...110
 2. Installation and start ...111

 2.1. Installing OpenSCADA from packages ...111
 2.2. Installation from sources ...112

 3. Initial configuration and start ..113
 4. Working with Data Sources ..117

 4.1. Data inquiry of the TP device ..117
 4.2. TP data processing ..125
 4.3. Enabling the TP data archiving ..132

 5. The formation of visual presentation ..135
 5.1. Adding the template page in the project and linkage of the dynamics 135
 5.2. The creation of the new frame, the mnemonic scheme ...140
 5.3. Creation of the new complex element ..146

 5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
..146
 5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements
box"...152
 5.3.3. Adding the complex element to the mnemonic scheme 171

 6. Recipes ..173
Conclusion...173

Module of subsystem “Archives”<FSArch>...174
 1. Message Archiver ..174

 1.1. File format of archive messages ...177
 1.2. Example of the archive of messages file ..178

 2. Values Archiver ..179
 2.1. File format of archive values ...181

 3. Efficiency ..183
Module of subsystem “Archives” <DBArch>...184

 1. Message Archiver ..184
 2. Values Archiver ..185
 3. Informational table of the archival tables ...186

Module of the subsystem “DB” <DBF>...187
 1. Operations over the database ..187
 2. Operations over the table ...187

 3

 3. Operations over the contents of the table ..187
 4. Productivity of DB ...188

Module of the subsystem “DB” <MySQL>...189
 1. Operations over the database ..189
 2. Operations over the table ...189
 3. Operations over the contents of the table ..190
 4. Access rights ..190
 5. Productivity of DB ...191

Module of the subsystem “DB” <SQLite>..192
 1. Operations over the database ..192
 2. Operations over the table ...192
 3. Operations over the contents of the table ..192
 4. Access rights ..193
 5. Productivity of DB ...193

Module of the subsystem “DB” <FireBird>..194
 1. Operations over the database ..194
 2. Operations over the table ...194
 3. Operations over the contents of the table ..194
 4. Access rights ..195
 5. Productivity of DB ...195

Module of the subsystem “DB” <PostgreSQL>...196
 1. Operations over the database ..196
 2. Operations over the table ...196
 3. Operations over the contents of the table ..197
 4. Access rights ..197
 5. Productivity of DB ...197

The module of subsystem “Data acquisition” <DiamondBoards>...198
 1. Data controller of Diamond boards ..199
 2. Parameters of the Diamond controller ...201
Links..202

The module of subsystem “Data acquisition” <System>...203
 1. The controller of data ...204
 2. Parameters ...205

The module of subsystem “Data acquisition” <BlockCalc>...207
 1. The controller of the module ..209
 2.The block scheme of the controller ...210
 3. Parameters of the controller ...213
 4. Copying of the block schemes ...214

The module of subsystem “Data acquisition” <JavaLikeCalc>...215
 1. Java-like language ...217

 1.1. Elements of language ...217
 1.2. Operations of language ..217
 1.3. Embedded functions of language ...218
 1.4. Operators of the language ..219

 1.4.1. Conditional operators ..219
 1.4.2. Loops ...219
 1.4.3. Special characters of string variables ..220

 1.5. Object ..220
 1.6. Examples of programs on the language ...222

 2. Controller and its configuration ..223
 3. The parameter of the controller and its configuration ..224
 4. Libraries of functions of module ...225
 5. User functions of the module ...225

The module of subsystem “Data acquisition” <LogicLev>..226
 1. Data controller ..227

 4

 2. Parameters ...228
The module of subsystem “Data acquisition” <SNMP>..231

 1. SNMP ...231
 1.1. MIB ..231
 1.2. Addressing ..232
 1.3. Interaction ...232
 1.4. Authorization ...232

 2. Module ..233
 2.1. Controller of data ..233
 2.2. Parameters ...234

The module of subsystem “Data acquisition” <Siemens>...236
 1. Communication controllers CIF ..237
 2. The controller of the data source ...239
 3. The parameters of the data source ..240
 4. Asynchronous recording mode ..244
 5. Comments ..244
Links..244

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols”
...245

 1. General description of the ModBus protocol ..245
 1.1. Addressing ..245
 1.2. Standard codes of functions ...246

 2. Module of the implementation of the protocol ..246
 2.1. API functions of outgoing requests ...246
 2.2. Servicing of the requests for ModBus protocol ...247

The mode of the node of the protocol “Data”...248
The mode of the node of the protocol “Gateway of the node”...251
The mode of the node of the protocol “Gateway of the network”.....................................252

 2.3 Report of the ModBus requests ...253
 3. Data acquisition module ...254

 3.1. Controller of data ..254
 3.2. Parameters ...256

The module of subsystem “Data acquisition”<DCON>...258
 1. General description of the protocol DCON ..258
 2. Module ..259

 2.1. Data controller ...259
 2.2. Parameters ...260

 3. Compatibility table of input/output modules of different manufacturers 261
The module of subsystem “Data acquisition” <ICP_DAS>...262

 1. Data controller ..263
 2. Parameters ...264

 2.1 Module I-8017 ..265
 2.2 Module I-8042 ..266
 2.3 Module I-87019 ..266
 2.4 Module I-87024 ..266
 2.5 Module I-87057 ..266

 3. LP-8x81 series controllers configuration ..266
Links..266

The module of subsystem “Data acquisition” <DAQGate>...267
 1. Controller of data ..269
 2. Parameters ...270

The module of subsystem “Data acquisition”<SoundCard>...271
 1. Controller of the data ..272
 2. Parameters ...273

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems................275

 5

 1. OPC UA protocol ..276
 2. The module of the protocol implementation ...277

 2.1. Service the requests on the OPC UA protocol ...277
 3. Data acquisition module ...279

 3.1. Data controller ...279
 3.2. Parameters ...281

 4. Notes ..282
Module <Sockets> of subsystem “Transports”..283

 1. Incoming transports ..284
 2. Outgoing transports ..286

Module <SSL> of subsystem “Transports”..288
 1. Incoming transports ..289
 2. Outgoing transports ..290
 3. Certificates and keys ..291

Module <Serial> of subsystem “Transports”...292
 1. Incoming transports ..293
 2. Outgoing transports ..295

Module <HTTP> of subsystem “Protocols”...297
 1. Authentication ...298
 2. The modules of user WEB-interface ..299
 3. Outgoing requests function's API ...299

Module <SelfSystem> of subsystem “Protocols”..301
 1. The syntax of the protocol ..301
 2.The internal structure of an outgoing protocol ..302

Module <UserProtocol> of subsystem “Protocols”..303
 1. Part of the protocol for incoming requests ...304
 2. Part of the protocol for outgoing requests ..305

The module <FLibComplex1> of the subsystem “Specials”...307
 1. Alarm (alarm) <111> ..307
 2. Condition '<' (cond_lt) <239> ...307
 3. Condition '>' (cond_gt) <240> ..307
 4. Full condition (cond_full) <513> ...308
 5. Digital block (digitBlock) <252> ..308
 6. Division (div) <526> ...308
 7. Exponent (exp) <476> ..308
 8. Flow (flow) <235> ...308
 9. Iterator (increment) <181> ...308
 10. Lag (lag) <121> ..309
 11. Simple multiplication(mult) <259> ..309
 12. Multiplication + Division(multDiv) <468> ..309
 13. PID regulator (pid) <745> ...309
 14. Power (pow) <564> ..310
 15. Selection (select) <156> ..310
 16. Simple integrator (sum) <404> ..310
 17. Sum with the division (sum_div) <518> ...310
 18. Sum with the multiplication. (sum_mult) <483> ...311

The module <FLibMath> of the subsystem “Specials” <FLibMath>...312
 1. Functions ..312

The module <FLibSYS> of the subsystem “Specials”..314
 1. System-wide functions ...314

 1.1. Calling the console commands and operating system utilities (sysCall) 314
 1.2. SQL query (dbReqSQL) ...315
 1.3. XML node (xmlNode) ..315
 1.4. Request of the management interface (xmlCntrReq) ...315
 1.5. Values archive (vArh) ...316

 6

VArchObj object..316
 1.6. Buffer of the values archive (vArhBuf) ..316

 2. Functions for the astronomical time processing ..317
 2.1. Time string (tmFStr) <3047> ...317
 2.2. Full Date (tmDate) <973> ...317
 2.3. Absolute time (tmTime) <220> ...317
 2.4. Conversion the time from the symbolic representation to the time in seconds from the
epoch of 1/1/1970 (tmStrPTime) <2600>...318
 2.5. Planning of the time in the Cron format (tmCron) ...318

 3. Functions of the messages processing ..318
 3.1. Messages request (messGet) ...318
 3.2. Generation of the message (messPut) ...319

 4. Functions of the strings processing ...319
 4.1. Getting the size of the string (strSize) <114> ...319
 4.2. Getting the part of the string (strSubstr) <413> ..319
 4.3. Insert of the on string to the another (strInsert) <1200> ...319
 4.4. Change the part of the string with the another one (strReplace) <531> 320
 4.5. Parsing the string on separator (strParse) <537> ..320
 4.6. Path parsing (strParsePath) <300> ..320
 4.7. Path to the string with the separator (strPath2Sep) ...320
 4.8. Coding of the string to HTML (strEnc2HTML) ..321
 4.9. Encode text to bin (strEnc2Bin) ..321
 4.10. Decode text from bin (strDec4Bin) ...321
 4.11. Convert real to string (real2str) ...321
 4.12. Convert integer to string (int2str) ..321
 4.13. Convert the string to real (str2real) ...322
 4.14. Convert the to integer (str2int) ..322

 5. Functions for the real processing ...322
 5.1. Splitting the float to the words (floatSplitWord) <56> ...322
 5.2. Merging the float from words (floatMergeWord) <70> ..322

The module <SystemTests> of the subsystem "Specials"..323
 1. Parameter (Param) ...324
 2. XML parsing (XML) ...324
 3. Messages (Mess) ..324
 4. SO attaching (SOAttach) ...325
 5. Attribute of the parameter (Val) ...325
 6. DB test (DB) ..325
 7. Transport (TrOut) ..326
 8. Control system language (SysContrLang) ..326
 9. Values buffer (ValBuf) ...326
 10. Values archive (Archive) ...326
 11. Base64 code (Base64Code) ...326

The module of subsystems “User Interfaces” <QTStarter>..327
The module <QTCfg> of subsystems “User Interfaces”...329

 1. Configuration ..331
 2. Basic elements ...332
 3. Commands ...333
 4. Lists ..334
 5. Tables ...335
 6. Images ..336

The module <WebCfg> of subsystems “User Interfaces”...337
 1. Basic elements ...339
 2. Commands ...340
 3. Lists ..340
 4. Tables ...341

 7

 5. Images ..342
The module <WebCfgD> of subsystems “User Interfaces”..343

 1. Configuration ..345
 2. Basic elements ...346
 3. Commands ...347
 4. Lists ..348
 5. Tables ...349
 6. Images ..350
 7. Errors ..351

The module <VCAEngine> of subsystems "User Interfaces"...353
Introduction..353
 1. Purpose ..354
 2. The configuration and the formation of interfaces of the VCA ...355
 3. Architecture ..355

 3.1. Frames and elements of visualization (widgets) ..357
 3.2. Project ...360
 3.3. Styles ..363
 3.4. Events, their processing and the events' maps ..365
 3.5. Signaling ...367
 3.6. Rights management ..368
 3.7. Linkage with the dynamics ..369
 3.8. The primitives of the widget ..374

 3.8.1. Elementary graphic figures (ElFigure) ...377
 3.8.2. Element of the form (FormEl) ..378
 3.8.3. Text element (Text) ...380
 3.8.4. Element of visualization of media materials (Media) ...381
 3.8.5. Element of constructing diagrams/trends (Diagram) ...381
 3.8.6. The element of building the protocols based on the archives of messages
(Protocol)..383
 3.8.7. Element of formation of documentation(Document) ...383
 3.8.8. Container (Box) ...386

 3.9. Using the database to store the library of widgets and projects 387
 3.10 API of the user programming and service interfaces of the OpenSCADA 389

 3.10.1. API of the user programming ..389
 3.10.2. Service interfaces of the OpenSCADA ...391

 4. Configuring the module via the control interface of OpenSCADA 393
The module <Vision> of subsystems "User Interfaces"..403

 1. Purpose ..404
 2. Tool of the graphical formation of the VCA interface ...405

 2.1. Styles ..414
 2.2. Linkage with the dynamics ..415

 3. Execution of the VCA interfaces ..417
 4. Conception of basic elements (primitives) ...419

 4.1. Elementary figure primitive (ElFigure) ..420
 4.2. Text primitive (Text) ..421
 4.3. Primitive of the form element (FormEl) ...422
 4.4. Primitive of the displaying the media materials (Media) ...423
 4.5. Primitive of the construction of diagrams/graphs (Diagram) ..424
 4.6. Primitive of the protocol formation (Protocol) ...424
 4.7. Primitive of the report formation (Document) ..425
 4.8. Primitive of the box container (Box) ..426

 5. The overall configuration of the module ...426
The module <WebVision> of subsystems “User Interfaces”...427

 1. Purpose ..428
 2. Execution of the VCA interfaces ..429

 8

 3. Conception of basic elements (primitives) ...431
 3.1. Elementary figure primitive (ElFigure) ..432
 3.2. Text primitive (Text) ..432
 3.3. Primitive of the form element (FormEl) ...433
 3.4. Primitive of the displaying the media materials (Media) ...434
 3.5. Primitive of the construction of diagrams/graphs (Diagram) ..435
 3.6. Primitive of the protocol formation (Protocol) ...435
 3.7. Primitive of the report formation(Document) ...436
 3.8. Primitive of the box container (Box) ..437

 4. The overall configuration of the module ...437
Conclusion...437

The module <WebUser> of subsystems "User Interfaces"...438
 1. WEB - pages ..440

 9

Introduction
OpenSCADA represents opened SCADA system constructed on principles of modules, multiplatform

and scalability. (Supervisory Control And Data Acquisition) is the term which it is often used in sphere of
automation of technological processes. The system OpenSCADA is intended for: acquisition, archiving,
visualization of the information, delivery of operating influences, and also for other related operations,
which are characteristic for full-function SCADA systems.

Project targets
The basic purposes which are pursued with the project, are:

• openness;
• reliability;
• flexibility;
• scalability;
• security;
• financial availability;
• giving of the convenient interface of management

Policy of development. License.
As policy of software realization of the given project principles of development are chosen. This policy

will allow to involve in development, testing, distribution and using of the product the significant amount of
developers, enthusiasts and other interested persons with the minimal financial expenses at the same time.
The program is accessible on conditions of the GPL v2 license.

Scopes
The system OpenSCADA is intended for performance as SCADA systems of usual functions, and for

use in adjacent areas of information technologies.

The system OpenSCADA can be used:
• on industrial targets as full-function SCADA system;
• in built in systems, as the execution environment (including PLC);
• for construction of various models (technological, chemical, physical, electric processes);
• on personal computers, servers and clusters for acquisition, processing, representation and
archiving of the information about system and its environment.

As base (host) operational systems (OS) for the development and uses it is chosen the OS Linux which is
POSIX compatible OS. Besides OS Linux is the optimum compromise in questions:

• safety;
• flexibility/scalability;
• availability;
• popularity and prevalence.

As the system OpenSCADA is developed on standard of POSIX OS, by principles of mutiplatform its
adaptation on other OS will not make a problem.

Introduction 10

Architecture
Heart of system is the modular kernel.

Depending on what modules are connected, the system can carry out both functions of various servers,
and functions of clients of client-server architecture. Actually, the architecture of system allows to realize
the distributed client-server systems of any complexity.

For achievement of high speed due to reduction of communications time, the architecture allows to unite
functions of the distributed systems in one program.

Architecturally, the system OpenSCADA consists of subsystems:
• The security subsystem. Contains lists of users and groups of users, provides check of the rights
of access to system elements, etc.
• The modules DB subsystem. Provides access to databases.
• The modules transport subsystem. Provides the communications with an environment by means
of various communication interfaces.
• The modules transport's protocol subsystem. It is closely connected with a subsystem of
transports and provides support of various reports of an exchange with external systems.
• The modules DAQ subsystem. Provides data acquisition from external sources: controllers,
sensors, gauges, etc. Except for it the subsystem can give environment for a writing of generators of
data (model, regulators...).
• The modules archive subsystem. Contains archives of two types: archives of messages and
archives of values. An archivation way is defined by algorithm which is incorporated in the
archivator's module.
• The modules user interfaces subsystem. Contains functions of the user interfaces.
• The control modules subsystem. Provides the control over modules.
• The modules special subsystem. Contains functions not entered in other subsystems.

Proceeding from a modules principle, the modular subsystems, which are specified above, can expand
the functionality by connection of corresponding type of the modules.

The modular kernel of system OpenSCADA is designed in the form of static and shared libraries. It
allows to build in functions of system existing programs, and also to create new programs on the basis of a
modular kernel of OpenSCADA system.

However, the modular kernel is self-sufficient and can be used by means of the simple starting program.

Modules of system OpenSCADA are stored in dynamic libraries. Each dynamic library can contain set
of modules of various type. Filling of dynamic libraries by modules is defined by functional connectivity of
modules. Dynamic libraries suppose hot replacement that allows to make updating of modules during work.
The method of storage of a code of modules in dynamic libraries is the core for system OpenSCADA as it
is supported practically by all modern OS. It does not exclude an opportunity of development of other
storage modules code methods.

Introduction 11

Functional characteristics and demands of
OpenSCADA system

 1. The employment area of system OpenSCADA

Fig. 1. OpenSCADA system's roles

 1.1. SCADA system's server:

• The visual control and management by means of the interfaces:
• Remote visualization server grounded on visualization and control area (VCA) engine VCAEngine.

The module UI.Vision local starting and connecting to the visualization server.
• Remote WEB interface. By means of a Web-browser, the visualization module WebVision and the

module of a kernel of visual control area VCAEngine.
• Simple remote Web-interfaces of user. By mean Web-browser and UI-module WebUser.

• Data acquisition (DAQ) from sources:
• Information about a platform (hardware-software) on which the server works. By means of the DAQ-

module System.
• Data acquisition from sources which support protocol SNMP (Simple Network Management Protoсol).

By means of the DAQ-module SNMP.
• Data acquisition from controllers of firm Siemens of S7 series. By means of the DAQ-module

Siemens.
• Data acquisition of industrial controllers under the protocol ModBus. By means of the DAQ-module

ModBus.

Functional characteristics and demands of OpenSCADA system 12

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=16h6
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=10ka
http://wiki.oscada.org/HomePageEn/Doc/System?v=o1b
http://wiki.oscada.org/HomePageEn/Doc/WebUser?v=jyt
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g6w
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v

• Data acquisition of industrial controllers under the protocol DCON. By means of the DAQ-module
DCON.

• Formation of derivative structures of parameters on the basis of templates of parameters and data from
other sources. By means of the DAQ-module LogicLev.

• Data acquisition from other servers and PLC, based on OpenSCADA, possibly for duplication. By
means of the DAQ-module DAQGate.

• Data acquisition from sound controller's input channels. By means of the DAQ-module SoundCard.
• Data acquisition from hardware of firm ICP DAS. By means of the DAQ-module ICP_DAS.
• Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-module OPC

UA (RU).
• Data acquisition from different sources, which have utilities for access to it data or it accessibly

through simple special network protocols. Made by getting procedure writing on language of user
programming by DAQ-module JavaLikeCalc, and also transport-protocol-module User Protocol.

• Providing data to upper-level systems:
• By means of interfaces:
• Serial interface (RS232, RS485, Modem, ...), by helps of transport module Serial.
• IP-networks sockets and network levels protocols TCP, UDP and Unix, by helps of transport module

Sockets.
• Security sockets layer (SSL), by helps of transport module SSL.

• By means of protocols:
• Self OpenSCADA protocol, by helps of transport's protocol module SelfSystem.
• ModBUS family protocol (TCP, RTU and ASCII), by helps of transport's protocol module

ModBUS.
• "OPC UA" protocol, by helps of transport's protocol module OPC UA (RU).
• Simple special protocols, developed by users by helps of transport's protocol module User Protocol.

• Implementation of user calculations in languages:
• Language of block schemes. By means of the DAQ-module BlockCalc.
• With the help of Java-like language of a high level. By means of the DAQ-module JavaLikeCalc.

• Archiving messages, conducting reports on various categories and levels by means of mechanisms:
• Files in a XML-format or the flat text with packing the out-of-date archives. By means of the archiving

module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.
• In plans. On other server, it is possible to the allocated archiving server, based on OpenSCADA.

• Archiving values of the collected data by means of mechanisms:
• Files with double packing: consecutive and standard archiver gzip. By means of the archiving module

FSArch.
• In tables of archival DB. By means of the archiving module DBArch.

• Configuration and management of a server through:
• The WEB-interface. By means of a Web-browser and the UI-module WebCfgD and WebCfg.
• From the remote configuration station. By means of the UI-module at configuration station QTCfg and

the interface of management OpenSCADA reflected in the protocol SelfSystem.
• Data storage of a server in a DB of types:
• MySQL. By means of the DB-module MySQL.
• SQLite. By means of the DB-module SQLite.
• PostgreSQL. By means of the DB-module PostgreSQL.
• DBF. By means of the DB-module DBF.
• FireBird. By means of the DB-module FireBird.
• In plans. DB accessible on other server based on OpenSCADA.
• In plans. LDAP.

Functional characteristics and demands of OpenSCADA system 13

http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=a29
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=14l4
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=10ip
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=v7w
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=c4s
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=w15
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=1a4t
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=dws
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/SSL?v=88e
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1nz
http://wiki.oscada.org/HomePageEn/Doc/Serial?v=ymb
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ICPDAS?v=ce3
http://www.icpdas.com/
http://wiki.oscada.org/HomePageEn/Doc/SoundCard?v=kn8
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=vpz
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=5a2
http://wiki.oscada.org/HomePageEn/Doc/DCON?v=a7d

 1.2. Station of the operator of technological process, the board of the dispatcher, the
panel of monitoring, etc.:

• The visual control and management by means of the interfaces:
• The local (fast) interface based on QT library. By means of the visualization module Vision and the

module of a kernel of the visual control area VCAEngine include ability of visualization from remote
engine of VCA, visualization server.

• Remote WEB interface. By means of a Web-browser, the visualization module WebVision and the
module of a kernel of visual control area VCAEngine.

• Simple remote Web-interfaces of user. By mean Web-browser and UI-module WebUser.
• Data acquisition (DAQ) from sources:
• Data acquisition from other servers and PLC, based on OpenSCADA, for data transportation and for

duplication. By means of the DAQ-module DAQGate.
• Data acquisition from sources which support protocol SNMP (Simple Network Management Protoсol).

By means of the DAQ-module SNMP.
• Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-module OPC

UA (RU).
• Implementation of the user calculations in languages:
• Language of block schemes. By means of the DAQ-module BlockCalc.
• With the help of Java-like language of a high level. By means of the DAQ-module JavaLikeCalc.

• Archiving messages, conducting reports on various categories and levels by means of mechanisms:
• Files in a XML-format or the flat text with packing the out-of-date archives. By means of the archiving

module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.
• In plans. On other server, it is possible to the allocated archiving server, based on OpenSCADA.

• Configuration and management of station through:
• The WEB-interface. By means of a Web-browser and the UI-module WebCfgD or WebCfg.
• The QT-interface. By means of the UI-module QTCfg.
• From the remote configuration station. By means of the UI-module at configuration station QTCfg and

the interface of management OpenSCADA reflected in the protocol SelfSystem.
• Data storage of station in a DB of types:
• MySQL. By means of the DB-module MySQL.
• SQLite. By means of the DB-module SQLite.
• PostgreSQL. By means of the DB-module PostgreSQL.
• DBF. By means of the DB-module DBF.
• FireBird. By means of the DB-module FireBird.
• In plans. DB accessible on other server based on OpenSCADA.
• In plans. LDAP.

 1.3. The environment of execution of controllers (PLC):

• Data acquisition (DAQ) from sources:
• Cards of data acquisition of firm Diamond Systems. By means of the DAQ-module DiamondBoards.
• Information on a platform (hardware-software) on which the server works. By means of the DAQ-

module System.
• Data acquisition from sources which support protocol SNMP (Simple Network Management Protoсol).

By means of the DAQ-module SNMP.
• Data acquisition of industrial controllers under the protocol ModBus. By means of the DAQ-module

ModBus.
• Data acquisition of industrial controllers under the protocol DCON. By means of the DAQ-module

DCON.
• Formation of derivative structures of parameters on the basis of templates of parameters and data from

other sources. By means of the DAQ-module LogicLev.

Functional characteristics and demands of OpenSCADA system 14

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=5a2
http://wiki.oscada.org/HomePageEn/Doc/DCON?v=a7d
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=10ka
http://wiki.oscada.org/HomePageEn/Doc/System?v=o1b
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=32m
http://diamondsystems.com/
http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=a29
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=14l4
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=10ip
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=v7w
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=c4s
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=w15
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=1a4t
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=dws
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=10ka
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=vpz
http://wiki.oscada.org/HomePageEn/Doc/WebUser?v=jyt
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g6w
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=rij

• Data acquisition from other servers and PLC, based on OpenSCADA, possibly for duplication. By
means of the DAQ-module DAQGate.

• Data acquisition from sound controller's input channels. By means of the DAQ-module SoundCard.
• Data acquisition from hardware of firm ICP DAS. By means of the DAQ-module ICP_DAS.
• Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-module OPC

UA (RU).
• Data acquisition from different sources, which have utilities for access to it data or it accessibly

through simple special network protocols. Made by getting procedure writing on language of user
programming by DAQ-module JavaLikeCalc, and also transport-protocol-module User Protocol.

• Providing data to upper-level systems:
• By means of interfaces:
• Serial interface (RS232, RS485, Modem, ...), by helps of transport module Serial.
• IP-networks sockets and network levels protocols TCP, UDP and Unix, by helps of transport module

Sockets.
• Security sockets layer (SSL), by helps of transport module SSL.

• By means of protocols:
• Self OpenSCADA protocol, by helps of transport's protocol module SelfSystem.
• ModBUS family protocol (TCP, RTU and ASCII), by helps of transport's protocol module

ModBUS.
• "OPC UA" protocol, by helps of transport's protocol module OPC UA (RU).
• Simple special protocols, developed by users by helps of transport's protocol module User Protocol.

• Management, regulation and performance of other user calculations in languages:
• Language of block schemes. By means of the DAQ-module BlockCalc.
• With the help of Java-like language of a high level. By means of the DAQ-module JavaLikeCalc.

• Archiving messages, conducting reports on various categories and levels by means of mechanisms:
• Files in a XML-format or the flat text with packing the out-of-date archives. By means of the archiving

module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.
• In plans. On other server, it is possible to the allocated archiving server, based on OpenSCADA.

• Archiving of values of the collected data by means of mechanisms:
• Buffers in memory of the setting depth. By means of the built in archiving mechanism of the values of

kernel OpenSCADA.
• Files with double packing: consecutive and standard archiver gzip. By means of the archiving module

FSArch.
• In tables of archival DB. By means of the archiving module DBArch.

• Configuration and management PLC through:
• The WEB-interface. By means of a Web-browser and the UI-module WebCfgD or WebCfg.
• From the remote configuration station. By means of the UI-module at configuration station QTCfg and

the interface of management OpenSCADA reflected in the protocol SelfSystem.
• Data storage PLC in a DB of types:
• All data in a configuration file (fixed).
• MySQL. By means of the DB-module MySQL.
• SQLite. By means of the DB-module SQLite.
• PostgreSQL. By means of the DB-module PostgreSQL.
• DBF. By means of the DB-module DBF.
• FireBird. By means of the DB-module FireBird.
• In plans. DB accessible on other server based on OpenSCADA.
• In plans. LDAP.

Functional characteristics and demands of OpenSCADA system 15

http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=a29
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=14l4
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=10ip
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=v7w
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=c4s
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=w15
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=1a4t
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=dws
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/SSL?v=88e
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1nz
http://wiki.oscada.org/HomePageEn/Doc/Serial?v=ymb
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ICPDAS?v=ce3
http://www.icpdas.com/
http://wiki.oscada.org/HomePageEn/Doc/SoundCard?v=kn8
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=vpz

 2. Requirements for OpenSCADA

 2.1. Execution

The demands to apparatus for OpenSCADA system execution at different roles viewed into table 1. The
demands to programs for OpenSCADA system execution and it modules allow into table 2.

Table 1. The demands to apparatus for OpenSCADA system and it modules.
Role Demands

SCADA system's server
CPU: x86_32 (more than i586) or x86_64, with frequency more 500 MHz
MEM: 128 MB
HDD: 10 GB include OS and place for archives

Station of the operator of
technological process, the
board of the dispatcher, the
panel of monitoring, etc.

CPU: x86_32 (more than i586) or x86_64, with frequency more 1 GHz
MEM: 512 MB
HDD: 4 GB include OS without archives place

The environment of execution
of controllers (PLC)

CPU: x86_32 (more than i586) or x86_64, with frequency more 133 MHz
MEM: 32 MB
HDD: 32 MB include OS without archives place.

Table 2. Dependences of performance of OpenSCADA system and its modules.
Component Description

Dependences of OpenSCADA system's kernel

OS Linux The distribution kit of operating system Linux (ALTLinux, SuSELinux, Mandriva,
ASPLinux, Fedora, Debian, Ubuntu ...)

"Standard
libraries"

Standard set of libraries: linux-gate, libstdc++, libgcc_s, libc, libdl, librt, libcrypt, libm,
libpthread. Certainly this already allow into installed distribution. Special demand is
using native thread library NPTL, already used for all modern distributions of the Linux.

libgd Graphic library GD version 2, it is desirable that it will be without XPM support
(dependence on library of a X-server is excluded) and support of FontConfig.

libexpat Library of XML-parser.
DB.MySQL module
libMySQL Library for access to MySQL DBMS.
DB.SQLite module
libsqlite3 Library for access to built in DB SQLite version 3.
DB.PostgreSQL module
libpq Library for access to PostgreSQL DBMS version more 8.3.0.
DB.FireBird module

FirebirdSS
FireBird DBMS version 2. Often is absent in distribution kits of Linux and demands
individual loading from an official site (http://www.firebirdsql.org)!

Transport.SSL module
libssl Library for codifying OpenSSL.
DAQ.SNMP module
libsnmp Library for access to data of network devices under SNMP protocol.
DAQ.System module
libsensors Hardware sensors' library versions 2 and 3.
DAQ.SoundCard module
libportaudio Multiplatform library for access to sound controller version 19 and higher.
DAQ.OPC_UA module

Functional characteristics and demands of OpenSCADA system 16

http://www.firebirdsql.org/

Component Description
libssl Library for codifying OpenSSL.
Modules: UI.Vision, UI.WebVision, Special.FLibSYS
libfftw3 Library for fast Fourie transfer of signals.
Modules: UI.QTStarter, UI.QTCfg, UI.Vision
libQT4(libQtCor
e,libQtGui) Library for construction of user graphic interface QT version 4.3 and higher.

 2.2. Building

Dependences of system OpenSCADA for building of the OpenSCADA kernel and its modules are
tabulated bellow.

Table 3. Dependences of building of OpenSCADA system and its modules.
Component Description

The general requirements for building OpenSCADA

OS Linux
The distribution kit of operating system Linux (ALTLinux, SuSELinux, Mandriva,
ASPLinux, Fedora, Debian, Ubuntu ...)

g++ The compiler of language C++ from a collection of compilers GCC, including
library GLibC

autotools(automake,
autoconf, libtool)

Tools for formation of building environment of OpenSCADA. They are necessary
only in the case of changing building environment of OpenSCADA, for example
for addition of the new module or change of the fixed parameters of building.

gettext
Group of utilities for preparation and compilations of translations of the interface
of programs on various languages in conformity with internationalization standard
I18N.

libgd(devel)

Graphic library GD version 2, a package for development, it is desirable that it will
be without XPM support (dependence on library of a X-server is excluded) and
support of FontConfig. It is used for construction of trends and other images in
PNG format.

libexpat(devel)
Library of XML-parser, package for development. The interface of management of
OpenSCADA and other components are constructed on the basis of language
XML.

DB.MySQL module
libMySQL(devel) Library for access to MySQL DBMS, a package for development on language C.
DB.SQLite module
libsqlite3(devel) Library for access to built in DB SQLite version 3, a package for development.
DB.PostgreSQL module

libpq Library for access to PostgreSQL DBMS version more 8.3.0, a package for
development.

DB.FireBird module

FirebirdSS
FireBird DBMS version 2, a package for development. Often is absent in
distribution kits of Linux and demands individual loading from an official site (
http://www.firebirdsql.org)!

Transport.SSL module
libssl(devel) Library for codifying OpenSSL, a package for development.
DAQ.JavaLikeCalc module
bison The program of generation of parsers on the basis of grammar of language.
DAQ.SNMP module

libsnmp(devel) Library for access to data of network devices under SNMP protocol, a package for
development.

Functional characteristics and demands of OpenSCADA system 17

http://www.firebirdsql.org/
http://www.firebirdsql.org/

Component Description
DAQ.System module
libsensors(devel) Hardware sensors' library versions 2 and 3, a package for development.
DAQ.Siemens module
glibc-kernheaders Linux-kernel headers by library GLibC.
DAQ.SoundCard module

libportaudio(devel) Multiplatform library for access to sound controller, a package for development
version 19 and higher.

DAQ.OPC_UA module
libssl(devel) Library for codifying OpenSSL, a package for development.
Modules: UI.Vision, UI.WebVision, Special.FLibSYS
libfftw3(devel) Library for fast Fourie transfer of signals, package for development.
Modules: UI.QTStarter, UI.QTCfg, UI.Vision

libQT4(devel) Library for construction of user graphic interface QT version 4.3 and higher,
package for development.

Functional characteristics and demands of OpenSCADA system 18

OpenSCADA program description
The given document is the description "open source" project of system called "OpenSCADA."

OpenSCADA corresponds an open SCADA system constructed on principles of modularity, multiplatform
and scalability.

As a policy of development of the given system the "open source" principles are chosen. The choice of
the given policy is determined by necessity of creation of open, reliable and public SCADA system. The
given policy allows to involve in development, testing, elaboration, distribution and use of a product the
significant amount of developers, enthusiasts and other interested persons with minimization and
distribution of financial expenses.

The OpenSCADA system is intended for acquisition, archiving, visualization of the information,
delivery of operating influences, and also for other related operations characteristic for full-function
SCADA systems. Owing to a high level of abstraction and modularity, the system can be used in many
adjacent areas.

The OpenSCADA system can be applied:
• on industrial targets, as full-function SCADA system;
• in built in (embedded) systems, as an environment of performance, including inside PLC
(programmed logic controllers);
• for construction of various models (technological, chemical, physical, electric processes);
• on personal computers, servers and clusters for acquisition, processing, representation and
archiving of the information on system and its environment.

As basic (host) operational system, for development and use, the OS Linux is chosen, which is the
optimum compromise in questions:

• reliability (vast majority of servers and clusters works on GNU/Linux);
• flexibility/scalability (in view of the openness and modularity allows to build decisions under any
requirements);
• availability (owing to license GPL it is completely free system, and at high qualification of the
user and free-of-charge);
• popularity, development, support, prevalence (the system is actively developed by set of
enthusiasts, firms and official bodies from all over the world, it gets greater and greater support in
the user and corporate market, it is actively implemented into the state structures of the various
countries).

As far as the project is developed and realized by principles of multiplatformity, it does not make a
problem to port it on other OS, that is planned in the future.

Heart of system is the modular kernel. And depending on that, what modules are connected, system can
to act both in a role of various servers, and in a role of various clients, and also to combine these functions
in one program. It allows to work in practice client-server architecture of SCADA system on the basis of
the same components/modules, saving thus: machine memory, disk space, and also valuable time of
programmers.

Server configurations of system are intended for acquisition, processing, delivery of influences,
archiving, recording of the information from various sources, and also for granting of this information to
clients (UI, GUI, TUI...). The modular architecture allows to expand functionality of a server without its
restarting.

Client configurations can be built on the basis of various graphic libraries (GUI/TUI ToolKits), as using
a kernel of the program and its modules (by addition to it the module of UI-user interface), and as the
independent application, connecting the kernel of OpenSCADA as library.

The opportunity of a flexible configuration of system allows to build decisions under concrete
requirements of reliability, functionality and the sizes of system.

OpenSCADA program description 19

 1. Functions of the system.

Fig. 1. The block scheme of OpenSCADA system

 1.1. Modularity.

For giving flexibility and a high degree of scalability the OpenSCADA system is constructed by a
modular principle. Close integration of modules with a kernel of system imposes the great responsibility on
process of a writing of modules and enters an element of instability into the system, however owing to an
opportunity of creation of the allocated configurations, this danger smooths out with preservation of a high
degree of flexibility.

Modules of OpenSCADA system are stored in dynamic libraries. Each dynamic library can contain set
of modules of various type. Filling of dynamic libraries by modules is determined by functional
connectivity of modules. Dynamic libraries suppose hot replacement, that allows during functioning to
update separate parts of system. The method of storage of a code of modules in dynamic libraries is the
main for OpenSCADA as far as it is supported practically by all modern operational systems(OS). However
it does not exclude an opportunity of development of other methods of storage of a code of modules.

On the basis of modules the following functional parts of OpenSCADA system are realized:
• databases;
• archives (messages and values);
• protocols of communication interfaces;
• communication interfaces, transports;
• sources of data and data acquisition;
• interfaces of the user (GUI, TUI, WebGUI, speech, signal...);
• the additional and special modules.

Management of modules is carried out by a subsystem "Management of modules". Functions of a
subsystem are: connection, switching-off, updating of modules, and also other operations connected with
modules and libraries of modules.

OpenSCADA program description 20

 1.2. Subsystems.

Architecturally the OpenSCADA system shares on subsystems. Subsystems can be of two types: usual
and modular. Modular subsystems possess the property of expansion by means of modules. Each modular
subsystem can contain set of modular objects. For example the modular subsystem of "Database" contains
modular objects of types of databases. The modular object is a root inside of the module.

In total the OpenSCADA system contains 9 subsystems from them 7 subsystems are modular. 9
subsystems of the OpenSCADA system are basic and are present at any configuration. To the list of 9
subsystems new subsystems by means of modules can be added. Subsystems of the OpenSCADA system:

• Archives (modular).
• Databases (modular).
• Safety.
• Interfaces of the user (modular).
• Management of modules.
• Data acquisition (modular).
• Transport protocols (modular).
• Special (modular).
• Transports (modular).

 1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition".

For support of sources of dynamic data, whether it be PLC-controllers, communication devices, virtual
sources, etc., the subsystem "Data acquisition" is intended. Functions of this subsystem include granting the
received data in the structured appearance and maintenance of management with these data, for example the
updating of data.

The subsystem "Data acquisition" is modular and, as consequence, contains modular objects of types of
sources of dynamic data. For example, for October 2007г, the OpenSCADA system supports following
types of sources of data:

• Cards of data acquisition from "Diamond systems".
• Data acquisition from operational systems (OS).
• the Block calculator.
• the Calculator in Java-like language.
• the Transporter of data of a subsystem "Data acquisition" from one OpenSCADA station to
another.
• Access to logic controllers by means of the protocol "ModBUS".
• Data acquisition from network devices by means of protocol SNMP.
• The source of data of a logic level of OpenSCADA system.
• Access to highly intellectual logic controllers by means of MPI protocol and communication
processor CIF50PB of Hilscher GMBH firm.

Each type of a source is made in the form of the separate module which can be connected/disconnected.
Each type of a source can contain separate sources (controllers).

Separately taken controller can contain the parameters of certain by the module types. For example
parameters of analog type: the basic information which they gives the value of the integer or real type is.
Structurally, the parameter represents the list of attributes which are contained by data. Attributes can be of
four base types: symbolical string (text), integer, real and logic type.

Structures of controllers, parameters and their types are contained in the subsystem "Data acquisition",
and objects of modules carry out their filling according to own specificity.

The source of dynamic data can be remotes, i.e. connected on the remote OpenSCADA system. For
communication with such sources of data the transport type of controllers (Transporter) is used. Function of
the given type of a source of data is reflection of sources of data of remote OpenSCADA stations on local
station.

OpenSCADA program description 21

 1.4. Databases. A subsystem of "Database"

For a data storage of system databases (DB) are everywhere used. With a view of systematization of
access and management of databases in OpenSCADA system the subsystem "Database" is provided. For
support of various DB/DBMS the subsystem is modular.

In a role of the modular objects, containing in a subsystem, type DB/DBMS acts, i.e. the module of a
subsystem "Database", which practically contains realization of access to the certain type of a DB. For
example modules: DBF, MySQL, SQLite.

The object of type DB/DBMS, in its turn, contains the list of objects of separated DB of the given type.
And the object of a DB contains the list of objects of tables which are contained by data in the tabulated
form.

Practically all the data of OpenSCADA system are stored in this or that DB. The toolkit of system allows
to transfer easily the data from one type of a DB on another and as consequence provide an optimum
selection of DB type under the concrete area of OpenSCADA system. Transfer of the information from one
DB to another can be made by two ways. The first is a change of the address of a working DB and save of
all system on it, the second is a direct copying the information between DB. Except for copying the
function of direct editing of contents of tables of a DB is supported also.

For the organization of the centralized access of the allocated system to a uniform DB two ways are
provided. The first is using of network DBMS, for example MySQL. The second way is using of transport
type of a DB on local systems for access to one central DB (It is planned.). Function of a transport DB is
transfer of queries to a DB on remote OpenSCADA system.

Data can be stored also in a configuration file of system. The mechanism of full reflection of structure of
a DB on structure of a configuration file is realized. I.e. the standard configuration can be placed in a
configuration file. An essence of such mechanism that by default for example at start without a DB, it is
possible to describe the data of system in a configuration file. In the further, these data can be redefined in a
DB. Besides for cases of impossibility of start of any DB generally, it is possible to store all data in a
configuration file.

For access to databases the mechanism of registration of a DB is used. Registered DB in system are
accessible to all subsystems of OpenSCADA system and can be used in their work. Owing to this
mechanism it is possible to provide an allocation of data storage. For example, various libraries can be
stored and extend independently, and connection of library will consist in simple registration of the
necessary DB.

In the further, realization of duplication of a DB by linkage of the registered DB is planned. This
mechanism will allow to increase considerably reliability of OpenSCADA system as a whole by reservation
of the mechanism of a data storage. (It is planned.)

 1.5. Archives. A subsystem "Archives".

Any SCADA system gives an opportunity of archiving the acquisition data, i.e. formation of history of
change (dynamics) of processes. Archives, conditionally, it is possible to divide into two types: archives of
messages and archives of values.

Feature of archives of messages is that the subject of archiving are, so-called, events. A characteristic
attribute of event is time of occurrence of this event. Archives of messages, usually, are used for archiving
messages in system, i.e. conducting logs and reports. Depending on a source, messages can be classified by
various criteria. For example, it can be reports of emergencies, reports of actions of operators, reports of
failures of connection, etc.

Feature of archives of values is their periodicity defined by the time interval between two adjacent
values. Archives of values are applied for archiving of history of continuous processes. As far as process is
continuous and it's archiving is possible only by introduction of conception of quantization of interrogation
of values as differently we receive archives of the infinite sizes, in view of a continuity of the nature of
process. Besides, practically, we can receive values with the period limited by sources of data. For example,
qualitative enough sources of data, in the industry, data with frequency more 1kHz seldom allow to obtain.

OpenSCADA program description 22

And it without taking into account sensors having even less qualitative characteristics.

For the decision of tasks of archiving data flows in OpenSCADA system the subsystem "Archives" is
provided. The subsystem "Archives" allows to conduct both: archives of messages and archives of values.
The subsystem "Archives" is modular. The modular object containing in a subsystem "Archives" the type of
the archiver acts. The type of the archiver defines the way of a data storage, i.e. storehouse (file system,
DBMS, a network, etc.). Each module of a subsystem "Archives" can realize both: archiving of messages,
and archiving of values. The subsystem "Archives" can contain set of the archives served by various
modules of a subsystem.

The message in OpenSCADA system is characterized: by date, by level of importance, by category and
the text of the message. Date of the message specifies for the period of creation of the message. The level of
importance specifies a degree of importance of the message. The category determines the address or the
conditional identifier of a source of the message. Usually, the category contains a full way to a source of the
message in system. The text of the message, actually, also carries meaning content of the message.

During archiving messages are passed through the filter. The filter works on a level of importance and a
category of the message. The level of the message in the filter specifies that it is necessary to pass messages
with specified or higher level of importance. To filtering on a category templates are used, which define
what messages are applied to pass. Each archiver contains own options of the filter. Consequently it is
possible to create easily various specialized archivers for archive of messages. For example archivers of
messages it is possible to dedicate on:

• logs for storage of the debugging information and other working information of a server;
• various reports (the report of actions of clients, the report of infringements and exceptions, the
report of events...).

The archive of values in system OpenSCADA acts as an independent component which includes the
buffer processable by archivers. Key parameter of archive of value is the source of data. In a role of a
source of data attributes of parameters of OpenSCADA system and also other external sources of data (a
passive mode) can act. Other sources of data can be: network archivers from remote OpenSCADA systems,
the environment of programming of OpenSCADA system, etc.

Key component of archiving of values of continuous processes is the buffer of values. The buffer of
values is intended for intermediate storage of a file of the values received with certain periodicity (quantum
of time). The buffer of values is used as for direct storage of big arrays of values in archives of values,
before direct "retire" on physical carriers, and for manipulations with the staff of values, i.e. in functions of
rame-accurate query of values and their placement in buffers of archives.

For the organization of the dedicated archivers, in the allocated systems it is possible to use transport
type of the archiver (It is planned.). Function of transport type of the archiver is reflection of the remote
central archiver on local system. As consequence, archivers of transport type carry out data transmission
between local system and the archiver of the remote system, hiding from subsystems of local system the
real nature of the archiver.

 1.6. Communications. Subsystems "Transports" and "Transport protocols".

As far as the OpenSCADA system is pawned as is high-scaled system that support of communications
should be flexible enough. For satisfaction of a high degree of flexibility, communications in OpenSCADA
system are realized in subsystems "Transports" and "Transport protocols" which are modular.

The subsystem "Transports" is intended for an exchange of the not structured data between
OpenSCADA system and external systems. In a role of external systems can act even remote OpenSCADA
systems. Not structured data are understood as a file of symbols of the certain length. The modular object
containing in a subsystem "Transports", the type of transport acts. The type of transport defines the
mechanism of transfer of not structured data. For example it can be:

• sockets (TCP/UDP/UNIX);
• channels;
• shared memory.

The subsystem "Transports" includes support of input and output transports. Input transport is intended

OpenSCADA program description 23

for service of external queries and sending of answers. Output transport, on the contrary, is intended for
sending messages and expectation of the answer. Consequently, input transport contains a configuration of
the given station as server, and output transport contains a configuration of the remote server. The module
of a subsystem "Transports" realizes support both: input and output transports.

The subsystem "Transport protocols" is intended for structurization of data received from a subsystem
"Transports". As a matter of fact, the subsystem "Transport protocols" is continuation of a subsystem
"Transports" and carries out functions of check of structure and integrity of the received data. So, for the
indication of the protocol together with which transport should work, the special configuration field is
provided. The modular object containing in a subsystem "Protocols" is the protocol. For example, transport
protocols can be:

• HTTP (Hyper Text Transfer Protocol);
• SelfSystem (OpenSCADA the system protocol).

The full chain of connection can be written down as follows:
• the message is transferred in transport;
• transport transfers the message to the protocol, connected with it, by creation of new object of the
protocol;
• the protocol checks integrity of data;
• if all data have come, transport must be informed about the termination of expectation of data and
to transfer it the answer, differently to inform, that it is necessary to expect still;
• transport, having received {confirmation, sends the answer and delete object of the protocol;
• if confirmations are not present, the transport continues expectation of data, and in the case of
their receipt transfers them to the saved object of the protocol.

Protocols for output transports are supported also. The output protocol incurs function of dialogue with
transport and realization of features of the protocol. The internal side of access to the protocol is realized by
data-flow way with own structure for each protocol module. Such mechanism allows to carry out
transparent access to external system, by means of transport, simply specifying a name of the protocol by
means of which to serve transfer.

Owing to standard API-access to transports of OpenSCADA system it is possible to change easily a way
of data exchange not touching exchanging systems. For example, in the case of a local exchange it is
possible to use faster transport on the basis of shared memory, and in the case of an exchange through the
Internet and a local network to use TCP or UDP sockets.

 1.7. Interfaces of the user. A subsystem "Interfaces of the user".

SCADA-systems as a class, assume presence of user interfaces. In OpenSCADA, for granting the user
interfaces, the subsystem "The user interfaces" is provided. The user interface of OpenSCADA system is
understood not only as the environment of visualization from which the end user should work, but also as
everything, that concerns the user, for example:

• environments of visualization;
• configurators;
• alarming and signalling devices.

The subsystem "The user interfaces" is modular. As modular object of a subsystem the concrete interface
of the user actually acts. Modilarity of subsystem allows to create various interfaces of users on various
GUI/TUI libraries and to use optimal of decisions in particularly taken case, for example, for environments
of performance of programmed logic controllers it is possible to use configurators and visualizers on the
basis of Web-technologies (WebCfg, WebUI), and in case of stationary workstations to use the same
configurators and visualizers, but on the basis of libraries QT, GTK.

OpenSCADA program description 24

 1.8. Security of system. A subsystem "Security".

The OpenSCADA system is the branched out system which consists of ten subsystems and can include
set of modules. Consequently, granting of unlimited access by all to these resources is at least unsafe.
Therefore, for differentiation of access in OpenSCADA system, the subsystem of "Security" is provided.
The basic functions of a subsystem "Security" are:

• storage of registration records of users and groups of users;
• authentication of users;
• check of access rights of the user to this or that resource.

 1.9. Management of libraries of modules and modules. A subsystem "Management of
modules".

The OpenSCADA system is constructed by a modular principle that means presence of set of modules
with which it is necessary to operate. For performance of function of management by modules of
OpenSCADA system the subsystem "Management of modules" is provided. All modules, for the present
moment are delivered in system by means of shared libraries (containers). Each container can contain set of
modules of various type.

The subsystem "Management of modules" realizes the control over the status of containers and allows to
carry out hot addition, removal and updating of containers and modules containing in them.

 1.10. Unforeseen opportunities. A subsystem "Special".

Certainly, to provide all probable functions it is impossible, therefore in OpenSCADA system the
subsystem "Special" is provided. The subsystem "Special" is modular and is intended for addition in
OpenSCADA system unforeseen functions by modular expansion. For example, by means of a subsystem
"Special" can be realized:

• tests of OpenSCADA system and its modules;
• libraries of functions of the user programming.

 1.11. The user functions. Objective model and the environment of programming of
system.

Any modern SCADA system should contain the mechanisms giving an opportunity to program at the
user level, i.e. to contain the environment of programming. The OpenSCADA system contains such
environment. By means of the environment of programming of OpenSCADA system it is possible to
realize:

• Algorithms of management of technological processes.
• Large dynamic models of real time of technological, chemical, physical and other processes.
• Adaptive mechanisms of management on models.
• The user procedures of management by internal functions of system, its subsystems and modules.
• Flexible formations of structures of parameters at a level of the user, with the purpose of creation
of parameters of non-standard structure and its filling on algorithm of the user.
• Auxiliary calculations.

The environment of programming of OpenSCADA system represents a complex of assets organizing the
computing environment of the user. Into structure of a complex of assets are included:

• objective model of OpenSCADA system;
• modules of libraries of functions;
• computing controllers of a subsystem "Data acquisition" and other calculators.

Modules of libraries of functions give set of functions of the certain orientation expanding objective
model of system. Libraries can be realized both: by the set of functions of the fixed type, and functions
supposing free updating and addition.

Libraries of functions of the fixed type can be given by standard modules of system, organically

OpenSCADA program description 25

supplementing objective model. Functions of such libraries will represent the interface of access to assets of
the module at a level of the user. For example, "The environment of visual data presentation" can give
functions for delivery of various messages. Using these functions the user can realize interactive algorithms
of communication with system.

Libraries of functions of free type give the environment of a writing of the user functions on one of
programming languages. Within the limits of the module of libraries of functions mechanisms of creation of
libraries of functions can be given. So, it is possible to create libraries of devices of technological processes,
and in a consequence to use them by linkage. Various modules of libraries of functions can give realizations
of various programming languages.

On the basis of the functions given by objective model, computing controllers are under construction.
Computing controllers carry out linkage of functions with parameters of system and the mechanism of
calculation.

OpenSCADA program description 26

 2. SCADA systems and their structure.

Fig. 2. SCADA-system.

OpenSCADA program description 27

SCADA (Supervisory Control And Data Acquisition), in a general view, have the allocated architecture
like represented on fig. 2. Elements of SCADA systems, in sense of the software, carry out following
functions:

The acquisition server: represents a task or group of tasks engaged in data acquisition from sources of
data, or act in a role as a source of data. Into tasks of a server enters:

• reception and-or formation of data;
• data processing;
• service of queries about access to data;
• service of queries about updating of data.

The server of archiving: represents a task or group of tasks engaged in archiving of data. Into tasks of
the server enters:

• archiving of data of SCADA-system;
• service of queries about access to contemporary records;
• import/export of archives.

The journaling server: represents a task or group of tasks engaged in archiving of messages. Into tasks
of the server enters:

• archiving of messages of units of SCADA-system;
• service of queries about access to archival messages;
• import/export of archives.

The alarm server: represents a task or group of tasks carrying out functions of the server of recording
concerning a narrow category of messages of the signal system.

The operator working place: represents constantly functioning GUI (Grafical User Interface)
application executed in an one-monitor, multimonitor or panel mode and carrying out functions:

• granting of the user interface for the control over a condition of technological process;
• granting of an opportunity of formation of operating influences;
• granting of an opportunity of studying and the analysis of history of technological process;
• granting of toolkit for generation of the reporting documentation.

The engineer working place: represents GUI application used for configuration of SCADA system.
Into tasks of the application enters:

• granting of toolkit for manipulation with system functions of system;
• granting of toolkit of a workplace of the operator;
• granting of toolkit for manipulation with architecture of SCADA system as a whole (distribution
of functions between stations, creation, removal of stations...).

The chief working place: represents GUI application, as a rule, executed in an one-monitor mode and
carrying out functions:

• granting of the user interface for the control over a condition of technological process;
• granting of toolkit for studying and the analysis of history of technological process as is direct
from an active server, and on the basis of separate archives;
• granting of toolkit for generation of the reporting documentation.

The technologist working place: completely includes functions of a workplace of the operator plus
model of technological process (without direct communication with technological process).

The work planner working place: completely includes functions of a workplace of the technologist
plus toolkit for creation of models of technological processes.

OpenSCADA program description 28

 3. Ways of configuration and using of OpenSCADA system.

 3.1. Simple server connection.

In the elementary case the OpenSCADA system can be configured in a server mode (fig. 3.1) for
acquisition and archiving of data. The given configuration allows to carry out following functions:

• interrogation of controllers;
• archiving of values of parameters;
• service of client queries about reception of various data of a server;
• granting of the configuration WEB-interface;
• the remote configuration from OpenSCADA system by means of the QT-interface or other local
interface.
• secondary regulation (regulation in computing controllers);
• modeling, adjusting and supplementing calculations in computing controllers.

Fig. 3.1. Simple server connection.

OpenSCADA program description 29

 3.2. The duplicated server connection.

For increasing of reliability and productivity the OpenSСADA system supposes plural reservation (fig.
3.2) at which controllers of one copy are reflected in other. At use of a similar configuration distribution of
loading of interrogation/calculation at various stations is possible. The given configuration allows to carry
out functions:

• interrogation of controllers;
• archiving of values of parameters;
• service of client queries about reception of various data of a server;
• reservation of parameters;
• reservation of archives;
• distribution of loading of interrogation on servers;
• granting of the configuration WEB-interface;
• secondary regulation (regulation in computing controllers);
• modeling, adjusting and supplementing calculations in computing controllers with an opportunity
of distribution of loading on servers.

Рис. 3.2. The duplicated server connection.

 3.3. The duplicated server connection on one server.

Special case of the duplicated connection is the duplicated connection within the limits of one server
(fig. 3.3), that is start of several stations by one machine with a crossing of parameters. The purpose of the
given configuration is increase of reliability and fault tolerance of system by reservation of software.

 Fig.
3.3. The duplicated server connection on one server.

OpenSCADA program description 30

 4.4. Client access by means of the Web-interface. A place of the manager.

For visualization of data containing on a server, the good decision is to use the user WEB-interface (fig.
3.4). The given decision allows to use a standard WEB-browser at the client side and therefore is the most
flexible as it is not adhered to one platform, i.e. is multiplatform. However this decision has essential
imperfections: low productivity and reliability. In this connection it is recommended to use the given
method for visualization of noncritical data or data having a reserve highly reliable way of visualization.
For example, the good decision will be using of this method at the heads of plants where always exists
place(attendant position) with reliable way of visualization. The given configuration allows to carry out
following functions:

• interrogation of a server for data acquisition of visualization and a configuration;
• visualization of data in a kind accessible to understanding;
• formation of protocols, reports;
• manipulation with parameters supposing change.

Fig. 3.4. Client access by means of the Web-interface. A place of the manager.

 3.5. The automated workplace (place of the manager/operator).

For visualization of critical data, and also in case of if high quality and productivity is required, it is
possible to use visualization on the basis of OpenSCADA system configured with the GUI module (fig.
3.5). The given configuration allows to carry out following functions:

• interrogation of a server for updating current values;
• visualization of the interrogated data in a kind accessible to understanding;
• formation of protocols and reports;
• manipulation with parameters supposing changes.

Fig. 3.5. The automated workplace (place of the manager/operator).

OpenSCADA program description 31

 3.6. Automated workplace with a server of acquisition and archiving on the single
machine (a place of the operator, model...).

The full-function client-server configuration on the single machine (fig. 3.6) can be used for increasing
of reliability of system as a whole by start of the client and a server in different processes. The given
configuration allows, without consequences for a server, to stop the client and to do with it various
preventive works. It is recommended for use at stations of the operator by installation of two machines
combining in itself the station of the operator and redundant server. The given configuration allows to carry
out following functions:

• interrogation of controllers;
• service of client queries;
• visualization;
• delivery of operating influences;
• generation of protocols and reports;
• secondary regulation;
• modeling, adjusting and additional calculations in computing controllers;
• acquisition and visualization of the information on a personal computer, a server....

Fig. 3.6. Automated workplace with a server of acquisition and archiving on the single machine (a place of

the operator, model...).

OpenSCADA program description 32

 3.7. The elementary mixed connection (model, demonstration, configurator...).

The mixed connection combines functions of a server and the client (fig. 3.7). It can be used for test,
demonstration functions, and also for granting models of technological processes as a unit. In this mode
following functions can be carried out:

• interrogation of controllers;
• service of client inquiries;
• visualization;
• delivery of operating influences;
• generation of protocols and reports;
• secondary regulation;
• modeling, adjusting and supplementing calculations in computing controllers;
• acquisition and visualization of the current information on a personal computer, a server,
model...;
• a configuration of databases, connections, etc.

Fig. 3.7. The elementary mixed connection (model, demonstration, configurator...).

OpenSCADA program description 33

 3.8. The steady, allocated configuration.

The given configuration is one of variants of steady/reliable connection (fig. 3.8). Stability is reached by
distribution of functions on:

• to servers of interrogation;
• to the central server of archiving and service of client queries;
• to clients: automated workplaces and WEB-clients.

Fig. 3.8. The steady, allocated configuration.

The server of interrogation is configured on the basis of OpenSCADA system and represents the task
(group of tasks) engaged with interrogation of the controller (group of controllers of the same type). The
received values are accessible to the central server through any transport which support is added by
connection of the corresponding module of transport. For decrease in frequency of interrogation and size of
the network traffic the server of interrogation can be equipped with small archive of values. The
configuration of a server of interrogation is stored in one of accessible DB.

The central server of archiving and service of client queries carries out function of the centralized
acquisition and processing of parameters of servers of interrogation and their values. Access to servers of
interrogation is carried out by means of one of accessible in OpenSCADA transports+protocols (for
example it is SGA). For granting the uniform interface of access to parameters and controllers the module
Transporter which reflects data of servers of interrogation on structure of local parameters is used.

For performance of internal calculations and the additional analysis of parameters computing controllers
are used.

For versatile and deep archiving various modules of archives are used.

For access of clients to a server are used accessible for OpenSCADA network transports, for example it
is Sockets, and transport protocols, for an example it is the protocol OpenSCADA "SelfSystem".

The configuration of the central server is stored in one of accessible DB (for example it is network
DBMS MySQL).

For granting the user WEB-interface the module WebCfg by means of the transport protocol "HTTP" is
used.

OpenSCADA program description 34

Various clients, among them automated workplaces and WEB-clients, are carried out on the separated
machines in necessary quantity. The automated workplace is realized on the basis of OpenSCADA system.
Its functions include interrogation of values of parameters from the central server and their visualization on
the GUI interface(s). For reception of parameters in an automated workplace the module of reflection of the
remote parameters Transporter, also, is used. For granting access to archives the module of archive of
network type can be used. The configuration of an automated workplace can be stored in one of accessible
DB (for example it is network DBMS MySQL, located on the machine of the central archiving server).

OpenSCADA program description 35

 4. Configuration and adjustment of the system.
As it can be seen in the section above, OpenSCADA allows configuration for execution in various roles.

Support of this possibility is provided by the developed mechanisms for configuration and storage of
configuration data. This section contains a description of these mechanisms, designed to demonstrate the
flexibility and diversity, thereby allowing to use OpenSCADA to 100%.

In describing the configuration mechanisms and methods of its storage in this section it will be focused
the description of system-wide mechanisms. Features of the configuration of modules of subsystems of
OpenSCADA are provided in their own module's documentation.

In OpenSCADA it is used the formalized approach to describing the configuration interfaces based on
XML. In fact, features of the component's configuration are provided by the component itself, thereby
running through the whole system, as the nervous system of the organism. In terms of OpenSCADA it is
called the interface of control of OpenSCADA (Control interface). On the basis of the control interface the
graphical interfaces of the user configuration are generated by means of modules of OpenSCADA. This
approach has the following important advantages:

• Scalability. You can connect only the required configuration modules or use only the remote
mechanisms.
• Excluding the need to update the configurators with the addition of new modules/functions, as
well as the exclusion of "swelling" of the configurator, providing the support for all of history of
now unnecessary and obsolete modules/functions.
• Simplicity of the creation of the graphical interfaces of configuration on the different basis owing
to the clear formality.
• The possibility of dynamic configuration is available, ie configuration can be performed directly
while the running of the system both locally and remotely, directly controlling the result.
• The simple and special extensibility of the configuration interface by adding the configuration
fields on the control interface's description language only in the required components.

In OpenSCADA the three configuration modules on the different basis of visualization are provided.
Lets observe them and their configuration options:

• Configuration module on the GUI library QT (http://qt.nokia.com/products) - UI.QTCfg.
Provides an advanced configuration interface, allowing to operate as a local station and the remote
ones in the local and global networks, including secure connection.
• Configuration module based on the dynamic WEB-technologies (DHTML) - UI.WebCfgD.
Provides an advanced configuration interface, allowing to operate as a local server's station, and the
remote stations in the local and global networks, including work on the secure connection. Client
connection is provided through the usual Web-browser.
• Configuration module based on the static WEB-technologies (XHTML) - UI.WebCfg. Provides
an adequate configuration interface that allows to manage the local server's station via the usual
Web-browser.

Configuration values, changed in the configurators, as well as most of the data are stored in databases
(DB). Given the modularity of subsystems "DB", there can be different database. Moreover, there is the
possibility of storing different OpenSCADA parts in different databases of the same type and in the
database of different types as well.

In addition to the database configuration information may be contained in the OpenSCADA
configuration file, and passed through the command line parameter's when you call OpenSCADA.
However, the saving of configuration changes in the configurators is only available in the database.
Standard name of the OpenSCADA configuration file is /etc/oscada.xml. The format of the configuration
file and command line parameters we'll examine in the separate section.

Further examining of the OpenSCADA configuration will be based on the interface of the configurator
UI.QTCfg, but the principles of work will be fully consistent with the rest of the configurators owing to the
generality in the control interface of OpenSCADA.

We will start examining with the configuration of system parameters of OpenSCADA, which is located
in the three tabs at the root page of the station:

OpenSCADA program description 36

http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=8v0
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=3k3
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=sc0
http://qt.nokia.com/products

• Tab "Station" contains basic information and configuration field of the station, Fig.4a. Here are
the provided fields and comments on them:

• ID - contains information about the station's identifier. It is specified by the command line
parameter -Station. When loading it is sought the section in the configuration file appropriate
to the station identifier, and if not detected, it uses the first available one.
• Station - indicates the localized station's name.
• Program - contains information on the program name. Usually it is OpenSCADA or name
of solution based on OpenSCADA.
• Version - contains the information on the current version of the programme.
• Host name - contains the information on the name of the machine that runs the station.
• System user - contains the information about the user on whose behalf the program is
executed in the system (OS).
• Operation system - contains the information about the name and version of operation
system, operation system kernel on which the program is executed.
• Frequency (MHZ) - contains the information about the frequency of the CPU, which runs
the program. The value of frequency is checked every 10 seconds and allows you to monitor
its change, for example, by the power management mechanisms.
• Realtime clock resolution (msec) - contains information about the possibility or resolution
of real-time clock of the operation system. It allows you to orient with the minimum interval
of time of periodic tasks, for example, for task of data acquisition.
• Internal charset - contains information about the charset in which text messages are stored
within the program.
• Config file - contains information about the configuration file used by the program. Set by
the command-line parameter -Config.
• Work directory - indicates the working directory of the station. It is used in relative
addressing of the objects in the file system, for example, database files. It allows the user to
save the modified system data to another database. The value of this field is not stored in the
database, but can be changed only in the "WorkDB" section of the configuration file.
• Icons directory - indicates the directory containing the program icons. If the configuration
navigation tree have no icons, then you have incorrectly entered the value of this field.
• Modules directory - indicates the directory of modules for OpenSCADA. If the value of
this field is incorrect, then when at start you will not see any graphical interface, but the only
information in the console on the correct running of the OpenSCADA kernel.
• Work DB - indicates the working database (DB), namely, the database used to store basic
data of the program. Changing of this field notes all objects as modified that allows you to
save or to load station's data from the specified main database.
• Save system at exit - points to the need to save the changed data at finishing.
• Save system period - indicates the frequency in seconds with which to save the changed
station's data.
• Language - indicates the language of program's messages. Changing of this field is
acceptable, but leads to a change of messages' language only for the interface and dynamic
messages!
• Text variable's base language - is used to activate the support of multilingual text
variables by specifying a non-empty basic language. The value of the basic language is
selected from the list of bi-character language code, usually only the current and the base
language is in the list. Further for the text variables in the non basic language in the tables of
the database it will be created the separate columns. Under the text variables the all text
fields of configurator, which can be translated into another language are meant. Numbers and
other symbolic values are not in their number and are not translated.
• Messages: - section of the parameters' group that are processing by the work and
messages of the stations:

• Least level: - indicates the level of messages beginning from which they are to be
processed. Messages below this level will be ignored. It is necessary, for example, to
exclude from processing the debug messages of level 0.
• To syslog - indicates the need of sending the message to the system logger, the
mechanism of operation system for work with system messages and software. When

OpenSCADA program description 37

this option is enabled the possibility appears to manage and control the OpenSCADA
messages by the mechanisms of OS.
• To stdout - indicates the using as a standard mechanism to display the message the
output to the console. Disabling of this feature will eliminate the entire output in the
console, unless you specify the following parameter.
• To stderr - indicated the using as a standard mechanism to display the message the
error output, it is also usually sent to the console.
• To archive - indicated the need for output of the messages in the messages' archive
of OpenSCADA. This option is usually enabled and its disabling leads to the actual
disabling of the archiving at the station.

• Tab "Subsystems" tab contains the list of subsystems (Fig. 4b) and allows you to jump directly to
them using the context menu.
• Tab "Tasks" contains the table with opened tasks by OpenSCADA components (Fig.4c). From
table you can get several information about the tasks, and also set CPUs for tasks of multi-
processors systems.
• Tab "Help" tab contains the brief help for that page, Fig. 4d. In this case, it is the available
command line parameters and fields of configuration file for this page.

To modify the fields of this page it may be required the super user's rights. Get these rights you can by
means of including your user into the superuser's group "root", or by entering the station from the superuser
"root".

We must mention another one important point: the fields of the identifiers of all OpenSCADA objects
are unacceptable for direct editing, because they are keys for storage of objects' data in the database.
However, to change the object's identifier you can by the command of cutting and the further pasting of the
object (Cut-> Paste) in the configurator.

Fig. 4a. "Station" tab of the main page of the configuration of the station.

OpenSCADA program description 38

Fig 4b. "Subsystems" tab of the main page of the configuration of the station.

Fig 4c. "Tasks" tab of the main page of the configuration of the station.

OpenSCADA program description 39

Fig. 4d. "Help" of the main page of the configuration of the station.

While examining the configuration pages of modular subsystems there will be described the general for
all modules properties. However, it should be noted that each module can provide both: the additional tabs,
and separate fields for the configuration of their own functioning for the pages, objects of which are
inherited by modules. Information on the features and additions of modules can be found in separate
documentation for each of them.

OpenSCADA program description 40

 4.1. "DB" subsystem

The subsystem is the modular one and contains a hierarchy of objects depicted in Figure 4.1a. To
configure the subsystem the root page of the subsystem "DB" containing the tabs "Modules" and "Help" is
provided. Tab "Modules" (Fig. 4.1b) contains the list of modules in subsystem "DB", available at the
station. Tab "Help" tab contains a brief help for this page.

To modify the page's fields of this subsystem it may be required the super user's rights or the inclusion of
your user to the "DB" group.

Fig. 4.1a. The hierarchical structure of "DB" subsystem.

Fig. 4.1b. Tab "Modules" tab of the root page of "DB" subsystem.

OpenSCADA program description 41

Each module of the "DB" subsystem provides the configuration page with the following tabs: "DB" and
"Help". "DB" tab (Fig. 4.1c) contains the list of databases registered in the module and the flag of the sign
of full deleting of the database when making the delete command. In the context menu of the databases' list
the user is provided with an opportunity to add, delete and move to the desired database. The "Help" tab
contains information about the module of the "DB" subsystem (Fig.4.1d):

• Module - module's identifier.
• Name - module's name.
• Type - module's type, subsystem's identifier, which contains the module.
• Source - shared library - the source of the module.
• Version - module's version.
• Author - module's author.
• Description - module's short description.
• License - license agreement of module's distribution.

Fig. 4.1c. "DB" tab of the module of "DB" subsystem.

OpenSCADA program description 42

Fig. 4.1d. "Help" tab of the module of the "DB" subsystem.

Each database contains its own configuration page with the tabs "Data base" and "Tables". Besides the
basic operations you can copy the contents of the DB by means of the standard function for the copying the
objects in the configurator. The copying operation the DB contents involves the copying of the original
database to the destination database, and the contents of the destination database is not cleared before the
copy operation. Copying the contents of database is made only when the both databases are enabled,
otherwise it will run a simple copy of the object of the database.

Tab "Data base" (Fig.4.1e) contains the main configuration options of the DB as follows:
• Section "State" - contains the properties which characterize the DB status:

• Enable - DB status "Enable".
• Accessible tables - list of tables that are in the database. Context menu of the property
gives the opportunity to physically remove the tables from the database.
• Load system from this DB - command to make load from this database. Can be used when
transferring data in the database between stations. For example, you can save the section of
one station in the export database, physically to move the DB to another station and connect
it in this subsystem, and call this command.

• Section "Config" - contains the following configuration fields:
• ID - contains the information on the DB identifier.
• Name - specifies the DB name.
• Description - short description of the DB and it's appointment.
• Address - DB address in the specific for the database type (module) in the format. Format
Description of the DB address recording format is usually available in the tooltip for this
field.
• Code page -indicates the code page, in which the text values of database are stored and
provided. The value of the code page of database in conjunction with the internal code page
of the station is used for clear transcoding of the text message while exchange between the
station and the database.
• To enable - indicates the state "Enable", in which to set the DB when start.

Tab "Tables" (Fig.4.1f) contains the list of the opened pages. In normal mode of the program operation
this tab is empty, because after the completion of working with tables the program closes them. The
presence of opened tables tells that the program is now working with tables or tables are opened by the user
to examine their contents. In the context menu of list of opened tables you can open the table for study (the
command "Add"), close the opened page (the command "Delete") and proceed to examination of the
contents of the table.

OpenSCADA program description 43

Fig. 4.1e. Tab "Data base" of the DB of module of subsystem "DB".

Fig. 4.1f. Tab "Tables" of the DB of module of subsystem "DB".

OpenSCADA program description 44

Page of the examination of the contents of the table contains only one tab, "Table". Tab "Table" (Figure
4.1g) contains the field of the name of the table and the table with the contents. Table of contents provides
the following functions:

• table's cells content redaction;
• addition of the line;
• deleting of the line.

Fig. 4.1g. Tab "Table" of the DB table of the module of the subsystem "DB".

OpenSCADA program description 45

 4.2. Subsystem "Security"

The subsystem is not modular one. To configure the subsystem the root page of the subsystem "Security"
is provided, which contains the tab "Users and Groups" and "Help". Tab "Users and Groups" (Figure 4.2a)
contains the list of users and users' groups. Users in the group "Security" and with the rights of the
privileged user can add, delete the user or group of users. All other users can go to the page the user or the
users' group. Tab "Help" contains the brief help for this page.

Fig. 4.2a. Tab "Users and Groups" of the root page of the subsystem "Security".

OpenSCADA program description 46

To configure the user it is provided the page containing only the tab "User" (Fig.4.2b). Tab contains the
configuration data of the user's profile, which can be changed by the user itself, the user of the "Security"
group or the privileged user:

• Name - information about the name (identifier) of the user.
• Full name - specifies the full name of the user.
• User picture - specifies the user's picture. Picture can be loaded and saved.
• User DB - DB address for the user's data storage.
• Password - the field to change the user's password. It always displays "******".
• Groups - the table with a list of user groups of the station and with the sign of identity of the user
to the groups.

Fig. 4.2b. The tab "User" of the user's page of "Security" subsystem.

OpenSCADA program description 47

To configure the user's group it is provided the page containing only the tab "Group" (Fig.4.2c). Tab
contains the configuration data of the group's profile, which can be changed only by the privileged use:

• Name - information about the name (identifier) of the user's group.
• Full name - specifies the full name of the user's group.
• User group DB - DB address for the user group's data storage.
• Users - list of users included in this group. With the context menu of the list you can add or
remove the user in the group.

Fig. 4.2c. The tab "Group" of the user's group page of "Security" subsystem.

OpenSCADA program description 48

 4.3. Subsystem "Transports"

The subsystem is the modular one and contains the hierarchy of objects shown in Figure 4.3a. To
configure the subsystem it is provided the root page of the subsystem "Transports", containing the tabs
"Subsystem", "Modules" and "Help".

Fig. 4.3a. The hierarchical structure of subsystems "Transports".

The tab "Subsystem" (Figure 4.3b) contains the configuration table of the external stations for a given
OpenSCADA. External stations can be the system's and the user's ones that is selected by the appropriate
option. System's external stations are available only to the super user and are used by the components of the
system purpose, for example, the mechanism of the horizontal redundancy and module DAQ.DAQGate.
User's external stations are tied to the user who created them, and thus the list of user's external stations is
individual for each user. User's external stations are used by the components of graphical interface, for
example, UI.QTCfg, UI.WebCfgD and UI.Vision. In the table of the external stations it is possible to add
and delete records about the station, as well as their modification. Each station contains the following
fields:

• Id - identifier of the external station.
• Name - the name of the external host.
• Transport - the combobox of the subsystem's module "Transports" for the using of it when access
to the external station.
• Address - address of the external station if the format, specific to the chosen in the previous field
of the module of the subsystem "Transports".
• User - the name/identifier of the user of the external station on behalf of whom to perform the
connection.
• Password - password of the user of the external station.

OpenSCADA program description 49

http://wiki.oscada.org/HomePageEn/Doc/Vision?v=1bd1
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=3k3
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=sc0
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni

Tab "Modules" tab (fig. 4.1b) contains the list of modules in subsystem "Transports" and is identical for
all modular subsystems. Tab "Help" contains a brief help for this page.

Fig. 4.3b. Tab "Subsystem" of the root page of subsystem "Transports".

Each module of the subsystem "Transports" provides the configuration page with the tabs "Transports"
and "Help". The tab "Transports" (Fig.4.3c) contains the list of incoming and outgoing transports registered
in the module. The context menu of lists of transports provides the user with the possibility to add, delete
and move to the desired transport. On the "Help" tab it is provided the information about the module of
subsystem "Transports" (Fig. 4.1d), whose structure is identical for all modules.

Fig. 4.3c. The tab "Transports" of the module of subsystem "Transports".

OpenSCADA program description 50

Each transport contains its own configuration page with one tab "Transport". This tab contains the basic
settings of transport. Incoming transport (fig.4.3d) includes:

• Section "State" - contains the settings that characterize the state of the transport:
• Status - information on the current transport's status and statistics of its work.
• Running - state of the transport "Running".
• Transport DB - DB address to store the transport's data.

• Section "Config" - directly contains the configuration fields:
• ID - information on the transport's identifier.
• Name - specifies the transport's name.
• Description - brief description of the transport and its appointment.
• Address - transport's address in the specific for the type of transport (module) format.
Description of the record format addresses transport, as a rule, is available in the tooltip for
this field.
• Transport protocol - indicates the transport protocol module (subsystem "Transport
protocols") that should work in conjunction with the input transport. Ie the received
unstructured data this module will sent to the structuring and processing to the specified
module of the transport protocol.
• To start - indicates the status of "Running", in which to transfer the transport at startup.

Fig. 4.3d. Tab "Transport" of the page of incoming transport of module of subsystem "Transports".

OpenSCADA program description 51

Outgoing transport (Fig. 4.3e) contains:
• Section "State" - contains the settings that characterize the state of the transport:

• Status - information on the current transport's status and statistics of its work.
• Running - state of the transport "Running".
• Transport DB - DB address to store the transport's data.

• Section "Config" - directly contains the configuration fields:
• ID - information on the transport's identifier.
• Name - specifies the transport's name.
• Description - brief description of the transport and its appointment.
• Address - transport's address in the specific for the type of transport (module) format.
Description of the record format addresses transport, as a rule, is available in the tooltip for
this field.
• To start - indicates the status of "Running", in which to transfer the transport at startup.

Fig. 4.3e. Tab "Transport" of the page of outgoing transport of module of subsystem "Transports".

OpenSCADA program description 52

Outgoing transport, in addition, provides the tab for forming the user request via this transport (Fig.4.3f).
The tab is provided for setting communication, as well as for debugging the protocols and includes:

• Time (ms) - information about the time taken for request and receiving the answer.
• Mode - indicates the regime of data from the following list: "Text" and "Binary", in which the
request will be formed and the answer will be provided. In binary mode data is recorded in pairs of
numbers in hex, ie bytes, separated by spaces.
• Send - command to send a request.
• Request - contains the request in the selected mode of data representing.
• Answer - provides the answer in the selected mode of data representing.

Fig. 4.3f. The tab "Request" of the page of outgoing transport of module of subsystem "Transports".

 4.4. Subsystem "Transport protocols"

The subsystem is modular. To configure the subsystem the root page of the subsystem "Transport
Protocols" is provided, it contains the following tabs: "Modules" and "Help". The tab "Modules" (Fig. 4.1b)
contains the list of modules in subsystem "Transport Protocols" and is identical for all modular subsystems.
The tab "Help" contains a brief help for this page.

Each module of subsystem "Transport Protocols" provides configuration page with the only one tab -
"Help". On the tab "Help" there is the information on the module of subsystem "Transport Protocols" (Fig.
4.1d), which structure is identical for all modules.

OpenSCADA program description 53

 4.5. Subsystem "Data acquisition"

The subsystem is modular and contains the hierarchy of objects depicted in Fig.4.5a. To configure the
subsystem the root page of subsystem "Data acquisition" is provided, which contains the tabs "Template
libraries", "Modules" and "Help".

To obtain access to modify the objects of this subsystem the user of the group "DAQ" or the rights of the
privileged user are required.

Fig. 4.5a. The hierarchical structure of subsystem "Data acquisition".

Tab "Redundancy" (Fig. 4.5b) contains the configuration of redundancy of data sources of subsystem
"Data acquisition" of the station with the following settings:

• Status - contains information on redundancy scheme, this is usually the time spent on the
execution of one cycle of the task of reserve processing.
• Station level - indicates the level of the station in an arrangement (0-255).
• Redundant task period (s) - indicates the frequency of execution of redundancy task in seconds
(1-255).
• Restore connection timeout (s) - indicates over the which period of time to attempt to reconnect
with the lost redundant station in seconds (0-255).
• Restore data depth time (hours) - indicates the maximum depth of archival data to restore from
the archive of the remote station when start up in hours (0-12).
• Stations - contains the table with information about the redundant stations. Stations can be added
and removed via contextual menu. Id of the added stations is to be chosen from the list of available
OpenSCADA system stations. The table provides the following information about the station:

• ID - ID of the system OpenSCADA station, should be changed after the addition by
choosing from the list of available ones;
• Name - name of the system OpenSCADA station;
• Live - sign of the connection with the redundant station;
• Level - level of the remote station in the redundancy scheme;
• Counter - requests' counter to the redundant station or waiting time in the case of the
absence of connection;
• Run - the list of available controllers with the sign (+) of the local execution on the remote
station.

• Go to remote stations list configuration - command to go to the configuration page of the remote
OpenSCADA stations in the subsystem "Transports".
• Controllers - contains the table with the list of controllers, available for redundancy, and their
current status:

OpenSCADA program description 54

• Controller - full controller's ID;
• Name - controller's name;
• Started - the sign of the controller's execution on the local station;
• Redundant - redundancy mode of the controller can be changed from the list of: "Off",
"Asymmetric" and "Symmetric";
• Preferable run - configuration of the preferred execution at the specified station can be
changed; reserved values: <High Level> - execution at the station with the highest level,
<Low Level> - execution at the station with the lowest level, <Optimal> - the choice for the
execution of the least loaded station.
• Remoted - sign indicating the execution of the controller on the remote station and the
transfer of the local one to the mode of data synchronization from the remote station.

Fig. 4.5b. Tab "Redundancy" tab of subsystem "Data acquisition".

OpenSCADA program description 55

The tab "Template libraries" (Fig.4.5c) contains the list of libraries of templates for the parameters of
this subsystem. In the context menu of the list of template libraries the user can add, delete and move to the
desired library. The tab "Modules" (Fig. 4.1b) contains the list of modules in the subsystem "Transports"
and is identical for all modular subsystems. The tab "Help" contains the brief help for this page.

Fig. 4.5c. The tab "Template libraries" of the subsystem "Data acquisition".

Each template library of subsystem "Data acquisition" provides the configuration page with the tabs
"Library" and "Parameter templates". Tab "Library" (fig. 4.5d) contains the basic settings of the library:

• Section "State" - contains properties that characterize the state of the library:
• Accessing - state of library "Accessing".
• Library DB - address of the database for data storage of the library and templates.

• Section "Config" - directly contains the configuration fields:
• ID - information on the ID of the library.
• Name - specifies the name of the library.
• Description - short description of the library and its purpose.

Tab "Parameter templates" (Fig.4.5e) contains the list of templates in the library. In the context menu of
the list the user can add, delete and move to the desired template.

OpenSCADA program description 56

Fig. 4.5d. The main tab of configuration of template library of subsystem "Data acquisition".

Fig. 4.5e. The tab of the list of templates in the template library of subsystem "Data acquisition".

OpenSCADA program description 57

Each template of the template library provides the configuration page with the tabs "Template" and "IO".
The tab "Template" (Figure 4.5f) contains the basic settings of the template:

• Section "State" - contains properties that characterize the state of the template:
• Accessing - state of template "Accessing".
• Used - counter of the template's using. Allows you to determine whether the template is
used and, consequently, the ability to edit the template.

• Section "Config" - directly contains the configuration fields:
• ID - information on the ID of the template.
• Name - specifies the name of the template.
• Description - short description of the template and its purpose.

Fig. 4.5f. The main configuration tab of the parameters template of subsystem "Data acquisition".

The tab "IO" (Fig.4.5g) contains the configuration of attributes (IO) of templates and the program of
template on the one of languages of the user programming of OpenSCADA, for example,
DAQ.JavaLikeCalc.JavaScript. To the table of attributes of template user can, through the context menu,
add, insert, delete, move up or down the record of attribute, as well as edit the attribute's fields:

• Id - ID of the attribute.
• Name - the name of the attribute.
• Type - select the value's type of the attribute from the following: "Real", "Integer", "Boolean",
"String".
• Mode - select the mode of the attribute: "Input", "Output".
• Attribute - mode of the parameter's attribute, implemented based on a template from the list: "No
attribute" ,"Read Only","Full access". For the attributes of a template, in which this field is set, it
will be created an appropriate attribute in the controller's parameter of this subsystem.
• Configure - configuration mode of the attribute in the configuration tab of a template of the
controller's parameter of this subsystem from the list: "Constant", "Public constant", "Link". In
"Public constant" and "Link" modes tab in the configuration tab of the template will be added these
attributes to set the constant or specify an external link of the parameter.
• Value -attribute's default value or template of the links to access by the link. The format of the
link's template depends on the component that uses it. Usually for the module DAQ.LogicLev the
link's template is written the following way: {Parameter}|{attribute}. Field {Parameter} -
specifies the parameter's name as the attribute's container. Attributes with the equal value
{Parameter} will be grouped and will be appointed only by the indication of attributes' container,
and individual attributes will be associated with the attributes of the container in accordance with the
field {attribute}.

The syntax of the language of the template's program you can see in the documentation of the module,
providing an interpreter of the chosen language. For example, a typical user programming language of
OpenSCADA - DAQ.JavaLikeCalc

OpenSCADA program description 58

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

Fig. 4.5g. The configuration tab of the attributes and template's program of subsystem "Data acquisition".

OpenSCADA program description 59

Each module of the subsystem "Data acquisition" provides the configuration page with the tabs
"Controllers" and "Help". The tab "Controllers" (Fig.4.5h) contains the list of controllers, registered in the
module. In the context menu user can add, delete and move to the desired controller. The tab "Help"
provides information about the module of the subsystem "Data acquisition" (Fig. 4.1d), which structure is
identical for all modules.

Fig. 4.5h. The tab "Controllers" of the module of the subsystem "Data acquisition".

Each controller contains its own configuration page with the tabs "Controller" and "Parameters".

The tab "Controller" (Fig.4.5i) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another, as you can find in the own documentation of
modules. As an example, lets examine the settings of the controller in the module of the controller of logic
DAQ.LogicLev:

• Section "State" - contains the properties, which characterize the state of the controller:
• Status - specifies the controller's status. In our case, the controller is running and the
computation time is 0.394644 milliseconds.
• Enable - the state of the controller "Enable". When enabled, the controller provides the
possibility of creating the parameters and their configuration.
• Run - the state of the controller "Run". The running controller performs the physical data
acquisition and/or includes mechanisms for access to these data.
• Controller DB - the address of the database for data storage of the controller and its
parameters.

• Section "Config" - directly contains the configuration fields:
• ID - information on the controller's identifier.
• Name - specifies the controller's name.
• Description - brief description of the controller and its purpose.
• To enable - indicates the status of "Enable" in which to transfer the controller at startup.
• To start - indicates the status of "Run" in which to transfer the controller at startup.
• Redundant - includes the controller in the scheme of the horizontal redundancy of data
acquisition of the subsystem "Data acquisition" and points the redundancy mode:
"Asymmetric" and "Symmetric".

OpenSCADA program description 60

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

• Preferable run - indicates preference for the execution of the controller at the station in
the redundancy scheme.
• Parameters table - table name in which to save the parameters (the objects of the
parameters of data acquisition) of the controller.
• Request data period (ms) - periodicity of the data acquisition task. In this example it is the
periodicity of the template's calculation.
• Request task priority - sets the priority of data acquisition of this controller. It is used
when scheduling the operating system tasks. In the case of execution of the station as the
superuser "root", this field includes the planning of the controller's task in real time and with
the specified priority.

Fig. 4.5i. The main configuration tab of the controller of subsystem "Data acquisition".

OpenSCADA program description 61

"Parameters" tab (Fig.4.5j) contains a list of parameters in the controller, as well as information on the
total number and the number of enabled parameters. In the context menu user can add, delete and move to
the desired parameter.

Fig. 4.5j. "Parameters" tab of the configuration page of the controller of subsystem "Data acquisition".

Parameters of the controllers of subsystem "Data acquisition" provides the configuration page with the
tabs "Parameters", "Attributes", "Archiving" and "Template config". The tab "Template config" is not
standard, but it is present only in the modules of subsystem "Data acquisition", which implement the
mechanisms of working under the template in the context of the data source, which they are served. In this
review this tab is included for logical completeness of the review of the configuration of templates of
parameters of subsystem "Data acquisition" and as the final stage - using.

The tab "Parameter" (Fig.4.5k) contains the main settings:
• Section "State" - contains the properties, which characterize the state of the parameter:

• Type - information on the parameter's type.
• Enable - the state of the parameter "Enable". Enabled parameter is used by the controller
fro data acquisition.

• Section "Config" - directly contains the configuration fields:
• ID - information on the parameter's identifier.
• Name - specifies the parameter's name.
• Description - brief description of the parameter and its purpose.
• To enable - indicates the status of "Run" in which to transfer the parameter at startup.
• Mode - contains two fields: directly the mode and its configuration. In the case of the
parameter of the controller of the module of this type it is the mode of working "under the
template" and the address of the previously discussed template.

The tab "Attributes" (Fig.4.5l) contains the parametr's attributes and their values in accordance with the
configuration of the used template and calculation of its program.

The "Archiving" tab (Fig.4.5m) contains the table with the attributes of a parameter in the columns and
the archivers in rows. The user can set the archiving for the desired attribute with the required archiver

OpenSCADA program description 62

simply by changing the cell at the intersection.

The "Template config" tab (Figure 4.5n) contains the configuration fields in accordance with the
template. In this example it is the group link on the external parameter. This link can be set simply by
pointing the way to the parameter if the flag "Only attributes are to be shown" is not set, or to set the
addresses of the attributes separately in the case if the flag is set.

Fig. 4.5k. The main configuration tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 63

Fig. 4.5l. The "Attributes" tab of the parameter of the controller of subsystem "Data acquisition".

Fig. 4.5m. The "Archiving" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 64

Fig. 4.5n. The "Template config" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 65

 4.6. Subsystem "Archives"

The subsystem is modular and contains the hierarchy of objects depicted in Fig.4.6a. To configure the
subsystem the root page of the subsystem "Archives" is provided, it contains tabs "Messages archive",
"Value archives", "Modules" and "Help".

To gain the access to modify the objects of this subsystem the user of the group "Archive" or the
privileged user rights are required.

Fig. 4.6a. The hierarchical structure of subsystem "Archives"

The "Messages archive" tab (Fig.4.6b) contains the configuration of messages archive and the request
form of messages from the archive.

Configuration of the messages archive is represented by the fields:
• Maximum requested messages - indicates the global limit on the maximum number of messages
processed by the request.
• Messages buffer size - indicates the dimension of the area of memory reserved for the interim
buffer of messages. Messages from the buffer are requested for viewing and archived with the
messages archivers.
• Archiving period (s) - the periodicity with which the archivers select messages from the buffer for
their archiving.

The messages request form contains the configuration fields of the request and the table of results.
Configuration fields of the request are:

• Time - specifies the request time.
• Size (s) - specifies the size and the depth of the request in seconds.
• Category pattern - specifies the category of the requested messages. In the category you can
specify the elements of a sample of the template, namely, the characters '*' - for any string and '?' -
for any character.
• Level - indicates the minimum level of messages, ie request will be processed for messages with a
level more than or equal to the specified one.
• Archivator - indicates the messages archiver, for which the request is to be processed. If the value
is missing, the request will be processed for the buffers and all archivers. If <buffer> is specified,
then the request will be processed only for the messages buffer.

The result table contains rows of messages with the following columns:
• Time - message's time.
• Category - message's category.
• Level - message's level.
• Message - message's text.

OpenSCADA program description 66

Fig. 4.6b. The "Messages archive" tab of the subsystem "Archives".

OpenSCADA program description 67

Tab "Value archives" (Fig.4.6c) contains the general configuration of value's archiving and the list of
archives of values. In the context menu of the list of values the user has the opportunity to add, delete and
move to the desired archive. The general configuration of archiving is represented by the fields:

• Get data period (ms) - indicates the periodicity of the active archiving task. In fact, the highest
level of detail or the minimum period of active archives is determined by this value.
• Get data task priority level - sets the priority of task of active archiving. It is used when
scheduling the operating system tasks. In the case of execution of the station with the rights of the
superuser "root" this field includes scheduling of the archiving task in real time and with the
specified priority.

The "Modules" tab (Fig. 4.1b) contains a list of modules in subsystem "Archives" and is identical for all
modular subsystems. The "Help" tab contains the brief help for this page.

Fig. 4.6c. The "Value archives" tab of the subsystem "Archives".

Archive of values of subsystem "Archives" provides the configuration page with the tabs "Archive",
"Archivators" and "Values".

Tab "Archive" (Fig.4.6d) contains the basic settings of the archive:
• Section "State" - contains the properties, which characterize the state of the archive:

• Running - the state of the parameter "Running". Running archive collects data in the
buffer and is served by the archivators.
• Archive DB - database address for storing the archive's data.

• Section "Config" - directly contains the configuration fields:
• ID - information on the archive's identifier.
• Name - specifies the archive's name.
• Description - brief description of the archive and its purpose.
• To start - indicates the state "Running" in which to transfer the archive at startup.

OpenSCADA program description 68

• Value type - indicates the type of values which are stored in the archive from the list:
"Boolean", "Integer", "Real" и "String".
• Source - indicates the type and address of the source. Type of source is indicated from the
list: "Passive", "Passive param. attribute" or "Active param. attribute". Passive archive does
not have an associated source of values, the data to the such archive the source transfers by
itself. Types with the attribute of the parameter in the address field indicate the parameter of
the subsystem "Data acquisition" as the source. Passive attribute of the parameter sends data
to the archive by itself with its own period of data acquisition. Active attribute of the
parameter is queried by the archiving task of this subsystem.
• Buffer period (s) - indicates the periodicity of values in the archive's buffer.
• Buffer size (items) - indicates the dimensionality and depth of the archive's buffer. The
dimensionality is usually set in terms of 60 sec of the periodicity of the archiving task with
the reserve.
• Buffer hard time griding - indicates the mode of the buffer. The hard grid mode involves
the memory reservation for each value, but without the timestamp. This mode eliminates the
possibility of packaging the adjacently-identical values, but also saves on storage of the
timestamp. Otherwise, the buffer operates in the mode of storage the value and timestamp
and supports the packaging of adjacently-identical values.
• Buffer high time resolution - indicates the possibility of storing values at intervals up to 1
microsecond, differently the values can be stored at intervals up to 1 second.

Fig. 4.6d. The main configuration tab of the values' archive of subsystem "Archives".

OpenSCADA program description 69

Tab Archivators' (Fig.4.6e) contains the table with the configuration of the processing of the archive by
the available archivers. Lines are available archivers, and the columns are the following parameters:

• Archivator - information on the archiver's address.
• Start - information on the archiver's state "Started".
• Process - sign of the processing this archive be the archiver. The field is available for
modification by the user.
• Period (s) - information on the periodicity of the archiver.
• Begin - date of the archive data beginning in the archiver.
• End - date of the archive data ending in the archiver.

Fig. 4.6e. The "Archivators" tab of the values archive of subsystem "Archives".

OpenSCADA program description 70

Tab "Values" (Fig.4.6f) contains the values request in the archive and the result as a table of values or
image of the trend. Values request contains the fields:

• Time - indicates the time of request. It contains two fields: the field of date + time and
microseconds.
• Size (s) - specifies the size or depth of the request in seconds.
• Archivator - indicates values archiver for which the request is to be processed. If the value is
missing, the request will be processed for the buffer and for all archivers. If the <buffer> is
specified, then the request will be processed only for the archive's buffer.
• Show trend - indicates the necessity for presentation of the archive's data in the form of a graph
(trend), otherwise the result is presented in a table that contains only time and value. In the case of
installation of this field the schedule is formed and displayed, in addition additional configuration
fields of the image settings are appeared:

• Picture size - indicates the width and height of the generated image in pixels.
• Value scale - indicates the lower and upper limit of the scale of value. If both values are
set to 0 or equal, then the scale will be determined automatically depending on the values.

Fig. 4.6f. The "Values" tab of the values archive of subsystem "Archives".

OpenSCADA program description 71

Each module of the "Archives" subsystem provides configuration page with the tabs "Archivators" and
"Help". The "Archivators" tab (Fig.4.6g) contains a list of messages and values archivers registered in the
module. The context menu of the list provides user with possibility to add, delete and move to the desired
controller. The "Help" tab contains information about the module of subsystem "Archives" (Fig. 4.1d),
whose structure is identical for all modules.

Fig. 4.6g. The "Archivators" tab of the module of subsystem "Archives".

Messages archivers contains their own configuration page with tabs "Archivator" and "Messages".

The "Archivator" tab (Fig.4.6h) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another as you can find in the own documentation of
modules. As an example we shall examine the settings of the messages archiver from the module of the
archive on the file system Arch.FSArch Settings:

• Section "State" - contains the properties, hich characterize the archivers' state:
• Running - archivers' state "Running". The running archiver processes the messages
archive buffer and puts his data in its repository, but also it processes requests for access to
data in the repository.
• Archivator DB - database address for storing the archiver's data.
• End - date + time of the last data in the archiver's repository.
• Begin - date + time of the first data in the archiver's repository.
• Archivator files size (kB) - information about the total size of the archiver's files with the
data.
• Archiving time (ms) - time spent on the archiving of messages archive data.

• Section "Config" - directly contains the configuration fields:
• ID - information on the archiver's identifier.
• Name - indicates the archiver's name.
• Description - brief description of the archiver and its purpose.
• Address - address of the storage in the specific for the type of archiver (module) format.
Format description usually available in the tooltip for this field. In the example it is the
relative path to the storage directory.
• Message level - indicates the level of archiver's messages. Messages with a level greater
than or equal to the specified one are processed by the archiver.

OpenSCADA program description 72

http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=zj3

• Message categories - list of categories, separated by ';', of messages. Messages matched
with the templates of categories will be processed by the archiver. In the category you can
specify the elements of a sample of the template, namely, the characters '*' - for any string
and '?' - for any character.
• To start - indicates the status "Running", in which to transfer archiver at startup.

• Section "Additional options" - specialized section for module about the contents of which you
can read in the documentation on the module.

Fig. 4.6h. The main tab of the messages archiver configuration of subsystem "Archives".

The "Messages" tab (Fig.4.6i) contains the form of the messages request from the archive of the
archiver:

• Time - indicates the time of the request.
• Size (s) - indicates the size and depth of the request in seconds.
• Category pattern - indicates the category of the requested messages. In the category you can
specify the elements of a sample of the template, namely, the characters '*' - for any string and '?' -
for any character.
• Level - indicates a minimum level of messages, ie the request will be processed for messages with
the level greater or equal to the specified one.

The result table contains messages rows with the following columns:
• Time - message time.
• Category - message category.
• Level - message level.
• Message - message text.

OpenSCADA program description 73

Fig. 4.6i. Tab of the messages request "Messages" of the messages archiver of subsystem "Archives".

Values archivers contains their own configuration page with tabs "Archivator" and "Archives".

The "Archivator" tab (Fig.4.6j) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another as you can find in the own documentation of
modules. As an example we shall examine the settings of the messages archiver from the module of the
archive on the file system Arch.FSArch Settings:

• Section "State" - contains the properties, hich characterize the archivers' state:
• Running - archivers' state "Running". The running archiver processes the messages
archive buffer and puts his data in its repository, but also it processes requests for access to
data in the repository.запросы на доступ к данным в хранилище.
• Archiving time (ms) -information about the time spent on archiving data of the archives
buffers. Periodicity of archiving is set in the field "Period archiving" in the section "Config"
of the tab.
• Archivator DB - database address for storing the archiver's data.

• Section "Config" - directly contains the configuration fields:
• ID - information on the archiver's identifier.
• Name - indicates the archiver's name.
• Description - brief description of the archiver and its purpose.
• Value period (s) - indicates the periodicity of values that are contained in the archiver's
repository.
• Period archiving (s) - indicates the periodicity of the archives buffers data archiving task.
The dimension of the archives buffers in the time expression must not be less, and preferably
somewhat greater then the periodicity of the of archiving task.
• Address - address of the storage in the specific for the type of archiver (module) format.
Format description usually available in the tooltip for this field. In the example it is the

OpenSCADA program description 74

http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=zj3

relative path to the storage directory.
• To start - indicates the status "Running", in which to transfer archiver at startup.

• Section "Additional options" - specialized section for module about the contents of which you
can read in the documentation on the module.

Fig. 4.6j. The main tab of the values archiver configuration of subsystem "Archives".

OpenSCADA program description 75

The "Archives" tab (Fig.4.6k) contains a table with information about the archives being processed by
the archiver. In the rows the table contains archives, and in the columns - the following information:

• Archive - archive's name.
• Period (s) - archive's periodicity in seconds.
• Buffer size - buffer's dimension in units.
• Files size (Mb) - specific to the module Arch.FSArch field with information about the total size
of the files of the archiver's storage for the archive.

In the case of the module Arch.FSArch in this tab you can find the form of export the archiver's data.

 Fig.
4.6k. The "Archives" tab of the values archiver of subsystem "Archives".

OpenSCADA program description 76

 4.7. Subsystem "User interfaces"

The subsystem is modular. To configure the subsystem the root page of the subsystem "User Interfaces"
is provided, it contains the tabs "Modules" and "Help". The "Modules" tab (Fig. 4.1b) contains a list of
modules of subsystem and it is identical for all modular subsystems. The "Help" tab contains a brief help
for this page.

Each module of the subsystem "User Interfaces" provides configuration page with the tabs "User
Interface" and "Help". The "User Interface" tab (Fig.4.7a) provides the parameter for monitoring the
"Running" status of the module, as well as the configuration sections specialized for the modules of this
subsystem. On the "Help" tab there is an information about the module of the subsystem "User Interfaces"
(Fig. 4.1d), which structure is identical for all modules.

Fig. 4.7a. The "User Interface" tab of the module of subsystem "User Interfaces".

OpenSCADA program description 77

 4.8. Subsystem "Specials"

The subsystem is modular. To configure the subsystem the root page of the subsystem "User Interfaces"
is provided, it contains the tabs "Modules" and "Help". The "Modules" tab (Fig. 4.1b) contains a list of
modules of subsystem and it is identical for all modular subsystems. The "Help" tab contains a brief help
for this page.

Each module of the subsystem "Specials" provides configuration page with the tabs "Special" and
"Help". The "Special" tab (Fig.4.8a) provides the parameter for monitoring the "Running" status of the
module, as well as the configuration sections specialized for the modules of this subsystem. On the "Help"
tab there is an information about the module of the subsystem "Specials" (Fig. 4.1d), which structure is
identical for all modules.

Fig. 4.8a. The "Special" tab of the module of subsystems "Specials".

OpenSCADA program description 78

 4.9. Subsystem "Modules sheduler"

The subsystem is not modular. To configure the subsystem the subsystem's page "Modules sheduler" is
provided, it contains tabs "Subsystem" and "Help". The "Subsystem" tab (Fig.4.9a) contains the basic
settings of the subsystem. The "Help" tab contains a brief help for this page. The structure of the tab
"Subsystem":

• Path to shared libs (modules) - information about the location of the directory with the modules
of the OpenSCADA system. It is set by the parameter <ModDir> of the station, of the configuration
file.
• Allowed modules - information about the list, separated by ',', of modules that are authorized for
automatic connection and renewal. The value of '*' is used to resolve all the modules. It is set by the
parameter <ModAllow> of the section of subsystem, sub_ModSched, of the station of the
configuration file.
• Denied modules - information about the list, separated by ';' of modules that are denied for
automatically connection and updating. It is set by the parameter <ModDeny> of the section of
subsystem "sub_ModSched" of station of configuration file. List of denied modules has higher
priority than allowed.
• Check modules period (sec) - indicates the periodicity of testing modules on the fact of their
updating. Modules that are allowed for automatically connection and updating will be automatically
updated.
• Check modules now - command to check the modules on the fact of their updating. Modules that
are allowed for automatically connection and updating will be automatically updated.
• Shared libs (modules) - table with the list of shared libraries with the modules detected by
OpenSCADA. Rows are modules, and in the columns there is an information about them:

• Path - information on the full path to the shared library.
• Time - information about the time the of last modification of a shared library.
• Modules - information about the list of modules in a shared library.
• Enable - state "Enable" of the shared library. Privileged users are provided with an
opportunity to manually enable/disable the shared libraries by changing this field.

Fig. 4.9a. The main configuration tab of subsystem "Modules sheduler".

OpenSCADA program description 79

 4.10. Configuration file of the OpenSCADA and parameters of command-line
OpenSCADA execution.

Configuration file of the OpenSCADA system is provided to store the system and general configuration
of OpenSCADA-station. Only in the configuration file and through the command-line options you can
specify the part of the key system parameters of the station, so familiarity with the structure of the
configuration file is necessary for professionals who make solutions based on OpenSCADA.

The configuration file of the OpenSCADA system can be called somehow, but the oscada.xml name and
derived from it are accepted. The configuration file is usually indicated when you start the station by the
command-line option --Config=/home/roman/roman/work/OScadaD/etc/oscada_demo.xml. For the
convenience of the calling the startup scripts of the station are created with the correct configuration file,
for example script (openscada_demo) of the demo station execution:

#!/bin/sh
openscada --Config=/etc/oscada_demo.xml $@

If the configuration file is not specified then the standard configuration file: /etc/oscada.xml is used.

Structure of the configuration file based on the extensible markup language XML. Therefore the strict
adherence to the rules of XML syntax is required. An example of the configuration file of the
OpenSCADA, with configuration nodes of most of the OpenASCADA components, is given below:
<?xml version="1.0" encoding="UTF-8" ?>
<OpenSCADA>

<!-- This is the OpenSCADA configuration file. -->
<station id="DemoStation">

<!-- Discribe internal parameter for station. Station this only OpenSCADA programm. -->
<prm id="StName">Demo station</prm>
<prm id="StName_ru">Демо станция</prm>
<prm id="StName_uk">Демо станція</prm>
<prm id="WorkDB">SQLite.GenDB</prm>
<prm id="Workdir">~/.openscada</prm>
<prm id="IcoDir">./icons</prm>
<prm id="ModDir">/usr/lib/openscada</prm>
<prm id="LogTarget">10</prm>
<prm id="MessLev">0</prm>
<prm id="Lang2CodeBase">en</prm>
<prm id="SaveAtExit">0</prm>
<prm id="SavePeriod">0</prm>

<node id="sub_BD">
<prm id="SYSStPref">0</prm>
<tbl id="DB">

<fld ID="GenDB" TYPE="SQLite" NAME="Generic DB" NAME_ru="Основная БД"
NAME_uk="Основна БД" ADDR="./DEMO/DemoSt.db" CODEPAGE="UTF-8"/>

</tbl>
</node>

<node id="sub_Security">
<!--
<tbl id="Security_user">

<fld
NAME="root"
DESCR="Super user"
DESCR_ru="Супер пользователь"
DESCR_uk="Супер користувач"
PASS="openscada"/>

<fld
NAME="user"
DESCR="System user"
DESCR_ru="Системный пользователь"
DESCR_uk="Системний користувач"
PASS=""/>

</tbl>
<tbl id="Security_grp">

<fld
NAME="root"
DESCR="Super users groups"
DESCR_ru="Группа суперпользователей"
DESCR_uk="Група суперкористувачів"
USERS="root;user"/>

</tbl>-->
</node>

OpenSCADA program description 80

<node id="sub_ModSched">
<prm id="ModAllow">*</prm>
<prm id="ModDeny"></prm>
<prm id="ChkPer">0</prm>

</node>

<node id="sub_Transport">
<!--
<tbl id="Transport_in">

<fld
ID="WEB_1"
MODULE="Sockets"
NAME="Generic WEB interface"
NAME_ru="Основной WEB интерфейс"
NAME_uk="Основний WEB інтерфейс"
DESCRIPT="Generic transport for WEB interface."
DESCRIPT_ru="Основной транспорт для WEB интерфейса."
DESCRIPT_uk="Основний транспорт для WEB інтерфейсу."
ADDR="TCP::10002:0"
PROT="HTTP"
START="1"/>

<fld
ID="WEB_2"
MODULE="Sockets"
NAME="Reserve WEB interface"
NAME_ru="Резервный WEB интерфейс"
NAME_uk="Резервний WEB інтерфейс"
DESCRIPT="Reserve transport for WEB interface."
DESCRIPT_ru="Резервный транспорт для WEB интерфейса."
DESCRIPT_uk="Резервний транспорт для WEB інтерфейсу."
ADDR="TCP::10004:0"
PROT="HTTP"
START="1"/>

</tbl>
<tbl id="Transport_out">

<fld
ID="testModBus"
MODULE="Sockets"
NAME="Test ModBus"
NAME_ru="Тест ModBus"
NAME_uk="Тест ModBus"
DESCRIPT="Data exchange by protocol ModBus test."
DESCRIPT_ru="Тест обмена по протоколу ModBus."
DESCRIPT_uk="Тест обміну за протоколом ModBus."
ADDR="TCP:localhost:10502"
START="1"/>

</tbl>-->
</node>

<node id="sub_DAQ">
<!--
<tbl id="tmplib">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB="tmplib_test2"/>

</tbl>
<tbl id="tmplib_test2">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB="test2"
PROGRAM="JavaLikeCalc.JavaScript
cnt=5*i"/>

</tbl>
<tbl id="tmplib_test2_io">

<fld TMPL_ID="test2" ID="i" NAME="I" NAME_ru="I" NAME_uk="I"
TYPE="4" FLAGS="160" VALUE="" POS="0"/>

<fld TMPL_ID="test2" ID="cnt" NAME="Cnt" NAME_ru="Cnt" NAME_uk="Cnt"
TYPE="4" FLAGS="32" VALUE="" POS="0"/>

</tbl>-->

<node id="mod_LogicLev">
<!--
<tbl id="DAQ">

<fld
ID="test2"
NAME="Test 2"
NAME_ru="Тест 2"
NAME_uk="Тест 2"
DESCR=""
DESCR_ru=""
DESCR_uk=""
ENABLE="1"
START="1"
PRM_BD="test2prm"
PERIOD="1000"

OpenSCADA program description 81

PRIOR="0"/>
</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" MODE="2"
PRM="test2.test2"/>

</tbl>-->
</node>

<node id="mod_System">
<!--
<tbl id="DAQ">

<fld
ID="DataOS"
NAME="Data OS"
NAME_ru="Даные ОС"
NAME_uk="Дані ОС"
DESCR="Data of services and subsystems OS."
DESCR_ru="Данные сервисов и подсистем ОС."
DESCR_uk="Дані сервісів та підсистем ОС."
ENABLE="1"
START="1"
AUTO_FILL="0"
PRM_BD="DataOSprm"
PERIOD="1000" PRIOR="0"/>

</tbl>
<tbl id="DataOSprm">

<fld SHIFR="CPU" NAME="CPU load" NAME_ru="Нагрузка CPU"
NAME_uk="Навантаження CPU" DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" TYPE="CPU" SUBT="gen"/>

<fld SHIFR="MEM" NAME="Memory" NAME_ru="Память" NAME_uk="Пам\'ять"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" TYPE="MEM"/>

</tbl> -->
</node>

<node id="mod_DiamondBoards">
<!--
<tbl id="DAQ">

<fld ID="Athena" NAME="Athena board" NAME_ru="Плата Athena"
NAME_uk="Плата Athena" DESCR="" DESCR_ru="" DESCR_uk=""
ENABLE="1" START="0" BOARD="25" PRM_BD_A="AthenaAnPrm"
PRM_BD_D="AthenaDigPrm" ADDR="640" INT="5" DIO_CFG="0"
ADMODE="0" ADRANGE="0" ADPOLAR="0" ADGAIN="0"
ADCONVRATE="1000"/>

</tbl>
<tbl id="AthenaAnPrm">

<fld SHIFR="ai0" NAME="AI 0" NAME_ru="AI 0" NAME_uk="AI 0"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="0" TYPE="0" CNL="0" GAIN="0"/>

</tbl>
<tbl id="AthenaDigPrm">

<fld SHIFR="di0" NAME="DI 0" NAME_ru="DI 0" NAME_uk="DI 0"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="0" TYPE="0" PORT="0" CNL="0"/>

</tbl> -->
</node>

<node id="mod_BlockCalc">
<!--
<tbl id="DAQ">

<fld ID="Model" NAME="Model" NAME_ru="Модель" NAME_uk="Модель"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="Model_prm" BLOCK_SH="Model_blcks"
PERIOD="1000" PRIOR="0" PER_DB="0" ITER="1"/>

</tbl>
<tbl id="Model_blcks">

<fld ID="Klap" NAME="Klapan" NAME_ru="Клапан" NAME_uk="Клапан"
DESCR="" DESCR_ru="" DESCR_uk=""
FUNC="DAQ.JavaLikeCalc.lib_techApp.klap" EN="1" PROC="1"/>

</tbl>
<tbl id="Model_blcks_io">

<fld BLK_ID="Klap" ID="l_kl1" TLNK="0" LNK="" VAL="50"/>
<fld BLK_ID="Klap" ID="l_kl2" TLNK="0" LNK="" VAL="20"/>

</tbl>
<tbl id="Model_prm">

<fld SHIFR="l_kl" NAME="Klap lev" NAME_ru="Полож. клапана"
NAME_uk="Полож. клапана" DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" BLK="Klap" IO="l_kl1"/>

</tbl> -->
</node>

<node id="mod_JavaLikeCalc">

OpenSCADA program description 82

<!--
<tbl id="DAQ">

<fld ID="CalcTest" NAME="Calc Test" NAME_ru="Тест вычисл."
NAME_uk="Тест обчисл." DESCR="" DESCR_ru="" DESCR_uk=""
ENABLE="1" START="1" PRM_BD="Cal FUNC="TemplFunc.d_alarm"
PERIOD="1000" PRIOR="0" PER_DB="0" ITER="1"/>

</tbl>
<tbl id="CalcTest_val">

<fld ID="in" VAL="0"/>
<fld ID="alrm" VAL=""/>
<fld ID="alrm_md" VAL="1"/>
<fld ID="alrm_mess" VAL="Error present."/>

</tbl>
<tbl id="CalcTest_prm">

<fld SHIFR="alrm" NAME="Alarm" NAME_ru="Авария" NAME_uk="Аварія"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" FLD="alrm"/>

</tbl>
<tbl id="lib">

<fld ID="TemplFunc" NAME="" NAME_ru="" NAME_uk="" DESCR="" ESCR_ru=""
DESCR_uk="" DB="lib_TemplFunc"/>

</tbl>
<tbl id="lib_TemplFunc">

<fld ID="d_alarm" NAME="Digit alarm" NAME_ru="Авария по дискр."
NAME_uk="Аварія за дискр" DESCR=""
FORMULA="alrm=(in==alrm_md)?"1:"

+alrm_mess:"0";"/>
</tbl>
<tbl id="lib_TemplFunc_io">

<fld F_ID="d_alarm" ID="in" NAME="Input" NAME_ru="Вход" NAME_uk="Вхід"
TYPE="3" MODE="0" DEF="" HIDE="0" POS="0"/>

<fld F_ID="d_alarm" ID="alrm" NAME="Alarm" NAME_ru="Авария"
NAME_uk="Аварія" TYPE="0" MODE="1" DEF="" HIDE="0" POS="1"/>

<fld F_ID="d_alarm" ID="alrm_md" NAME="Alarm mode"
NAME_ru="Режим аварии" NAME_uk="Режим аварії" TYPE="3"
MODE="0" DEF="" HIDE="0" POS="2"/>

<fld F_ID="d_alarm" ID="alrm_mess" NAME="Alarm message"
NAME_ru="Сообщ. аварии" NAME_uk="Повід. аварії" TYPE="0"
MODE="0" DEF="" HIDE="0" POS="3"/>

</tbl>-->
</node>

<node id="mod_Siemens">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" CIF_DEV="0" ADDR="5"
ASINC_WR="0"/>

</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" TMPL="S7.ai_man"/>

</tbl>-->
</node>

<node id="mod_SNMP">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" ADDR="localhost"
COMM="public" PATTR_LIM="20"/>

</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" OID_LS="system"/>

</tbl>-->
</node>

<node id="mod_ModBus">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" TRANSP="Sockets"
ADDR="exlar.diya.org" NODE="1"/>

</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" ATTR_LS="321:0:tst:Test"/>

</tbl>-->

OpenSCADA program description 83

</node>

<node id="mod_Transporter">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" SYNCPER="60"
STATIONS="loop" CNTRPRM="System.AutoDA"/>

</tbl>-->
</node>

</node>

<node id="sub_Archive">
<prm id="MessBufSize">1000</prm>
<prm id="MessPeriod">5</prm>
<prm id="ValPeriod">1000</prm>
<prm id="ValPriority">10</prm>
<!--
<tbl id="Archive_mess_proc">

<fld
ID="StatErrors"
MODUL="FSArch"
NAME="Errors"
NAME_ru="Ошибки"
NAME_uk="Помилки"
DESCR="Local errors\' archive"
DESCR_ru="Архив локальных ощибок"
DESCR_uk="Архів локальних помилок"
START="1"
CATEG="/DemoStation*"
LEVEL="4"
ADDR="ARCHIVES/MESS/stError/"
FSArchMSize="300"
FSArchNFiles="10"
FSArchTmSize="30"
FSArchXML="1"
FSArchPackTm="10"
FSArchTm="60"/>

<fld
ID="NetRequsts"
MODUL="FSArch"
NAME="Net requests"
NAME_ru="Сетевые запросы"
NAME_uk="Мережеві запити"
DESCR="Requests to server through transport Sockets."
DESCR_ru="Запросы к серверу через транспорт Sockets."
DESCR_uk="Запити до сервера через транспорт Sockets."
START="1"
CATEG="/DemoStation/Transport/Sockets*"
LEVEL="1"
ADDR="ARCHIVES/MESS/Net/"
FSArchMSize="300"
FSArchNFiles="10"
FSArchTmSize="30"
FSArchXML="1"
FSArchPackTm="10"
FSArchTm="60"/>

</tbl>
<tbl id="Archive_val_proc">

<fld
ID="1h"
MODUL="FSArch"
NAME="1hour"
NAME_ru="1час"
NAME_uk="1год"
DESCR="Averaging for hour"
DESCR_ru="Усреднение за час"
DESCR_uk="Усереднення за годину"
START="1"
ADDR="ARCHIVES/VAL/1h/"
V_PER="360"
A_PER="60"
FSArchTmSize="8640"
FSArchNFiles="10"
FSArchRound="0.1"
FSArchPackTm="10"
FSArchTm="60"/>

</tbl>
<tbl id="Archive_val">

<fld
ID="test1"

OpenSCADA program description 84

NAME="Test 1"
NAME_ru="Тест 1"
NAME_uk="Тест 1"
DESCR="Test 1"
DESCR_ru="Тест 1"
DESCR_uk="Тест 1"
START="1"
VTYPE="1"
BPER="1"
BSIZE="200"
BHGRD="1"
BHRES="0"
SrcMode="0"
Source=""
ArchS=""/>

</tbl>-->
</node>

<node id="sub_Protocol">
</node>

<node id="sub_UI">
<node id="mod_QTStarter">

<prm id="StartMod">QTCfg</prm>
</node>
<node id="mod_WebCfg">

<prm id="SessTimeLife">20</prm>
</node>
<node id="mod_VCAEngine">

<!--
<tbl id="LIB">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB_TBL="wlib_test2" ICO=""
USER="root" GRP="UI" PERMIT="436"/>

</tbl>
<tbl id="wlib_test2">

<fld ID="test2" ICO="" PARENT="/wlb_originals/wdg_Box" PROC=""
PROC_ru="" PROC_uk="" PROC_PER="-1" USER="root" GRP="UI"
PERMIT="436"/>

</tbl> <tbl id="wlib_test2_io">
<fld IDW="test2" ID="name" IO_VAL="Test 2" IO_VAL_ru="Тест 2"

IO_VAL_uk="Тест 2" SELF_FLG="" CFG_TMPL="" CFG_TMPL_ru=""
CFG_TMPL_uk="" CFG_VAL=""/>

<fld IDW="test2" ID="dscr" IO_VAL="Test module 2"
IO_VAL_ru="Тест модуля 2" IO_VAL_uk="Тест модуля 2"
SELF_FLG="" CFG_TMPL="" CFG_TMPL_ru="" CFG_TMPL_uk=""
CFG_VAL=""/>

</tbl>
<tbl id="PRJ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB_TBL="prj_test2" ICO=""
USER="root" GRP="UI" PER </tbl> <tbl id="prj_test2">

<fld OWNER="/test2" ID="pg1" ICO="" PARENT="/wlb_originals/wdg_Box"
PROC="" PROC_ru="" PROC_uk="" PROC_PER="-1" USER="root"
GRP="UI" PERMIT="436" FLGS="1"/>

<fld OWNER="/test2/pg1" ID="pg2" ICO=""
PARENT="/wlb_originals/wdg_Box" PROC="" PROC_ru="" PROC_uk=""
PROC_PER="-1" USER="root" GRP="UI" PERMIT="436" FLGS="0"/>

</tbl>
<tbl id="prj_test2_incl">

<fld IDW="/prj_test2/pg_pg1" ID="wdg1"
PARENT="/wlb_originals/wdg_Box"/>

</tbl>-->
</node>

</node>

<node id="sub_Special">
<node id="mod_SystemTests">

<prm id="PARAM" on="0" per="5" name="LogicLev.experiment.F3"/>
<prm id="XML" on="0" per="10" file="/etc/oscada.xml"/> <prm id="MESS" on="0"

per="10" categ="" arhtor="DBArch.test3"/>
<prm id="SOAttDet" on="0" per="20" name="../../lib/openscada/daq_LogicLev.so"

full="1"/>
<prm id="Val" on="0" per="1" name="LogicLev.experiment.F3.var" arch_len="5"

arch_per="1000000"/>
<prm id="Val" on="0" per="1" name="System.AutoDA.CPULoad.load" arch_len="10"

arch_per="1000000"/>
<prm id="BD" on="0" per="10" type="MySQL"

bd="server.diya.org;roman;123456;oscadaTest"
table="test" size="1000"/>

<prm id="BD" on="0" per="10" type="DBF" bd="./DATA/DBF" table="test.dbf"
size="1000"/>

OpenSCADA program description 85

<prm id="BD" on="0" per="10" type="SQLite" bd="./DATA/test.db" table="test"
size="1000"/>

<prm id="BD" on="0" per="10" type="FireBird"
bd="server.diya.org:/var/tmp/test.fdb;roman;123456"
table="test" size="1000"/>

<prm id="TrOut" on="0" per="1" addr="TCP:127.0.0.1:10001" type="Sockets"
req="time"/>

<prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:10001" type="Sockets"
req="time"/>

<prm id="TrOut" on="0" per="1" addr="UNIX:./oscada" type="Sockets"
req="time"/>

<prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:daytime" type="Sockets"
req="time"/>

<prm id="Func" on="0" per="10"/> <prm id="SysContrLang" on="0" per="10"
path="/Archive/FSArch/mess_StatErrors/%2fprm%2fst"/>

<prm id="ValBuf" on="0" per="5"/> <prm id="Archive" on="0" per="30"
arch="test1" period="1000000"/>

<prm id="Base64Code" on="0" per="10"/>
</node>

</node>
</station>

</OpenSCADA>

Lets examine in details the structure of the configuration file. A configuration file can contain a
configuration of several stations in the sections <station id="DemoStation"/>. To attribute set the identifier
of the station. Using one or another section of the station at startup is specified by the command-line option
--Station=DemoStation. Section of the station directly contains parameters of the station and subsystems'
sections. Configuration options of the section are written in the form <prm id="StName">Demo
station</prm>. Where in the attribute <id> the ID of the attribute is specified, and in the tag's body the
value of parameter "Demo station" is specified. The list of available options and their description for the
station and all other sections can be obtained from the console by calling OpenSCADA with parameter
--help or in the "Help" tabs of the pages of the components of the configuration files of OpenSCADA
(Fig.4.10a).

OpenSCADA program description 86

Fig. 4.10a. The "Help" tab of the OpenSCADA component.

OpenSCADA program description 87

The result of the command: # ./openscada_demo --help

********** OpenSCADA v0.6.4.1 (Linux-2.6.30-std-def-alt15). *********

===
========================= The general system options ======================
===
-h, --help Info message about system options.
 --Config=<path> Config file path.
 --Station=<id> Station identifier.
 --demon Start into demon mode.
 --MessLev=<level> Process messages <level> (0-7).
 --log=<direct> Direct messages to:

<direct> & 1 - syslogd;
<direct> & 2 - stdout;
<direct> & 4 - stderr;
<direct> & 8 - archive.

----------- The config file station </EmptySt/> parameters -----------
StName <nm> Station name.
WorkDB <Type.Name> Work DB (type and name).
Workdir <path> Work directory.
IcoDir <path> Icons directory.
ModDir <path> Modules directory.
MessLev <level> Messages <level> (0-7).
LogTarget <direction> Direct messages to:

<direct> & 1 - syslogd;
<direct> & 2 - stdout;
<direct> & 4 - stderr;
<direct> & 8 - archive.

Lang2CodeBase <lang> Base language for variable texts translation, two symbols code.
SaveAtExit <true> Save system at exit.
SavePeriod <sec> Save system period.

=================== Subsystem "Module sheduler" options =================
 --ModPath=<path> Modules <path> (/var/os/modules/).
------------ Parameters of section </DemoStation/sub_ModSched/> in config file -----------
ModPath <path> Path to shared libraries(modules).
ModAllow <list> List of shared libraries allowed for automatic loading, attaching and starting

(bd_DBF.so;daq_JavaLikeCalc.so). Use '*' value for allow all modules.
ModDeny <list> List of shared libraries deny for automatic loading, attaching and starting

(bd_DBF.so;daq_JavaLikeCalc.so).
ChkPer <sec> Period of checking at new shared libraries(modules).

========================= Subsystem "DB" options =========================
----------- The config file station </DemoStation/sub_BD/> parameters -----------
SYSStPref <1> Use station id prefix into generic (SYS) table.

====================== Subsystem "Security" options ======================

===================== Subsystem "Transports" options =====================

============ Subsystem "Transport protocols" options =====================

=================== The module <Protocol:HTTP> options =======================
---------- Parameters of the module section </DemoStation/sub_Protocol/mod_HTTP/> in config file ----------
AuthTime <min> Life time of the authentication, minutes (default 10).

=================== Subsystem "Data acquisition" options ================
------------ Parameters of section </DemoStation/sub_DAQ/> in config file -----------
RdStLevel <lev> The curent station redundant level.
RdTaskPer <s> The redundant task call period.
RdRestConnTm <s> Restore connection timeout to dead reserve stations.
RdRestDtTm <hour> Restore data archive depth from a reserve station after deadline.
RdStList <list> Redundant stations list, separated symbol ';' (st1;st2).

======================== Subsystem "Archives" options ===================
------------ Parameters of section </DemoStation/sub_Archive/> in config file -----------
MessBufSize <items> Messages buffer size.
MessPeriod <sec> Message arhiving period.
ValPeriod <msec> Values arhiving period.
ValPriority <level> Values task priority level.
MaxReqMess <items> Maximum request messages.
MaxReqVals <items> Maximum request values.

======================= Subsystem "Special" options ======================

====================== The module <Special:SystemTests> options =======================
---------- Parameters of the module section </DemoStation/sub_Special/mod_SystemTests/> in config file

All tests main options:
 id test's id;

OpenSCADA program description 88

 on on test's flag;
 per repeat period (sek).
 *** Test's options ***
1) Param DAQ parameters test. Make read a parameter's attributes and config fields.
 1:name DAQ parameter address
2) XML XML file parsing test. Parse and show selected file structure.
 1:file XML file
3) Mess Messages archive test. Periodic read new messages from archive, for selected archivator.
 1:arhtor Archivator
 2:categ Messages category pattern
 3:depth Messages depth (s)
4) SOAttach Attach/detach module test.
 1:name Path to module
 2:mode Mode (1-attach;-1-detach;0-change)
 3:full Full attach(to start)
5) Val Parameter attribute's value test.
Periodic make gathering for last value of selected attribute, and also gathering from archive for selected

depth.
 1:name Parameter attribute path
 2:arch_len Archive value getting depth (s)
 3:arch_per Archive value getting period (us)
6) DB Full database test. Make:
 - make/open DB;
 - make/open table;
 - make multiply records for determined structure;
 - modify multiply records;
 - get and check values for multiply records;
 - modify record and table structure;
 - remove multiply records;
 - close/remove table;
 - close/remove DB.
 1:type DB type
 2:addr DB address
 3:table DB table
 4:size Records number
7) TrOut Output and/or input transports test.
Make test for output transport by send the request to selected input transport.
 1:addr Address
 2:type Transport module
 3:req Request text
8) SysContrLang System control language test.
Make request to language elements by full path set.
Full path to language element have view </Archive/%2fbd%2fm_per>.
Full path contained two included path.
First </d_Archive/> is path to the node of the control tree.
Second </bd/m_per> is path to concrete node's element.
 1:path Path to language element
9) ValBuf Value buffer tests.
Contain 13 tests for all aspects of value buffer (subsystem "Archives").
10) Archive Value archive allocation tests.
Contain 7(8) tests for value archivator for check to correct working the consecutive pack mechanism.
 1:arch Value archive
 2:period Values period (us)
11) Base64Code Mime Base64 encoding algorithm tests.

===================== Subsystem "User interfaces" options ===================
=================== The module <UI:Vision> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_Vision/> in config file ----------
StartUser <user> No password requested start user.
RunPrjs <list> Run projects list on the module start.
RunTimeUpdt <mode> RunTime update mode (0 - all widgets periodic adaptive update, 1 - update only

changed widgets).
VCAstation <id> VCA station id ('.' - local).

======================= The module <UI:VCAEngine> options =======================
 --VCADBClearForce Force clear VCA DB from data of API 1.

======================= The module <UI:QTCfg> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_QTCfg/> in config file ----------
StartPath <path> Configurator start path.
StartUser <user> No password requested start user.

======================= The module <UI:QTStarter> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_QTStarter/> in config file ----------
StartMod <moduls> Start modules list (sep - ';').

======================= The module <UI:WebVision> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_WebVision/> in config file ----------
SessTimeLife <time> Time of the session life, minutes (default 10).

OpenSCADA program description 89

Sections of subsystem (<node id="sub_DAQ" />) contains parameters of subsystem, sections of
modules and sections of tables of reflections of the data of databases in the configuration file. Sections of
modules (<node id="mod_DiamondBoards" />) contain the individual parameters of modules and sections
of tables of reflection of the data of databases in the configuration file.

Sections of the tables of reflection of the data of databases are provided for placement in the
configuration file records of DB tables for the OpenSCADA components. Lets examine the table of
incoming transports "Transport_in" of subsystem transports (<node id="sub_Transport">) from the
example of configuration file above. The table contains two records with fields: ID, MODULE, NAME,
DESCRIPT, ADDR, PROT, START. After booting with this section and in general without the DB in the
subsystem "Transports" of the "Sockets" module you'll see two input transports. Formats of the table's
structures of the main components are included in the demo configuration files. For the details of the
database's structure you should read the relevant documentation of modules.

 5. System-wide API of user programming.
User programming API is the tree of OpenSCADA objects, every object of which can provide own list

of properties and functions. Properties and functions of objects can be used by the user in procedures on the
languages of user programming of OpenSCADA. The entry point for access to the objects of system
OpenSCADA from user programming language JavaLikeCalc is the reserved word "SYS" of the root
OpenSCADA object. For example, to access the function of outgoing transport you should write:
SYS.Transport.Serial.out_ModBus.messIO(mess);.

API of the objects provided by the modules is described in the own documentation of the module.

 5.1. System-wide user objects.

Abstract object is an associative container of properties and functions. Properties can contain the data of
four basic types and other objects. Access to the properties of an object is usually made by recording the
names of properties through a point to the object <obj.prop>, as well as by entering the property name in
brackets <obj["prop"]>. It is obvious that the first mechanism is static, while the second lets you to specify
the name of the property through a variable. The basic definition of the object does not contain functions.
Copying of an object actually makes reference to the original object. When you delete an object the reduce
of the reference counter is made, and when the reference counter is equal to the zero object is removed
physically.

Different components can redefine the basic object with special properties and functions. The standard
extension of the object is an array "Array".

Array object

Peculiarity of the array is that it works with the properties like with the indexes, and complete their
naming if senseless, and hence the mechanism of addressing is available only by the conclusion of the
index in square brackets <arr[1]>. Array stores the properties in its own container of one-dimensional
array.

Array provides the special property "length" to get the array size <var = arr.length;>. Also array
provides the following functions:

• string join(string sep = ","), string toString(string sep = ","), string valueOf(string sep = ",")
- Returns the string with the array elements separated by <sep> or the character ','.
• Array concat(Array arr); - Adds to the initial array the elements of the <arr> array. Returns the
initial array with changes.
• int push(ElTp var, ...); - Places the element(s) <var> to the end of the array, as to the stack.
Returns the new array size.
• ElTp pop(); - Deleting of the last element of the array and return of its value, as from the stack.
• Array reverse(); - Changing the order of the elements of the array. Returns the initial array with
changes.
• ElTp shift(); - The shift of the array to the top. The first element is removed and its value is

OpenSCADA program description 90

returned.
• int unshift(ElTp var, ...); - Shift element(s) <var> to the array. The first element to the 0, second
to the 1 and so on.
• Array slice(int beg, int end); - Returns an array fragment from <beg> to <end>. If the value of
beginning or end is negative, then the count is made from the end of the array. If the end is not
specified, then the end is the end of the array.
• Array splice(int beg, int remN, ElTp val1, ElTp val2, ...); - Inserts, deletes or replaces the
elements of the array. Returns the initial array with the changes. Firstly it is made the removing of
elements from the position <beg> and in the quantity of <remN>, and then the values <val1> are
inserted and so on, beginning from the position <beg>.
• Array sort(); - Sort array elements in lexicographical order.

XMLNodeObj object

Functions:
• string name() - The name of the node, XML-tag.
• string text() - The text of the node, contents of the XML-tag.
• string attr(string id) - The value of the node's attribute <id>.
• XMLNodeObj setName(string vl) - Setting of the node's name to <vl>. Returns the current node.
• XMLNodeObj setText(string vl) - Setting of the node's text to <vl>. Returns the current node.
• XMLNodeObj setAttr(string id, string vl) - Setting the attribute <id> to the value <vl>. Returns
the current node.
• int childSize() - Quantity of the embedded nodes.
• XMLNodeObj childAdd(ElTp no = XMLNodeObj) - Addition of the object <no> as the
embedded one. <no> may be the direct object-result of the function xmlNode(), and the string with
the name of the new tag. Returns the embedded node.
• XMLNodeObj childIns(int id, ElTp no = XMLNodeObj) - Insert of the object <no> as the
embedded one to the position <id>. <no> may be the direct object-result of the function xmlNode(),
and the string with the name of the new tag. Returns the embedded node.
• XMLNodeObj childDel(int id) - Deleting the embedded node from the position <id>. Returns
the current node.
• XMLNodeObj childGet(int id) - Getting the embedded node in the position <id>.
• string load(string str, bool file = false) - Loading the XML from the string <str> or from the
file with the path in <str> if the <file> "true".
• string save(int opt = 0, string path = "") - Saving the XML tree to the string or to the file
<path> with the formatting parameter <opt>. Returns the XML text or the error code. The
following formatting options <opt> are provided:

• 0x01 - interrupt the string before the opening tag;
• 0x02 - interrupt the string after the opening tag;
• 0x04 - interrupt the string after a closing tag;
• 0x08 - interrupt the string after the text;
• 0x10 - interrupt the string after the instruction;
• 0x1E - interrupt the string after all.

 5.2. System (SYS)

Object functions:
• string system(string cmd, bool noPipe = false); - calls the console commands <cmd> of OS
returning the result by the channel. If <noPipe> is set the return code is returned the the execution
of the programs in the background ("sleep 5 &") is possible. The function offers great opportunities
to the OpenSCADA user by calling any system software, utilities and scripts, as well as by way of
access to the huge volume of system data. For example the command "ls-l" returns the detailed
contents of the working directory.
• int message(string cat, int level, string mess); - formation of the system message <mess> with
the category <cat>, level <level>. The negative value of the level forms the alarms (Alarm).
• int messDebug(string cat, string mess); int messInfo(string cat, string mess); int

OpenSCADA program description 91

messNote(string cat, string mess); int messWarning(string cat, string mess); int messErr(string
cat, string mess); int messCrit(string cat, string mess); int messAlert(string cat, string mess); int
messEmerg(string cat, string mess); -formation of the system message <mess> with the category
<cat> and the appropriate level.
• XMLNodeObj XMLNode(string name = ""); - creation of the XML node object with the name
<name>.
• string cntrReq(XMLNodeObj req, string stat = ""); - request of the control interface to the
system via XML. The usual request is written as <get path="/OPath/%2felem"/>. If the station is
indicated to the request to the external station is made.
• int time(int usec); - returns the absolute time in seconds from the epoch of 1/1/1970 and in
microseconds, if <usec> is specified.
• int localtime(int fullsec, int sec, int min, int hour, int mday, int month, int year, int wday, int
yday, int isdst); - returns the full date in seconds (sec), minutes (min), hours (hour), days of the
month (mday), month (month), year (year), days in the week (wday), days in the year (yday) and
sign of summer time (isdst), based on the absolute time in seconds <fullsec> from the epoch
1.1.1970.
• string strftime(int sec, string form = "%Y-%m-%d %H:%M:%S"); - Converts an absolute time
<sec> to the string of the desired format <form>. Record of the format corresponds to the POSIX-
function strftime.
• int strptime(int str, string form = "%Y-%m-%d %H:%M:%S"); - Returns the time in seconds
from the epoch of 1/1/1970, based on the string record of time <str>, in accordance with the
specified template <form>. For example the template "%Y-%m-%d %H:%M:%S" corresponds with
the time "2006-08-08 11:21:55". Description of the template's format can be obtained from the
documentation on POSIX-function "strptime".
• int cron(string cronreq, int base = 0); - returns the time, planned in the format of the standard
Cron <cronreq>, beginning from basic time <base> or from the current, if the basic is not
specified.
• string strFromCharCode(int char1, int char2, int char3, ...); - String creation from symbol's
codes char1, char2 ... charN.

 5.3. Any object of OpenSCADA objects tree (SYS.*)

Object functions:
• TArrayObj nodeList(string grp = "", string path = ""); - Get child nodes list for group <grp>
and node from path <path>. If <grp> empty then return nodes for all groups.
• TCntrNodeObj nodeAt(string path, string sep=""); - Attach to node <path> into OpenSCADA
objects tree. If a separator set into <sep> then path process as separated string.

 5.4. "DB" subsystem (SYS.BD)

DB object functions (SYS.BD["TypeDB"]["DB"]):
• Array SQLReq(string req); - Formation of the SQL-request to the DB.

Example:
DBTbl=SYS.BD.MySQL.GenDB.SQLReq("SELECT * from DB;");
for(var i_rw = 0; i_rw < DBTbl.length; i_rw++)
{
 var rec = "";
 for(var i_fld = 0; i_fld < DBTbl[i_rw].length; i_fld++)
 rec += DBTbl[i_rw][i_fld]+"\t";
 SYS.messDebug("TEST DB","Row "+i_rw+": "+rec);
}

OpenSCADA program description 92

 5.5. Subsystem "DAQ" (SYS.DAQ)

Functions of object of atribute of controller's parameter (SYS.DAQ["Modul"]["Controller"]
["Parameter"]["Attribute"]):

• ElTp get(int tm = 0, int utm = 0, bool sys = false); - get attribute value at time <tm:utm> and
system access flag <sys>.
• bool set(ElTp val, int tm = 0, int utm = 0, bool sys = false); - write value <val> to attribute with
time label <tm:utm> and system access flag <sys>.

 5.6. "Archives" subsystem (SYS.Archive)

Functions of the subsystem's object:
• Area messGet(int btm, int etm, string cat = "", int lev = 0, string arch = ""); - request of the
system messages for the time from <btm> to <etm> for the category <cat>, level <lev> and
archiver <arch>.

 5.7. "Transports" subsystem (SYS.Transport)

Functions of the outgoing transport object (SYS.Transport["Modul"]["OutTransp"]):
• string messIO(string mess, real timeOut = 1000); - sending the message <mess> through the
transport with the waiting timeout <timeOut>.
• int messIO(XMLNodeObj req, string prt); - sending the request <req> to the protocol <prt> for
the implementation of a connection session through the transport by means of protocol.

OpenSCADA program description 93

Data acquisition in OpenSCADA
Data acquisition of the SCADA (Supervisory Control and Data Acquisition)-system is its integral part,

which get data from sources of different type. The nature of data, which operates SCADA, is characterized
by signals of basic value's types (integer, real, boolean and string). The signals vary over time and has their
history, life. In the theory of technological processes (TP) under the signal it is meant the value of TP
sensor in the ADC code, "raw" signal or in the real value. Signals can be combined into groups, which are
often called parameters. For example, the developed data sources can provide the structures of parameters
with the predefined set of related signals. In addition to the direct data acquisition in the function of this
mechanism is also included the transfer of actions to control devices of TP; usually it is a gate valve, pumps
and control valves. Taken together, this process is known as computer-process interface (CPI).

Sources of data are characterized by their great variety, which can be divided into three groups.
• Sources of "raw" data, providing the ADC code or levels of discrete signals, and also the sources
which include simple processing. Usually, it is the modules of the allocated CPI or the simplest
industrial programmable logic controllers (PLCs).
• Powerful industrial PLCs, which have significant computing power and the possibility of
formation of complex parameters with different structure.
• Local or related data sources. For example, the CPI as expansion cards, and also the data of the
hardware and software environment in which the system operates.

The variety of data sources has created a wide range of mechanisms to access them. Local data sources
are different in application programming interface (API), and network sources, in their turn, in transport
and protocol interaction level. In general, this has led to the fact that the addition of support for a new data
source requires the creation of interface module or driver. Taking into account the great variety of sources,
it is extremely expensive and actually impossible to cover the entire spectrum of the market of these
devices. The situation is somewhat simplified with the network source due to the presence of the number of
standard and free interaction protocols, but many sources still use their own protocols: private, commercial
or protocols, tied to private mechanisms of the limited range of commercial operating systems (OS).

In terms of OpenSCADA system the following objects to serve the data acquisition mechanism are
provided:

• Attribute - object of reflection of the signal data, it includes the current value with the type of
signal and the history of changes of value;
• Parameter - object of the attributes' (signals') group with the structure corresponding to the
characteristics of the separate data source;
• Controller - object of the separate data device. Typically, this is a separate CPI module or the
devices of industrial PLC.

To account the features of different data acquisition devices, as well as the different mechanisms of
interaction in the OpenSCADA the modular subsystem "Data acquisition" is provided. The module of the
subsystem is the driver for interfacing with a data source of specific type. Each module can contain a
configuration of several devices of this type in the form of "Controller" objects of OpenSCADA. The
general scheme of objects of "Data acquisition" subsystem is shown in Figure 1.

Data acquisition in OpenSCADA 94

Fig. 1. The subsystem's "Data acquisition" scheme.

Data acquisition in OpenSCADA 95

 1. Data acquisition methods
Taking into account variety of the data sources, and also the ways of their possible interaction data

acquisition methods can be divided to simple synchronous, simple asynchronous, package and passive ones.

To the examination of the mechanisms below the following objects will be involved:
• ObjectSCADA - any object of the SCADA-system, applying for the signal value, for example,
archives and visualizers;
• DAQParamAttribute - attribute of the parameter of subsystem "Data acquisition" which is an
intermediary for access to the value of the signal of data source;
• DAQParamAttributeArch - attribute's archive object;
• HardwarePLC - data source object, for example, modules of the allocated CPI or industrial PLC.

 1.1. Simple synchronous acquisition mechanism

The mechanism is characterized by requests to the data source synchronously with the request to the
attribute of parameter (Fig. 2). This mechanism is usually used when working with local sources of data,
characterized by low latency, ie delay in response to the request. With this method you can get actual data
directly with the request, but the time of the request of object will include the time for transportation and
processing of the request by the data source.

Fig. 2. Diagram of the sequence of interaction with the synchronous requests.

In accordance with the diagram above, we obtain the following sequence of requests for data acquisition
and their transfer:

• object of the SCADA-system sends the value request to the object of attribute of the parameter
DAQParamAttribute::getVal();
• object of the attribute of parameter, receiving the request, sends it to the data source
HardwarePLC::valueRequest();
• source of data after processing the request returns the result;
• object of the attribute of parameter, receiving the result, returns its to the SCADA-system object.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

• ModBus - module of access to data of the sources through the family of ModBus protocols. In the
module the synchronous mode for recording data is implemented.
• DiamondBoards - module of the data access to the PC/104 card of Diamond Systems company.
PC/104 boards are available on the ISA-bus, hence are local and available relatively quickly. When
data acquisition is made not by interruption the access to the values of the ADC is synchronous.
Recording mode of the DAC values always works synchronously.
• DAQGate - module of the reflection of the controller's objects of the remote OpenSCADA-
stations on the local one. In the module the synchronous mode for recording data is implemented.
• BlockCalc - calculator in the language of block diagrams. The source of data for it is the custom
block diagram. Attributes of parameters of the module synchronously address the inputs/outputs of
the blocks of block scheme.
• JavaLikeCalc - calculator on the Java-like high level language. The source of data it supports is
the user program on the Java-like language. Attributes of the parameter of module synchronously

Data acquisition in OpenSCADA 96

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=144c
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=sef

address the inputs/outputs of the user computing function.
• LogicLev - module of the logic-level parameters of data acquisition, see more about it in section
2. The source of data for this module are the other parameters of subsystem "Data acquisition" and
the execution context of the parameters' template. Attributes of the parameters of module
synchronously address the attributes of other parameters in the reflective mode of parameters of
subsystem "Data acquisition", or the inputs/outputs of the execution context of the template when
work under the template.

 1.2. Simple asynchronous acquisition mechanism

The mechanism is characterized by requests to the data source, regardless of the request to the attribute
of parameter (Fig. 3). Usually, requests to the source of the data are made periodically in the own inquiry
task of the single controller and with the blocks of few signals. This request to the parameter's attribute
returns the value obtained from the last connection session with the data source. This mechanism is usually
used when working with remote (network) data sources, characterized by high latency, ie delay in the
response to the request.

With this method it is possible to optimize the time resource spent on one signal, and thereby increase
the maximum number of requested signals during the time interval of the inquiry.

As an example, lets examine an industrial PLC Siemens S7-315 during requesting him on the bus
Profibus (1,5 Mbit/s). The average processing time of the MPI-request of this controller is 30 ms. If you use
a synchronous mechanism for each signal, ie one request for each signal, then in one second we can get
something about 33 signals. And if you apply an asynchronous mechanism, ie in the MPI-package to
receive up to 220 bytes or 110 signals of integer type of 16-bit, then we can for one second get up to the
3630 signals. As you can see, the effectiveness of asynchronous mechanism in this case is 110 times,
namely, the maximum capacity of MPI-package.

The disadvantage of asynchronous mechanism is that the request of the value of attribute of the
parameter returns not actual at the time of request value, but value of the last session of the inquiry of the
controller. However, taking into account that the source of data can be updated at intervals of ADC
hardware limitations, and the sensors themselves may have certain restrictions on the reaction rate, the
using of an asynchronous acquisition mechanism could have a serious grounds.

Application of asynchronous mechanism for recording the values to the PLC is a fairly rare fact, because
recording of values usually involves impact of the operator on the TP. Operator on the fact rarely makes
adjustments to the process, therefore, the recording can be performed synchronously. However, there are
situations, such as managing of the TP by the regulator on SCADA-system, acting as a runtime of PLC.

Fig. 3. Diagram of interaction sequence with asynchronous requests.

In accordance with the diagram above, we obtain the following picture:
• object of the attribute of parameter (or the parent object of the controller) performs the periodic

Data acquisition in OpenSCADA 97

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

requests HardwarePLC::valueRequest() to get the value of a signal or group of signals;
• received signal values stored in the objects of parameter's attributes locally;
• an object of SCADA-system sends the value request to the object of parameter's attribute
DAQParamAttribute::getVal() and gets locally saved value of the previous session of the inquiry of
data source.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

• Siemens - module of access to the data of Siemens controllers of S7 series. In this module an
asynchronous mode is implemented as for reading data and for recording (optional) to the PLC.
• ModBus - module of access to data sources through the family of ModBus protocols. In the
module an asynchronous mode of reading data is implemented.
• SNMP - module of access to the data of the network devices through the Simple Network
Management Protocol. In the module an asynchronous mode of reading data is implemented.
• System - module of access to the data of the execution area of OpenSCADA. In the module an
asynchronous mode of reading data is implemented.
• DAQGate - module of the reflection of controller's objects of the remote OpenSCADA-stations
on the local one. In the module an asynchronous mode of reading data is implemented.

 1.3. Package acquisition mechanism

Package data acquisition mechanism is characterized by the acquisition of data for each signal by the
packet that includes the history of its changes. Ie per one session of data inquiry we obtain multiple values
of history of the signal. Package mechanism works in conjunction with synchronous and asynchronous
mechanisms.

In the case of working with the synchronous mechanism the actual transfer of the archive of data source
for operational work in the system is done (Fig. 2). As the simple synchronous mechanism, it is desirable to
apply only to low-latency data sources or to the sources whose work is a session type, for example, in the
commercial account to read the values of the counters.

When working in conjunction with an asynchronous mechanism the history of the received signals is
usually placed directly in the archives (Fig. 4), and the current value of the parameter's attribute is set to last
value of the package. This combination is effective during the acquisition of the fast data or during the
synchronization of the archives after the loss of connection to the remote data source.

Fig. 4. Diagram of interaction sequence with the asynchronous requests of the package mechanism.

In accordance with the diagram above, we obtain the following behavior of the package mechanism for
asynchronous requests:

• object of the attribute of parameter (or the parent object of the controller) performs the periodic
requests HardwarePLC::valueRequest() to get the value's packages of a signal or group of signals;
• received value's packages of signal are placed in the archive by the request

Data acquisition in OpenSCADA 98

http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/System?v=hf
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=101r
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=sef
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=zhg

DAQParamAttributeArch::setValues(), and the last value of the packages is located in the objects of
parameters' attributes;
• object of SCADA-system sends the request of the archive's fragment to the object of parameter's
attribute DAQParamAttribute::getValues(), and he relays the request to the archive
DAQParamAttributeArch::getValues(). As the result the fragment of the archive, available after the
previous session of the inquiry of data source, is returned;
• object of the SCADA-system sends the request of the last value of the object of parameter's
attribute DAQParamAttribute::getVal() and gets the locally saved value of the previous session of
the inquiry of data source.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

• DiamondBoards - module for data access of PC/104 cards of Diamond Systems company.
PC/104 cards are available on the ISA-bus, hence, are local and available relatively quickly. When
data acquisition is done through interruption the expectation of the packets of fast (up to 200 kHz) in
one second (up to 200,000 values in the package) is made and the subsequent placing of packets
data in the archives of the DAQ parameters' attributes.
• DAQGate - module of reflection of controller's objects of remote OpenSCADA-stations on the
local one. The synchronous and asynchronous packet mode of reflection of the archives of remote
OpenSCADA-stations is provided.

 1.4. Passive acquisition mechanism

The feature of the passive data acquisition mechanism is the initiative of the providing data in the
SCADA-system from the data source. This mechanism is quite rare, but can occur in certain conditions or
restrictions of the possibility of using the direct data acquisition mechanisms, Fig. 5. An example of such a
situation can be the geographically allocated systems of data acquisition through mobile networks
GPRS/EDGE. In such networks, empowering the individual client nodes with the real IP-address or the
formation of a corporate wireless network can be rather expensive, and therefore more accessible is an
initiative of the data transfer session from client dynamic IP-addresses to the one real IP-address of the
SCADA-system server. Nevertheless it is possible to work through the network DBMS of the dealer.

Impacts of the modification are transmitted to the source of data at the time of data transfer session by
the source.

Fig. 5. Diagram of interaction sequence with the passive working mode.

In accordance with the diagram above, we obtain the following behavior of the passive mechanism:
• data source object carries out periodic connection sessions with the object of the parameter's
attribute DAQParamAttributeArch::setVal() to transfer its own data and receive influence
commands;
• object of the SCADA-system sends the request to the last value of the object of parameter's
attribute DAQParamAttribute::getVal() and gets the locally stored value of the previous connection
session of the data source.

In OpenSCADA this mechanism has not been yet used, but in principle there is the possibility of its
realization in the system.

Data acquisition in OpenSCADA 99

http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=144c

 2. Virtual data sources
In addition to physical data acquisition the function of the virtual data acquisition is also important.

Virtual data are the data obtained inside the system both independently and on the basis of physical data.
Practically the formation mechanisms of virtual data are implemented in conjunction with the mechanism
of user computing. Among the industrial controllers and SCADA-systems the different programming
languages are used. In the case of controllers such languages can be for example low-level languages
(assemblers), but in recent years the high-level languages (C, Pascal and others) are increasingly used, as
well as the formal languages of IEC 61131-3 (sequential function chart SFC, function block diagrams FBD,
LD relay circuits and text ST, IL). In the case of SCADA-systems computings are often provided with the
help of high-level programming languages and formal languages.

In the OpenSCADA system the programming interfaces and virtual data sources on the basis of different
languages in separate modules of a subsystem "Data acquisition" can be implemented. At the time of
version 0.6.3.2 the available modules of virtual calculators are:

• Calculator on Java-like language: JavaLikeCalc;
• Block calculator: BlockCalc.

At the OpenSCADA kernel the mechanism for user-defined functions or API of user programming is
integrated. User functions can be provided by any object of the system, including modules in accordance
with their functionality, thus providing the user with the set of functions for the control of one or another
object. User API functions can be either static, ie implementing the fixed functionality of an individual
object, and the dynamic ones, ie formed by the user for the desired task in the language of the user high-
level programming.

Module JavaLikeCalc provides the system with the mechanism to create dynamic user-defined functions
and libraries for Java-like language. Description of functions for Java-like language is to tie up the
parameters of the function by the algorithm. In addition, the module has the functions of the direct
calculations by creating a computer controllers with the associated computational function. Module
provides the mechanism to precompile the context-dependent functions that are used to embed the user
algorithms directly in the context of the various components of OpenSCADA. For example, the mechanism
of the parameters' templates of subsystem "Data acquisition" and the visual control engine (VCA).

Module BlockCalc provides the OpenSCADA system with the mechanism for creating user calculations.
Mechanism of calculations based on the formal language of block diagrams (functional blocks). Languages
of block programming based on the concept of block diagrams (functional blocks). And depending on the
nature of the block, block scheme can be: logic circuits, relay logic circuits, a model of technological
process and others. The essence of the block scheme is that it contains the list of blocks and links between
them. From a formal point of view the block - is an element (function), which has inputs, outputs and an
algorithm for computing. Based on the concept of programming area block - is a frame of values associated
with the object of function. Inputs and outputs of blocks are to be connected to get the whole block scheme.

With the purpose of filling user programming API with user functions the following specialized modules
of static user programming API functions are created:

• Library of function for the compatibility with SCADA Complex1: FLibComplex1;
• Library of standard mathematical functions: FLibMath;
• Library of System API functions: FLibSYS.

Data acquisition in OpenSCADA 100

http://wiki.oscada.org/HomePageEn/Doc/FLibSYS?v=hgy
http://wiki.oscada.org/HomePageEn/Doc/FLibMath?v=67m
http://wiki.oscada.org/HomePageEn/Doc/FLibComplex1?v=17ps
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

Fig. 6. The overall structure of the components of the programming area

Data acquisition in OpenSCADA 101

 3. Logic level of data processing
Above we talked that type of data source can vary from a "raw" to the complex. The "raw" means the

source that provides only the basic signal (integer, real, boolean, string, ...) separately. Under the complex it
is meant the source that groups the signals and in the parameter of subsystem "Data acquisition" it provides
the attributes of an additional purpose, covering practically all diagnostic tasks, ie the parameter is the
complete object, which do not need any additions.

Taking into account this variation, the situation may occur, when the information in the object of data
source controller's parameter, is insufficient to describe the real TP object in general and the derived object
of a higher level of abstraction is needed. The solution of this situation is the formation of complementary
parameters, which is not obvious and confusing. The better solution is to use layer, so-called "Logic level",
serving for the flexible formation of parameters, containers of signals with the necessary structure, and
which has post-processing.

Functionally "Logic level" is intended to provide the OpenSCADA system with mechanism of free
formation of parameters' objects, containers of signals of the necessary structure.

Operating appointment of the "Logic level" is:
• expansion of the scope of the OpenSCADA system by increasing the flexibility of description of
parameter's objects of subsystem "Data acquisition";
• reduction of labor costs for the creation of complex automated systems.

The conception of "Logic level" based on the parameters' templates for which in the subsystem "Data
acquisition" it is provided the container of the templates libraries (Fig. 1). Each library contains templates
of parameters that can be used by the modules of "Data acquisition" subsystem for the implementation of
parameters based on templates. The modules of OpenSCADA, which use the templates in their work, are:

• LogicLev - module of the implementation of the classical conception of "Logic level".
• Siemens - data acquisition module for Siemens controllers Series S7. Taking into account the
high flexibility and functionality of this controllers, which allows you to create complex data types
of different structure, all the parameters of this module work on templates.

General mechanism of the "Logic level" on the example of the LogicLev module is shown in Fig. 7.

Fig. 7. The mechanism of the "Logic level" on the example of LogicLev module.

Data acquisition in OpenSCADA 102

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=zhg
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

On the figure you can see that the parameters of the logic level controller function as reflections of other
parameters of "Data acquisition" subsystem (on the example of parameters 1 and 4) and the free formation
of parameters based on templates 1, 2 and other parameters of "Data acquisition" subsystem (on the
example of the parameters 2, 3 and 5).

Structure of the parameters with the template in their basis has the structure shown in Fig. 8.

Fig. 8. Structure of the parameters, with a template in its basis.

As can be seen from the structure, the logic level parameter consists of the function object, attributes and
configuration of the template. The function object is an instance of the execution of the template's function
with the set of inputs/outputs and the computation program of the template on the language of user
programming, usually it is the Java-like programming language of the module DAQ.JavaLikeCalc. But the
template may be generally without the program, providing only the structure of transfer the inputs/outputs.
Attributes in the structure represent the list of attributes of the result parameter in accordance with the
template. Configuration in the structure provides the configuration of the template's properties and its
external links.

The logic of the work of logic-level parameters can be written as follows:
• Parameter connects with the template from which we obtain the structure of attributes in
accordance with the template's function.
• At the moment of linking the parameter with the function the linkage of an object of the
parameter's function instance with the function of the template.
• Further, in accordance with the template of function, the structure of links is formed. Based on
the structure of links the form of linkage the parameter is formed and the user sets the links .
• When you access the attributes of the obtained parameter the check for the presence of a direct
link is done. In the case of a direct link presence the request is routed by this link, otherwise the
value is taken from an object of the parameter's function instance.
• At this moment the template's function calculation works using the the object of the parameters'
function. However, before the calculation the reading of the values by the links is made, and after
calculation the results are recorded by these links.

Parameters' template in general provides the following:
• structure of I/O of the template's function;
• signs of the configuration and linkage of the template (constant, link);
• preliminary values of the configuration of constants and templates of links' configuration;
• signs of the attributes of the resulting parameter of the logic level types: not attribute, an attribute
with full access, attribute with read-only access;
• mechanism for calculating the I/O of the templates' function using the user programming
language of OpenSCADA.

Data acquisition in OpenSCADA 103

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

Fig. 9 shows image of the configuration tab of the parameters' template of subsystems "Data acquisition"
as the table with the configuration of inputs/outputs and the text of the program of user programming.

Fig. 9. The configuration tab of parameters' template of subsystem "Data acquisition".

The input/output field of the parameter's template provides the following properties of special purpose:
"Attribute", "Configure" and "Value".

The "Attribute" property is the reflecting sign of the the i/o of the template on the resulting attribute of
the parameter. There the following options for this property are provided:

• No attribute - input/output of the template's function does not reflect on the attribute;
• Read only - input/output of the template's function reflects on the attribute with read-only access;
• Full access - input/output of the template's function reflects on the attribute with full access.

The "Configure" property is the sign indicating the using of input/output of the template's function in the
resulting configuration of the template on the logic level. The following options for this property are
provided:

• Constant - available for setting only on the level of the configuration of parameter's template as a
constant;
• Public constant - available for setting at the parameter of logic level in the configuration section
of the template as a constant;
• Link - available for setting at the parameter of the logical level in the configuration section of the
template in the form of link.

The field "Value" describes the preset value for the constants and configuration template of the external
links. Template of the configuration of external links is used to describe the mechanism of grouping and
automatic allocation of external links. The structure of the template of configuration of external links is the
specific for each module of subsystem "Data acquisition", which uses the template's mechanism. In the case
of the logic level module the allocation is made over the external attributes of the parameters with the
template of configuration of the external link of the form: <Parameter>|<attribute>. Where <Parameter> is
used to combine the parameters and place on the configuration form, and an attribute - for the associated

Data acquisition in OpenSCADA 104

linkage of the attributes at the appointment of the parameter.

As an example of the template's using in Figure 10 lets show an images of the parameter of the logic
level module "F3". In Fig.10 the tab "Template config" is presented', it serves for the configuration,
including the linkage, of the parameter's template. In Fig.11 the tab "Attributes" is shown with the list of
attributes and their values, created through the template.

Fig. 10. The "Template config" tab of the "F3" parameter of the logic level module.

Fig. 11. The "Attributes" tab of the "F3" parameter of the logical level module.

Data acquisition in OpenSCADA 105

 4. Redundancy of the data sources
Redundancy in general and of the data sources in particular serves to increase the overall level of fault-

tolerance of the solution by integrating the redundant nodes in collaboration with the main node. In case of
failure of the main node the grab of the main node functions by the redundant one takes place. The
redundant scheme can work in the mode of capacity allocation between the co-operating nodes.

Fig. 12. Horizontal and vertical redundancy.

In the case of a subsystem "Data acquisition" of the OpenSCADA system the data redundancy (Figure
12) performs the following functions:

• Redundancy of the data acquisition mechanism. Typically, this function is realized without
special arrangements by simply running of the parallel redundancy stations with the same
configuration and working independently. However, in the case at the station, which works as PLC,
such approach is unacceptable because of the simultaneous making of control actions and the
absence of synchronization of calculators' data.
• Compensation of the data loss on the time of the node stop with the redundant node archive.
There are two mechanisms of compensation. The first and the main mechanism implements the
loading of the sections of the archive from the redundant station at the time of the station startup in
general or of individual controllers of "DAQ" subsystem. the section of the archive is requested
from the moment of the last record in the local archive and till the current time. The depth of the
request is limited by the indicating of the limit time in the configuration of the redundancy. The
second, complementary mechanism, performs the filling of the "holes" in the archive at the time of
the actual user's request to the data. Such an approach on the one hand allows to make the
predictable in time synchronization at startup and on the other hand - actually eliminates the data
loss in the case of working at least one station during the entire time.
• Capacity allocation of data acquisition between the nodes. When creating complex allocated
systems there can be an important question of predicting and optimizing of the overall system
performance. Taking into account these problems the redundancy mechanism provides the execution
of tasks of data acquisition of individual sources (OpenSCADA controllers) only at one station. The
other stations' tasks would go to data synchronization mode with the executive station. In the case of
loss of the connection with the executive station the task of the local data acquisition is started. It is
also provided the possibility of optimal capacity allocation of the execution of data acquisition task's
of the controllers' group between the stations.
• Optimization of the load on the external data sources through the data request from an external
source by the only one node. In practice, we often meet highly loaded data sources or interfaces of
access to the data sources, for which even the data acquisition by one station can be a problem and

Data acquisition in OpenSCADA 106

would require reducing the acquisition periodicity, ie data quality. The mechanism of redundancy,
except of capacity allocation between the stations as described above allows you to remove an
additional load form the data source and its interfaces, thereby improving the quality of data.
• Prevention of some differences of data on different nodes associated with the mismatch of
moments of time at the independent acquisition of data by individual nodes by means of receiving
the data from the station with an active controller. In systems with redundant and high
accountability it should be excluded or minimized the differences in the data at different stations,
that means the real acquisition of data by one station and synchronization with these data of other
stations.

Configuration of the redundancy starts with the addition of redundant stations in the list of OpenSCADA
system stations in the tab "Subsystem" of the "Transports" subsystem (Fig.13). Then the whole
configuration of the redundancy is made in the "Redundance" tab of subsystem "Data acquisition" (Fig. 14).

Fig. 13. The "Subsystem" tab of the "Transports" subsystem.

Data acquisition in OpenSCADA 107

Fig. 14. The "Redundance" tab of the "Data acquisition" subsystem.

The service task of the redundancy mechanism is always running and executed at intervals which are
prescribed in the appropriate configuration field. The real work on implementing the redundancy is carried
out in the presence of at least one redundant station in the list of stations, and implies:

• Monitoring of the connection with external stations. In the monitoring process the requests to
remote stations are made to get the information about them updated and to check connection. In the
case of loss of connection with the station the repeat of connection to it is made through interval
specified in the configuration field "Restore connection timeout". In the "Live" field of the station
the current state of communication is displayed. In the "Counter" field the number of requests
carried to the remote station, or the time remaining for the next connection attempt to the lost station
is displayed. In the "Run" field there is a list of active controllers at the remote station with a sign of
the local execution.
• Local planning of the controllers' execution in reserve. Planning is carried out in accordance with
the station's level and preferences of controllers' execution.
• calling the data synchronization function for the local controllers working in the mode of
synchronization of data from external stations. During the call, it is being prepared to request of the
data from the remote station for the parameters in the controller starting from the time of the last
request. On the request the only the values of modified attributes and sequence of values from an
archive in case of loss of several cycles of values are returned.

To monitor the time spent in the cycle of redundancy tasks the field status is provided. When
approaching the real time of execution to the cycle of the redundancy tasks it is recommended to increase
the frequency of execution of this task!

For the controller of subsystem "Data acquisition" there is provided the modes of asymmetric and

Data acquisition in OpenSCADA 108

symmetric redundancy. Asymmetric redundancy is working with the configuration of the controller of the
remote station, as it is, and does not trying to generalize it. Symmetrical mode supposes the synchronization
of configuration of the controllers of stations with the configuration of the highest level station, and
suggests the changes in the configuration of all controllers of the stations when changing it on the one of the
stations. Currently this mode is not implemented!

Data acquisition in OpenSCADA 109

Quick start OpenSCADA
An open system OpenSCADA is extremely modular, flexible and multi-functional SCADA-system. As a

consequence of this the first contact with OpenSCADA can be quite complex because of the small chance
of matching the previous experience of the user or complete lack of it with the methods of work in
OpenSCADA. However, this is largely just a first impression, because the whole power of OpenSCADA is
in the palm of the user, because of the abundance of which the user can get confused, and he may require
considerable efforts to select the functions needed to solve his tasks.

For this reason, and to visualize the general concept of work in OpenSCADA this document is created.
The document in the concise and understandable form shows the path from start of OpenSCADA to
creation of the user interface elements on real examples. In addition, the document contains the chapter
with recipes for the configuration, implementation, and typical problems of the user.

The document does not contain the detailed description of the concept and a deep dive into the details of
OpenSCADA, and provides links to the appropriate OpenSCADA documents, containing such information.

Document description is synchronized with the implementation of the examples on the demonstration
database (DB) of OpenSCADA. Consequently, the user must obtain the distribution kit of OpenSCADA
with this database for illustrative study and testing the examples.

 1. Terms, definitions and abbreviations
The automated workplace - Usually consists of a system unit of the computer system, display, mouse,

sometimes with the keyboard, and other peripheral equipment that is used for visual representation of
technological process data and making the control actions on the TP.

Lock (term) – notional boundary of technological parameter, in the case of its getting over the preset
algorithm steps to prevent the accident are made. In some modes of TP (start) in accordance with the
regulation it may be necessary to disable the lock (unlocking).

Unlocking (term) – process of the lock disabling for the duration of the TP working in the modes for
which the regulation provides this operation. Attention, unlocking the technological parameters is strict
accountable operation and the must be made by operational staff in the proper order.

Quittance (term) – the process of confirming the fact that operational staff drew attention to the failures
of TP working. This process usually entails the adoption of measures by the operator to correct violations
and pressing the appropriate button to stop the alarm.

PLC (abbreviation) – Industrial PLC. Microprocessor-based electronic device to which via computer-
process interface (CPI) the signal of processing parameters are going. PLC acts the role of the direct data
acquisition, processing and making the control actions by means of algorithms of automatic control. In
addition the PLC provides data for the visualization of TP, and receives data of the manual intervention
from the "top level" system.

Alarm (term) – process of notifying the operational staff of the violation of process or work of the
automation equipment. Way of signaling may be of different types of impacts on human senses in order to
attract attention. Often it is involved the following types of alarms:

• Light alarm – usually is done by changing the color of the graphic object (blinking) to emerging
events and by the setting of static accidents colors (red and yellow) for acknowledged events.
• Sound – is made by an audible signal at the time of occurrence of the event. Type of alarm can be
monotonous and the synthesized voice message with information about the violation.

TP (abbreviation) - Technological process. The whole complex of technological equipment of the
production process.

CPI (abbreviation) – Computer-Process Interface. A number of devices or modules of PLC, to which
are directly connected the signals from the sensors of TP for subsequent conversion from analog to digital
form and vice versa. The transformation is carried out with aim of further processing of values of
technological parameters in the PLC.

Quick start OpenSCADA 110

Alarm setpoint (term) - conventional boundary of the value of technological parameter, the overcoming
of which is considered ad the emergency situation. Usually the following boundaries are provided:

• The upper and lower emergency boundaries – boundaries of the emergency values of
technological parameter.
• The upper and lower warning boundaries – boundaries of the prevention, regulation boundaries,
of the violation of the technological parameter of the working range.
• Failure - sign of parameter getting over the hardware boundaries of technological equipment.
Usually it characterizes the sensor failure, breakage of the communication channel with the sensor
or PLC.

SCADA (abbreviation) - Supervisory Control And Data Acquisition. The software that performs
complex tasks of data acquisition of TP, their archiving and presentation, as well as the making the control
actions by the operator in manual mode.

 2. Installation and start
The installation of distribution kit of OpenSCADA can be done in two ways. The first and the easiest

way is to get packages for your distribution of the Linux operating system. The second - to build the
OpenSCADA system from sources. In general, the installation procedure depends strongly on the used
Linux distribution and to exhaustively describe it in this guide it does not seem possible! Therefore, you
may need a deep familiarity with the mechanisms of software installation for the selected Linux distribution
in its documentation.

If user does not have deep enough knowledge and skills in the chosen distribution of Linux, it is strongly
recommended to choose the Linux distribution by the criterion of existence for it the packages of
OpenSCADA in the repositories of the distribution, which will ensure an easy and problem-free
installation!

If the user can not only install the OpenSCADA, but also the Linux distribution, for the first time he can
use the "live" distribution of Linux, with the installed and ready for work or study demonstration of
OpenSCADA. Currently are available "live" builds on the basis of distribution ALTLinux in the form of
CD and Flash-images on the link: ftp://ftp.oscada.org/OpenSCADA/Live.

 2.1. Installing OpenSCADA from packages

Installing OpenSCADA from packages, in its turn, can be made by two methods. The first - the simplest
one, when packages of OpenSCADA are already present in the official or additional repositories of the
distribution of used Linux, and installation of them - the question of running the typical program of
packages' management followed by selection of the OpenSCADA packages. The second is when the
packages of OpenSCADA are got and installed manually.

At the moment the system OpenSCADA packages can be found in the repositories of such distributions
OS Linux: ALTLinux and distributions based on package base of Fedora.

To check for OpenSCADA packages presence in the repositories of the used Linux distribution, as well
as to download packages of OpenSCADA for manual installation you can download at the official
OpenSCADA site (http://oscada.org/en/zagruzka).

Description of the installation from the repository of the selected Linux distribution we'll omit and refer
the reader to the documentation of the appropriate distribution.

For the manually installation of OpenSCADA packages lets download them from the official website or
from the other source. You can download packages of two types.

The first type is represented by a set of four packages:
• openscada - package with all files necessary to start OpenSCADA, including all modules;
• openscada-demo - files of the demo database with the configuration to start the demonstration;
• openscada-doc - all documentation on the OpenSCADA system;
• openscada-devel - development packages for the creation of the separate modules to the
OpenSCADA system.

Quick start OpenSCADA 111

http://oscada.org/en/zagruzka)
http://fedoraproject.org/
http://www.altlinux.ru/
ftp://ftp.oscada.org/OpenSCADA/Live

The second type is represented by the set of about forty packages with separation of OpenSCADA
modules in separate packages:

• openscada - contains the OpenSCADA core, basic configuration and launching(starting) files;
• openscada-DB.* - "DB" subsystem's modules;
• openscada-DAQ.* - "Data acquisition" subsystem's modules;
• openscada-Archive.* - "Archives" subsystem's modules;
• openscada-Transport.* - "Transports" subsystem's modules;
• openscada-Protocol.* - "Transport protocols" subsystem's modules;
• openscada-UI.* - "User interfaces" subsystem's modules;
• openscada-Special.* - "Specials" subsystem's modules;
• openscada-demo - files of the demo database with the configuration to starta the demonstration;
• openscada-doc - all documentation on the OpenSCADA system;
• openscada-devel - development packages for the creation of the separate modules to the
OpenSCADA system.
• openscada-plc - virtual package containing dependencies for installing the typical configuration
of the OpenSCADA as PLC;
• openscada-server - virtual package containing dependencies for installing the typical
configuration of OpenSCADA as SCADA-server;
• openscada-visStation - virtual package containing dependencies for installing the typical
configuration of OpenSCADA as visual SCADA-station.

The first type of the packages' set is provided for easy, manual installation, because it contains only four
packages. The second type is designed to be placed in a repository of Linux distribution and for the
following installation of them using the package manager, which made auto-dependency resolution. The
second type of the packages' set allows you to install only the required components of OpenSCADA,
thereby optimizing the working environment, which is do not allowed by the packages of the first type.

If you are installing from the repository you should only select the package "openscada-demo".
Everything else, according to the dependencies, will be selected and installed automatically.

Manual installation of RPM-packages of the first type can be made by the following command, after
changing the working directory to the directory with the package:

rpm -i openscada-demo-0.6.4.1-alt2.i586.rpm openscada-0.6.4.1-alt2.i586.rpm

Manual installation of DEB-packages of the first type is made by the following command, previously
having changed the working directory to the directory with the package:

dpkg -i openscada-demo_0.6.4.1-2_all.deb openscada_0.6.4.1-2_i386.deb

In the process of implementation it may cause bugs related to missing dependencies. The manual
installation of the packages means that you'll solve them manually, like installing packages of
OpenSCADA, or via the package manager of Linux distribution. To familiarize with the process of
installing software in RPM-package you can by the click on: http://skif.bas-
net.by/bsuir/admin/node51.html.

 2.2. Installation from sources

If you can not get packages of OpenSCADA for the selected distribution, it remains the only ine option
of OpenSCADA building from the sources. The building process of OpenSCADA is described in details in
the guide on the following link http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource. However, it
must be borne in mind that if you managed to build OpenSCADA from sources, then this document is not
for you, and you probably can easily master the basic documents of OpenSCADA
(http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual).

This chapter is given here for completeness and integrity of the consideration of the question, because
the required qualification level of the user for this chapter is much higher than the level of the document at
whole!

Quick start OpenSCADA 112

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual
http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource
http://skif.bas-net.by/bsuir/admin/node51.html
http://skif.bas-net.by/bsuir/admin/node51.html

 3. Initial configuration and start
After proper installation of the OpenSCADA with demo database no pre-configuration is required. If you

want to perform a particular configuration, which differs from the base, then use the document of
description the OpenSCADA program on the link:
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual/part4?v=7kf.

Attention! The demonstration of OpenSCADA based on the demo database is not the same as that is
usually provided by the commercial software vendors to demonstrate the possibilities, but to exclude or to
complicate the normal operations by limiting the functions. Demonstration of OpenSCADA is fully-
functional system that provides examples of implementation and configuration of various components.
Based on the demo database of OpenSCADA one can easily create own projects, using the given resources.

To execute the OpenSCADA with demo database you can from the menu of the desktop environment in
the "Graphics" section, "Demo of open SCADA system" with the characteristic icon (Fig. 3.1).

Fig. 3.1. Menu item of the desktop environment to start the demonstration of OpenSCADA.

Start also can be done from the console by the command:

openscada_demo

Quick start OpenSCADA 113

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual/part4?v=7kf

After start we'll get the window of graphical configurator of OpenSCADA system - QTCfg (Fig.3.2)
with the opened root page. Demo database specifically set up so that the first to appear when you start it
would be the configurator's window. You can then open the window for creating graphical user interfaces,
as well as run the project of user interface for execution.

Fig. 3.2. OpenSCADA configurator - QTCfg, the root page.

Configurator of OpenSCADA is the main and sufficient mean for the configuration of any component of
the system. Like many others components of OpenSCADA, configurator is implemented as a module.
Besides the configurator QTCfg there may be available other configurators that performs the same function,
but implemented on the basis of other technologies. For example, these are the Web-configurators: WebCfg
and WebCfgD.

All actions in the future, we will examine only in the configuration tool QTCfg, although all of them can
be done in other configurators.

Quick start OpenSCADA 114

http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=a9k
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=8v0

The structure of the interface of the configurator's window can be considered in detail by reference
http://wiki.oscada.org/HomePageEn/Doc/QTCfg. For us it is more important now to examine all the
available interfaces of OpenSCADA, so click next to last icon in the top on the toolbar. After clicking on
this icon the window of user interface development will be opened (Fig.3.3).

Fig. 3.3. Window of the UI development.

Quick start OpenSCADA 115

http://wiki.oscada.org/HomePageEn/Doc/QTCfg

Then we can start the project "AGLKS" for execution. To do this, select it in the list of projects and run
by clicking on the first left icon on the toolbar or in the the popup menu. The result will be the window of
user interface (Fig.3.4).

Fig. 3.4. Window of the user interface of the "AGLKS" project.

Building and executing of the user interfaces is implemented by the Vision module of the subsystem
"User interfaces". In addition to this module it can be accessed the other modules of visualization. For
example, OpenSCADA provides module WebVision, which allows to execute projects, previously
developed in the interface module "Vision", through the Web-based technologies and standard Web-
browser. All actions in the future we will examine only in the interface of the "Vision" module.

So we ran the demonstration of OpenSCADA and familiarized with the main set of tools. In the future
we will use them for configuration of OpenSCADA, creating the tasks of data acquisition, binding the
collected data with the purpose of their processing and making the impacts, as well as to create the user
interface of visualization of the received data and to make the control actions.

Lets close the window of the project "AGLKS" execution and the window of development of the user
interface for the preparation to the study of the following chapters.

The whole process of configuration of SCADA-system to perform the functions of the "top level" can be
divided into two stages:

• The configuration of data sources and creation the database (DB) of the parameters of these
sources.
• Formation of a visual presentation of TP data by creating the operator interface in the form of
mnemonic schemes, groups of graphs, groups of contours, documents, etc.

Quick start OpenSCADA 116

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=155m
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=ba3

 4. Working with Data Sources
The main function of any SCADA-system is to work with data sources, namely the inquiry of

programmable logic controllers (PLC) and simple modules of CPI. For more details see the document "Data
acquisition in OpenSCADA" on the following link: http://wiki.oscada.org/HomePageEn/Doc/DAQ .

Support of the one or another data source depends on the protocol or API, through which the source
provides its data, and the availability for the protocol/API the module in the subsystem "Data acquisition"
in OpenSCADA. The total list of modules of the subsystem "Data acquisition" and documentation on them
can be found here http://wiki.oscada.org/HomePageEn/Doc?v=9b7#h735-4 in the appropriate chapter.

Obtained from sources data subsequently are archived, processed and used for visual representation for
the operator of TP.

 4.1. Data inquiry of the TP device

As an example lets examine and create the inquiry for the air cooler device. Demo database contains the
model of real-time of TP of compressor station of the six compressors. Data for two devices of air coolers
"AT101_1" and "AT101_2" of the compressor station "KM101" are available on the protocol ModBus/TCP
on port 10502.

We will create the inquiry controller on the protocol ModBUS/TCP and get these data, thereby
practically made the task of inquiry of real data, because from the external device our configuration will be
different only in address of the device and addresses of the ModBUS registers.

For the data acquisition through ModBUS/TCP protocol in the OpenSCADA there is "ModBUS"
module in the subsystem "Data acquisition". To add a new controller we will open the page of the modules
"ModBUS" in the configurator ("Demo Station"->"Data acquisition"->"Module"->"ModBUS") and in the
pop-up menu of the "ModBUS" item click "Add" (Fig. 4.1.1).

Fig. 4.1.1. Adding the controller in the "ModBUS" module of the subsystem "Data acquisition".

Quick start OpenSCADA 117

http://wiki.oscada.org/HomePageEn/Doc?v=9b7#h735-4
http://wiki.oscada.org/HomePageEn/Doc/DAQ

At the result of our actions the dialog window will appears (Fig.4.1.2) to enter the ID and name of the
new controller. IDs of any objects in OpenSCADA are limited to 20 characters and they should be entered
using English alphabet characters and numerals. In addition, it is desirable to start the ID with the letter.
This is due to the fact that the identifier can later be used in scripts. The names of objects of OpenSCADA
are limited to 50 characters and can be entered by any symbols. The names commonly used for display. If
the name field is blank, instead it the identifier will be used to display. Enter the ID "KM101" and the name
"KM 101".

Fig. 4.1.2. Dialog to specify the ID and name of the new object.

After confirming we have a new controller's object. Lets choose it in the configurator and get acquainted
with the settings (Fig.4.1.3).

Fig. 4.1.3. The main tab of the controller's object settings of the ModBUS module.

Quick start OpenSCADA 118

Settings of the controller's object, as a rule, are specific for the different types of data sources and
protocols. To familiarize in details with the settings of the controller's object of the "ModBUS" module you
can using the link http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=btc#h871-13. We'll examine the
general configuration of the controller's object and the key settings for the "ModBUS" module.

With the help of the page of the controller's object in the section "Status" may be primarily assessed the
current state of the controller's object and the real state of connection with the physical controller, as well as
quickly to change it. For example, field "Status" contains the code of error and the textual description of the
current state of connection with the controller, in this case the controller's object is disabled. We are able to
enable it and start by setting the flags beside the appropriate fields. Enabled controller's object initializes the
parameters objects, the running one runs the task of inquiry and provides an opportunity to transmit data to
the controller through the attributes of the parameters. The DB field indicates which database to store in the
configuration of the object. We will store the data the main database, ie leave field the default.

In the "Config" section the configuration of the controller's object is directly contained:
• "ID" and "Name" are the fields, we've just entered at the object's creation. The Name can be
changed right here, but the ID can not be changed so symply. If you want to change the ID you must
Cut (Ctrl+X) and Paste (Ctrl+V) the object and enter the desired ID.
• "Description" may contain the detailed description and purpose of the controller's object. In our
case, the value of this field is not fundamental.
• "Enable" and "Run" indicated the state, in which to transfer the controller's object at start of
OpenSCADA. Lets set both fields.
• Two next fields "Redundant" and "Preferable run" serves for the configuration the horizontal and
vertical redundancy of the data sources at the different stations
(http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-10). We'll not touch them.
• "Parameters table" - contains the name of the database's table in which to store the configuration
of parameters of the controller. Leave it default.
• "Acquisition schedule" - contains the configuration of the scheduler to run the inquiry task. To
get the description of the format of the configuration of the field you can from the tooltip. The single
number indicates the frequency of run in seconds. Let it be one second.
• "Gather task priority" - indicate the priority of the task (from -1 to 99). Priorities above zero are
meaningful only when you start OpenSCADA from the privileged user. Leave this field unchanged.
• "ModBUS protocol" - indicates the variant of the ModBUS protocol. We are interested in the
option "TCP/IP", so leave it as is.
• "Transport address" - indicates the outgoing transport of the subsystem "Transports", which is
used to connect to the controller. In the case of "TCP/IP" option we need the transport module
"Soskets". We'll examine the creating of the outgoing transport in "Sockets" in details below.
• "Destination node" - indicates the ModBUS node. In our case, it should be "1".
• "Data fragments merge" - includes the merging not related fragments of registers in the single
block of the request, up to 100 registers, instead of generating individual requests. Allows you to
reduce the total time of the inquiry. Lets set this option.
• "Connection timeout" - indicates how long to wait for the response from the controller and after
which to report an error of connection. Zero indicates the use of time of transport. Unchanged.
• "Restore timeout" - specifies the time in seconds after which if there is no connection to retry to
reconnect.

Lets save our changes to the database by clicking the second left icon on the toolbar.

Quick start OpenSCADA 119

http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=x1w
http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-10)
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=btc#h871-13

Now, in the same manner as the controller's object, let's create the outgoing transport in the module
"Sockets" ("Demo Station" ->"Transports"->"Sockets") through the context menu (Fig.4.1.4). And let's call
the transport as well as the controller: "KM101" and the name - "KM 101". Note that in the "Item type" of
the dialog (fig.4.1.2) you should choose the "Output transport.

Fig. 4.1.4. Adding the outgoing transport in the module "Sockets" of subsystem "Transports".

Quick start OpenSCADA 120

The configuration page of outgoing transport is shown in Fig.4.1.5. This page also contains the section
of the status and operational control. In the "Status" field the textual description of the current state of
transport is contained. We can run it for execution by checking the box in front of the appropriate field.
Running object of the transport initiates the connection to the external node. Field DB indicates the
database to store the configuration of the object. We will store it in the main database.

 Fig.
4.1.5. The configuration page of the outgoing transport of the "Sockets" module of subsystem "Transports".

In the "Config" section the configuration of the transport object is contained:
• "ID" and "Name" contain the titles, which we entered when creating the object.
• "Description" may contain the detailed description and purpose of the object.
• "Address" specifies the type, address and mode of connection with the remote station. You can
view the record format in the tooltip. Let's set this field to the value "TCP:localhost:10502".
• "To start" indicates in what state to transfer an object at start of OpenSCADA. Let's set the field.
• "Timings" indicate the duration of waiting for the response from the remote station. You can
view the record format in the tooltip. Let us leave the value unchanged.

Let's save the transport and return to the configuration field "Transport address" of the controller's object
and select the address "Sockets.KM101". Setting the controller's object is finished. The next step is
configuration and choose the data you need to query from the controller. This setting is done by creating an
object "Parameter" of the controller. The "Parameter" object allows you to describe the list of data obtained
from the comptroller and to transmit them to the environment of OpenSCADA.

To add a new object of the parameter we will open in the configurator the page of our controller's object
and on the popup menu of item "KM101" we'll click "Add". The parameter's object we'll call "AT101_1"
and the name "AT 101_1".

The configuration page of the obtained parameter is shown in the Fig.4.1.6. This page contains the
section of status and operational control. In the "Type" field it is contained the ID of the type of the

Quick start OpenSCADA 121

parameter, in this case it is only possible the "Standard" type (std). We can enable the parameter by
checking the box of the appropriate field. The enabled parameter is involved in the process of exchange
with the controller.

Fig. 4.1.6. Configuration page of the controller's parameter "ModBUS".

In the "Config" section the configuration of tge parameter's object is contained:
• "ID" and "Name" contain the titles, which we entered when creating the object.
• "Description" may contain the detailed description and purpose of the object.
• "To enable" indicates in what state to transfer an object at start of OpenSCADA. Let's set the
field.
• "Attributes list" contains the configuration of attributes of parameters in relation of them to the
registers and bits of ModBUS. You can view the record format in the tooltip. Let's set the contents
of the text field as follows:

R:100:r:Ti:T input
R:101:r:To:T output
R:102:rw:Cw:Productivity.

Quick start OpenSCADA 122

Similarly, create the second option: "AT101_2" with the name "AT 101_2". The list of attributes fro it
let's set in:

R:103:r:Ti:T input
R:104:r:To:T output
R:105:rw:Cw:Productivity.

Let's save the both objects of the parameter. Now we can enable and run our controller to initiate the
exchange. To do this, go back to the page of our controller's object and in the "Status" section let's set the
flag "Run". If we do not miss something, the exchange is successfully started and in the "Status" field we'll
get something like this, as it is shown in the Fig.4.1.7.

Fig. 4.1.7. The page of the controller's object if the exchange with the physical controller is successful.

Quick start OpenSCADA 123

In the case of a successful exchange with the physical controller, we'll obtain the described data of the
controller in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our
parameters AT101_1 (Fig.4.1.8) and AT101_2. Because the inquiry is regularly and at intervals of a
second, then we can observe their changes by clicking the button "Refresh current page" on the toolbar.

Fig. 4.1.8. The page of described attributes of the AT101_1 parameter.

The configuration of data acquisition is complete.

Quick start OpenSCADA 124

 4.2. TP data processing

Frequently the initial data obtained from the data source are the "raw", ie unprepared or uncomfortable
for the visual presentation, so you need to perform this preparation. In our example, we received the data
that comes in the code from the scale inside the controller. Our task is to perform the calculation of real
values from the received data. Data processing in OpenSCADA can be done, either during the visualization,
and in the subsystem "Data acquisition". However, the mixing of the visualization process and processing
of initial data makes the configuration confusing and makes the obtained images of the visualization
unsuitable for reuse. For this reason, let's make the preparation of data in the subsystem "Data acquisition".

Calculations in the subsystem "Data acquisition" are done via the module of logic level "LogicLev" and
the templates of parameters of the subsystem "Data acquisition". To familiarize with the concept of "logical
level" you can here: http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-9 .

To make calculations in the module of the logic level you must first create the template of the parameter
of subsystem "Datafcquisition". To do this, let's open the page of templates' library "Main templates"
("Demo Station"->"Data acquisition"->"Template library"->"Main templates") and through the context
menu we will create the template object "airCooler" with the name "Air cooler". The configuration page of
the resulting object is shows in the Fig.4.2.1. This page contains the "State" section and the section of the
operational control. We can make the template accessing by checking the box next to the corresponding
field. Accessing templates can be connected to the data acquisition parameters, and the parameters will
make calculations on this template. In the "Used" field the number of objects that use this template to
calculate the image of the parameter is indicated. In the "Config" section only the familiar for us
configuration fields are present.

Fig. 4.2.1. The configuration page of the template's object.

Quick start OpenSCADA 125

http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-9
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=18hf

The basic configuration and the formation of the template of parameter f data acquisition is made in the
tab "IO" (Fig.4.2.2) of the template. The detailed description of the process of the template's formation can
be found here: http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=iuc#h932-6 .

Let's create in the template two properties fro the inputs ("TiCod", "ToCod"), two for outputs ("Ti","To")
and one clear property ("Cw"). For the "TiCod", "ToCod" and "Cw" let's set the "Configure" flag to the
"Link", this will let to link to them the "raw" source. For the "Ti" and "To" let's set the "Attribute" flag to
the "Read only", and for the "Cw" - "Full access", we make it to form the three attributes of the resulting
parameter of the data acquisition: two - read only and one with the full access..

The program language let's set to "JavaLikeCalc.JavaScript", and the program:

Ti=150*TiCod/65536;
To=100*ToCod/65536;

Fig. 4.2.2. Tab "IO" tab of the configuration page of the template's object.

Let's save the resulting template and set the accessibility flag.

Now we'll create the controller's parameters' objects in the "LogicLev" module of subsystem "Data
acquisition". The controller and its parameters in the module "LogicLev" are identical to the previously
created in the module "ModBUS" and they are created on the page: "Demo station"->"Data acquisition-
>"Module"->"Logic level". The object of the controller and the parameters will be called identical to the
objects in the module "ModBUS".

Quick start OpenSCADA 126

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=iuc#h932-6

The object of the controller of the module "LogicLev" (Fig.4.2.3) has no specific settings and the default
ones may not be touched.

Fig. 4.2.3. The main tab of the configuration of the object of controller of the LogicLev module.

Quick start OpenSCADA 127

The object of the parameter of controller of the "LogicLev" module (Fig.4.2.4) has only the one specific
setting - "Mode", where you need to set "Template" and select the address of the template, we have just
created.

Fig. 4.2.4. Configuration page of the "LogicLev" controller's parameter.

In addition to the basic configuration of the parameter it is necessary to configure the attached template
(Fig. 4.2.5). Configuration tab of the template appears in the parameter's mode "Enable". To enable the
parameter it is possible by the previously enabling the controller. The flag "Only attributes are to be shown"
allows you to set apart each link (Fig.4.2.6). Since we are made the following format of linkage in the
template "Parameter|Ti", then all three links we can set simply by typing an address to the parameter in the
"ModBus" controller. We shall specify the following addresses "ModBus.KM101.AT101_1" and
"ModBus.KM101.AT101_2" in the appropriate parameters.

It should be noted that all the input fields addresses of objects in OpenSCADA provide a mechanism to
set the address. This mechanism involves elemental choice, during which there is a movement in the
interior. For example, typing the address "ModBus.KM101.AT101_1" first we will be able to choose the
type of data source, including the "ModBus". By selecting "ModBus" in the list of available items for
selection will be added to the module controllers "ModBus", among which will be "ModBus.KM101".
Select the item "ModBus.KM101" add to the list of parameters of the controller, etc. to the final element in
accordance with the hierarchy of objects (http://wiki.oscada.org/Doc/OpisanieProgrammy?v=gax # h827-
6). To be able to return to levels above the selection list of all the elements are inserted into the higher
levels of the current value of the address.

Quick start OpenSCADA 128

http://wiki.oscada.org/Doc/OpisanieProgrammy?v=gax

Fig. 4.2.5. The "Template config" tab of the "LogicLev" controller's parameter page.

Fig. 4.2.6. The "Template config" tab of the "LogicLev" controller's parameter page with the links details.

Quick start OpenSCADA 129

Let's save the created objects of the controller and parameters. After this, run the controller for execution
by setting the controller's flag "Run" in the "State". If we do not miss something, the calculation is
successfully started and in the "State" we'll get something like the one on Fig.4.2.7.

Fig. 4.2.7. The page of the controller's object if the calculation of the controller in the "LogicLev" module is

successful.

Quick start OpenSCADA 130

In case of successful processing of the template's code in the parameters we'll obtain the processed data
in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our parameters
AT101_1 (Fig.4.2.8) and AT101_2.

Fig. 4.2.8. The page of the attributes of the parameter AT101_1 of "LogicLev" module.

The configuration of data processing is complete.

Quick start OpenSCADA 131

 4.3. Enabling the TP data archiving

Many tasks require to keep the history of parameters of the TP. To activate the archiving of the attributes
"Ti" and "To" of the AT101_1 and AT101_2 parameters in the previously created controller of the
"LogicLev" module it is enough on the "Archiving" tab of the configuration page to choose which attributes
are to be archived and by what archiers (Fig.4.3.1). We'll choose the archiving of "Ti" and "To" attributes in
the "FSArch.1s" archiver.

Fig. 4.3.1. The "Archiving" tab of the AT101_1 parameter of the "LogicLev" module.

Quick start OpenSCADA 132

As the result of this operation it will be automatically created the objects of archives for the selected
attributes. For example, the archive's object for the attribute "Ti" of the AT101_1 parameter is presented at
Fig.4.3.2.

Fig. 4.3.2. The page of the archive's object of the "Ti" attribute of the AT101_1 parameter.

Quick start OpenSCADA 133

Usually the settings of the archive do not need to be change, but if you need the special configuration, it
can be done on the aforesaid page. Often you may need to obtain the information about the archive. For
example, find the archive's size, both in time and in the bytes, as well as to look at the graph(diagram) of
the parameter (Fig.4.3.3).

Fig. 4.3.3. The "Values" tab of the page of the archive's object of the "Ti" attribute of AT101_1 parameter.

Quick start OpenSCADA 134

 5. The formation of visual presentation
The formation of visual presentation may be performed at three levels of complexity and the user can

select any of them, depending on the level of his knowledge and availability of libraries with ready-made
images and templates.

The first level requires a minimum qualification of the user, but implies the presence of template frames'
libraries, which are needed to solve his task. Within the limits of the first level the user only has to know
how to connect the dynamics to the template frames' pages and how to add new pages of the template
frames.

The second level provides the additional ability to create new frames based on the finished complex
elements, simply by their placement in the frame. To achieve this qualification level users will need
libraries of complex elements needed to solve his tasks.

The third level requires that user is able to use of all the tools of the development environment of visual
interfaces of OpenSCADA, including the creation of new complex elements and developing of the new user
interfaces in the project.

All works on the visualization interface we will make in an environment of the "Vision" module of
subsystem "User interfaces". To open the "Vision" interface window you should click the second icon on
the right on the configurator toolbar. The result is the window previously shown in Fig.3.3.

 5.1. Adding the template page in the project and linkage of the dynamics

Let's examine the first level of complexity task, when in the already designed interface it is necessary to
link the dynamics to the template page. The concept of "Page's template" means the page on the basis of
which with the help of inheritance it can be created a lot of final visualization pages with an individual list
of the dynamics. The examples of these pages are: "Graphics group", "Contours group", "Overview frames
panel" and "Result graphics". In the Fig.5.1.1 the template page "Graphics group" in the project tree "Signal
groups (template)" is presented.

Fig. 5.1.1. The template page "Graphics group".

Quick start OpenSCADA 135

The "Graphics group" template page provides an opportunity to link up to eight signals for simultaneous
display them on the diagram. Elements at the top will automatically hide for unspecified links.

Let's create the new group of graphs "Graphics 2" in the template container "Graphics group" of the first
group of the root page of "Signal groups (template)". To do this, let's in the context menu of the "Graphics
group" item select "Add visual item" (Fig.5.1.2). To enter the ID and name of the new visual item the
dialog will appear (Fig.5.1.3). Enter the ID "2" and the name "Graphics 2".

Fig. 5.1.2. Adding the "Graphics 2" group of graphs.

Fig. 5.1.3. Input dialog of the ID and name.

Quick start OpenSCADA 136

After confirming the name input it will be created the new page. However, for its activation, we need to
enable it. You can enable this page in the dialog of the properties editing page (Fig.5.1.4). To open this
page it is possible by selecting the menu item 'Visual item properties "in the context menu of the newly
created page.

Fig. 5.1.4. Dialogue of the properties editing of the visual element.

After enabling the page you are ready to set links to the created in the previous chapter parameters of
controllers. To do this, without leaving the dialog to edit the properties of the newly created page
(Fig.5.1.4), click on the "Links" tab (Fig.5.1.5). On this tab, we can see the tree with the elements "el1" ...
"el8". Unwinding any of the elements we'll see the "Parameter" branch, in this branch we need to specify or
select the address of our attributes "Ti" and "To". Total we will fill the four elements. When filling out the
elements the part of properties must be specified as constants. For example, it is necessarily needed to be
specified:

• name - "val:AT101_1 Ti"
• ed - "val:deg.C"
• max - "val:150" (for Ti) and "val:100" (for To)
• min - "val:0"

If you foresee the existence of the attributes specified in the controller parameter's template as constant,
it will be possible to specify only parameter, and the attributes will be set automatically.

Quick start OpenSCADA 137

Fig. 5.1.5. The "Links" tab of the dialog of edit the properties of visual item.

Quick start OpenSCADA 138

Having finished the links entering, we can see the result of our efforts. To do this we'll close the editing
properties dialog and run the "Signal groups (template)" for execution, about the run button we remember
from the previous chapters. Then let's choose the graphics and switch to the second page. With error-free
configuration, we should see something similar to that shown in Fig.5.1.6.

Fig. 5.1.6. The created group of graphs with the four signals linked.

Quick start OpenSCADA 139

 5.2. The creation of the new frame, the mnemonic scheme

Let's raise the bar and create the new frame, on which we'll put the basic elements of our controllers'
values displaying. Such frames are usually called the mnemonic schemes and in addition to the dynamics
displaying, and even in the first place, contain the static image of the technological process in the
mnemonic representation. We are not going to focus on the creation of statics and we'll add the dynamic
elements and link them to the parameters of our controllers. We'll put the created frame to the tree of
already known to us project.

New frames, destined later to be placed in the project, are to be created in the library of widgets. Let's
create the new library of widgets "KM101" by the selecting of the vertical tab "Widgets" and in the context
menu of the window of widgets' libraries click "New Library" (Fig.5.2.1). In the dialog of entering the
name we'll indicate the identifier "KM101" and the name "KM 101" and then confirm.

Fig. 5.2.1. Adding the new library of widgets.

Quick start OpenSCADA 140

Next we'll add the new frame "AT101" by selecting "Library: originals" -> "Elements box" in the
context menu of the created library "KM101" (Fig.5.2.2). In the dialog of entering the name we'll indicate
the identifier "AT101" and the name "AT 101" and then confirm. At the heart of any frame and the page
must be based on an element of "Elements box" ("Box"), and therefore we have chosen it.

Fig. 5.2.2. Adding the new frame.

Immediately after the creation of the new frame element it is necessary to set its basic properties,
characteristic to the mnemonic scheme frame. Properties or attributes of any visual element can be specified
in the toolbar "Attributes", having pre-selected the visual element. Let's select the created frame "AT 101"
and set the following properties:

• Geometry:width - 900;
• Geometry:height - 600;
• Background:color - "#5A5A5A";
• Border:width - 1;
• Border:color - "black".

Quick start OpenSCADA 141

The result will be an empty frame (Fig.5.2.3), ready to add items to it. To edit or view the the frame you
should in the frame's context menu select the "Visual item edit".

Fig. 5.2.3. The view of the new frame and set attributes for the mnemonic scheme.

Quick start OpenSCADA 142

Now let's add on frame the elements for the value of the analog parameters displaying for our four
signals. To place an element for displaying an analog signal to the mnemonic scheme it is necessary to
select our mnemonic scheme, and then in the window's menu to select the "Widget" -> "Library: Main&"
-> "Analog show" after which the cursor with an image of this element will appear, which should be
moving to the desired location on the mnemonic scheme and then the left mouse button should be pressed.
At the time of adding the dialog asking the name of the new element will appear. We'll add this way the
four elements which we'll call: "A1_Ti", "A1_To", "A2_Ti" and "A2_To". The added elements can be
subsequently positioned as needed by simply selecting and dragging them by the mouse. After such
manipulations, we should get the mnemonic scheme with the view, similar to Fig.5.2.4.

Fig. 5.2.4. The view of the new frame and set attributes for the mnemonic scheme.

This procedure of the creating the mnemonic scheme we'll consider to be finished. Save the new library
of widgets "KM101" and proceed to the stage of the placing our mnemonic scheme in the project's tree of
"Signal groups (template)".

Let's put our mnemonic scheme to the branch of the "Signal groups (template"->"Root page (SO)"-
>"Group 1"->"Mnemos" by selecting in the context menu for the "Mnemos" item the item "Library:
KM101"->"AT 101". The identifier for the new mnemonic scheme let's set to "2" and the name field let's
leave blank. Immediately after adding it is necessary to set the basic property of the mnemonic scheme
"Page:group" to the value "so".

Next you need to make an already familiar to us the operation from the previous chapter, namely the
setting of links to the created in the previous chapter the parameters of controllers. To do this let's open the
dialogue of the properties editing of the mnemonic scheme on the "Links" tab (Fig.5.2.5). On this tab, we'll
see the tree with the elements of "A1_Ti", "A1_To", "A2_Ti" and "A2_To". Unwinding any of the

Quick start OpenSCADA 143

elements, we'll see the "Parameter" branch, in this branch we are to specify or select the address of our
attributes "Ti" and "To", respectively. When filling out the elements the part of the properties must be
specified as constants. For example, necessarily must be specified:

• pName - "val:AT101_1 Ti"

Fig. 5.2.5. The "Links" tab of dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 144

Now we can save our mnemonic scheme and verify what we have. To do this, we'll close the properties
dialog and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme
by the paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.2.6.

Fig. 5.2.6. The created mnemonic scheme with four linked signals.

Quick start OpenSCADA 145

 5.3. Creation of the new complex element

Let's proceed to the objectives of the third level of complexity, namely the creation of an complex
element. Creating of the new complex element, which includes a combination of basic primitives, can be
made in several stages. As an example, let's examine the task, consisting of two stages:

• Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
• Creation the final grouped widget "Cooler" based on the primitive "Elements box".

 5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".

The widget will be created in our previously made library "KM101". To do this we'll make right mouse
button click on this library and select the item "Library: originals"->"Elementary figures", as it is shown in
Figure 5.3.1.1. For a new element let's write the "air_cooler" identifier and the name "Air cooler".

Fig. 5.3.1.1. Adding the widget based on the primitive "Elementary figures" to the "KM101" library.

Quick start OpenSCADA 146

After confirmation, we will have a new widget's object with the name "Air cooler". Select it in the
widget library "KM101" and open for editing via the context menu of the new element. Let us now set in
the "Attributes" tab in the "Geometry" section width and height of the widget to the 200 pixels (Fig.
5.3.1.2).

Fig. 5.3.1.2. Specifying the geometric sizes of the widget.

Now let's draw the visual presentation of the widget. This procedure can be done in two ways described
below:

• To draw the desired image by the mouse, using the "Line", "Arc", "Bezier curve" and "Fill." The
corresponding panel ("Elementary figure tools") appears after entering the edit mode (drawing). To
enter this mode it is possible as shown it is shown in Fig. 5.3.1.3, or by double clicking the left
mouse button on the body of the widget.
• Manually fill in the "Element's list", by entering the list of required elements and coordinates of
points.

Quick start OpenSCADA 147

Fig. 5.3.1.3. Entrance to the mode of drawing the widget, based on the primitive "Elementary figures."

In our example, we'll use the second method. To do this in the "Element's list" of the attributes inspector
let's enter the list below and press "Ctrl" + "Enter".

line:(20|80):(100|20)
line:(100|20):(180|80)
line:(180|80):(100|140)
line:(100|140):(20|80)
line:(100|20):(100|140)
line:(20|80):(180|80)
line:(50|165):(100|140)
line:(100|140):(150|165)
line:(150|165):(50|165)
fill:(20|80):(100|20):(180|80):(100|140)
fill:(50|165):(100|140):(150|165)

All the points in our case are specified in the static form, since it is not provided the dynamics and
change of coordinates in the mode of execution, and all the other parameters are left by default.

Quick start OpenSCADA 148

As a consequence, our widget will take the form shown in Fig. 5.3.1.4.

Fig. 5.3.1.4. The image corresponding to the "Element's list" of the widget.

Quick start OpenSCADA 149

Now let's change the fill color (black, if you do not specify any other (default)) in the tab "Attributes" in
the "Fill" section to "lightgrey" (Figure 5.3.1.5). Color can be set as with # ColorKeywords color names and
in the format #RRGGBB (#RRGGBB-AAA).

Fig. 5.3.1.5. Change the color of the fill.

Quick start OpenSCADA 150

http://www.w3.org/TR/SVG/types.html

Let's create an icon for our widget, which will be visible in the widgets' tree of the library "KM101"
(Figure 5.3.1.6).

Fig. 5.3.1.6. Creating an icon for the widget.

The process of creating the first widget is completed. We'll now turn to the stage of layout and the
creation of the resulting widget.

Quick start OpenSCADA 151

 5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements box"

The resulting widget we'll create in the "KM 101" library. To do this we must click the right mouse
button on the library and select the primitive "Elements box", as it is shown in Figure 5.3.2.1. For a new
element let's specify the identifier "elCooler" and the name of "Cooler".

Fig. 5.3.2.1. Adding the widget based on the primitive "Elements box" to the "KM 101" library.

After confirmation, we'll have the new widget object with the name "Cooler". Select it in the widget
library "KM 101" and open for editing. Let us now set the width and height of the widget in the 250 and
200 pixels respectively in the "Attributes" tab in the "Geometry" section.

Quick start OpenSCADA 152

Let's take the previously created element "Air cooler"(air_cooler) and drag him (clicking on it by the left
mouse button and moving the cursor of the mouse to the body of the widget, then let the button) to the
newly created widget (see Figure 5.3.2.2).

Fig. 5.3.2.2. Drag and Drop of the widget "air_cooler" to the widget-container "elCooler".

Quick start OpenSCADA 153

The dialogue window will appear to enter the ID and name of the new widget. ID and the name can be
set arbitrarily. We will input the "air_cooler" ID and the name we'll leave blank (it will be inherited from
parent - the element "air_cooler"). Thus, the newly-created widget inside the container "elCooler" inherits
the element - "Air cooler" ("air_cooler"). After confirming the entry of ID and name the widget "Air
cooler" ("air_cooler") will be added to our widget container "elCooler" (Figure 5.3.2.3)

Fig. 5.3.2.3. Adding the inherited widget "air_cooler".

Let's set on the attributes panel of the widget in the "Geometry" section the coordinates "x" and the "y"
of upper left corner of the widget to 25 pixels and 0 respectively.

Next, unwind the library "Mnemo elements", find there the "Cooler" element (cooler2) and drag it to the
widget-container. This element will dynamically display the productivity of the air cooler. As the result it
will appear the dialog window for entering the ID and name of the new widget. Enter the ID "cooler2" and
the name again let's leave blank. Thus, the newly-created widget inside the container "elCooler" will inherit
the element of the library "Mnemo elements" - "Cooler" ("cooler2"). After confirming the entry of the ID
and name the widget "Cooler" ("cooler2") will be added to our widget-container "elCooler". If necessary,
raise the widget "cooler2" over the widget "air_cooler" within the widget-container "elCooler" from the
toolbar below. Let's specify in the "Attributes" tab in the "Geometry" section the coordinates "x" and "y" of
the upper left corner of the widget "Cooler" to the 75 and 30 pixels respectively. Change in the inherited
widget "Cooler" alpha channel (transparency) of the fill color. To do this in the "Attributes" tab in the fields
"Color1" and "Color2" we'll change the colors by the adding "-200" to them, where the 200 - the value of
transparency ("0" - fully transparent, while "255" - the fully opaque), as it is shown in Fig. 5.3.2.4.

Quick start OpenSCADA 154

Fig. 5.3.2.4. Change the fill colors transparency in the inherited widget "cooler2".

Quick start OpenSCADA 155

Now let's add to the widget-container "elCooler" two text fields based on the primitive "Text", in order
to display the input and output temperatures of the flow. To do this in the library "KM 101" we'll select the
widget "Cooler" and then click on the visual items toolbar on the icon of the primitive "Text", as it is shown
in Figure 5.3.2.5.

Fig. 5.3.2.5. Adding the new element to the container, based on the primitive "Text."

Quick start OpenSCADA 156

The dialog of the ID and name of the newly created element entering will appear. Enter the ID "Ti" for
the first text field, and the name field we'll leave blank. Let's define the geometric sizes and the coordinates
of the upper-left corner of the widget, as it is shown in Fig. 5.3.2.6

Fig. 5.3.2.6. Specifying the geometry of the widget "Ti".

Quick start OpenSCADA 157

Let's change the size of the font for this element and make it bold (Fig. 5.3.2.7). Note that the modified
field in the inherited widgets are highlighted in blue for easy tracking of changes and their subsequent
"cleaning" (rollback) with right mouse button click on the changed attribute.

Fig. 5.3.2.7. Changing the font size for the widget "Ti".

Quick start OpenSCADA 158

Now we'll change the field "Text" of the "Ti" widget, indicating the presence of the argument "%1" in it,
in which it will be subsequently transferred the real value of the input temperature (Fig. 5.3.2.8).

Fig. 5.3.2.8. Changing the field "Text" and an indication of the argument's presence in it for the widget

"Ti".

Quick start OpenSCADA 159

Next in the list of attributes of the "Ti" widget in the section "Number of arguments" let's enter "1" and
configure the argument (Figure 5.3.2.9). The number "300.25" is entered only the with the purpose of
clarity, in the execution mode it will be changed by the real value of the input temperature.

Fig. 5.3.2.9. The configuration of the argument for the "Ti" widget.

Quick start OpenSCADA 160

Now we'll copy the "Ti" widget in order to create an equivalent widget "To" (output temperature), as it is
shown in Figure 5.3.2.10.

Fig. 5.3.2.10. Copying of the "Ti" widget.

Quick start OpenSCADA 161

Let's paste the widget in the widget-container "Cooler" in the library "KM 101" (Fig. 5.3.2.11). In the
dialog of the ID and the name entering for the newly created widget in the field "ID" we'll write "To", and
the name field we'll leave blank.

Fig. 5.3.2.11. Paste the copied widget to the widget-container "Cooler" of the library "KM 101".

Quick start OpenSCADA 162

Let's change the geometry of the "To" widget, as it is shown in Fig. 5.3.2.12.

Fig. 5.3.2.12. Changing the geometry of the "To" widget.

Quick start OpenSCADA 163

Now let's add the widget based on the primitive "Form's elements", which will be used as the ComboBox
to select the productivity values of the cooler. The identifier will be "cw", and the "Name" field we'll leave
blank. (Figure 5.3.2.13)

Fig. 5.3.2.13. Adding the widget based on the primitive "Form's elements".

Quick start OpenSCADA 164

Let's set the parameters of the "Geometry" section of the "Attributes" tab for the newly added widget:
coordinates "x", "y" of the upper left corner, width and height of 60, 158, 60 and 40, respectively. Let's
change the "Elemetnt type" to the Combo Box, as it is shown in Fig. 5.3.2.14

Fig. 5.3.2.14. Change the "Geometry" and "Element type" for the newly created widget.

Quick start OpenSCADA 165

Let's fill the fields: "Value", "Items" and "Font", as it is shown in Fig. 5.3.2.15. In addition, it is
important to raise the combobox above all elements and make it active. To activate the combo box widget,
you need to set the appropriate property for it.

Fig. 5.3.2.15. Filling the parameters of the "cw" ComboBox.

Quick start OpenSCADA 166

To display the cooler productivity dimensions we'll add the widget on the basis of the "Text" primitive.
Let's make the same procedure as for the "Ti" widget. The identifier of the newly created widget will be
"dimension", the geometry: coordinates of the upper-left corner "x", "y" will be set to the 125 and 168,
respectively, while width and height - at 60 and 20, respectively. Let's change the font size to "14 bold", and
in the field "Text" let's type "rpm", that will be our dimension (Fig. 5.3.2.16).

Fig. 5.3.2.16. Adding the "dimension" widget, based on the primitive "Text" and changing of its settings.

Quick start OpenSCADA 167

To add the processing logics for the widget "Cooler" (elCooler) we'll open the dialog of the properties
editing of the visual element and select the "Process" tab. On this tab we can see the tree of widget's
attributes and the field for the program code for the attributes' processing. To solve our task, we must add
three attributes: Ti, To, Cw (Fig. 5.3.2.17). To add an attribute you should unwind the root element ".",
select any element inside the root one and click "Add attribute" button below.

Fig. 5.3.2.17. Adding the three attributes for the element "elCooler" of the library "KM 101".

Quick start OpenSCADA 168

Further we'll enable the processing of "value" attribute of combo box "cw", as it is shown in Fig.
5.3.2.18. Similarly, enable the processing of the "arg0val" attribute for Ti and To, as well as the "speed"
attribute of the "cooler2" element.

Fig. 5.3.2.18. The enabling of the processing of the "value" attribute of the combo box "cw".

At the end let's set the user programming language for the program to the "JavaLikeCalc.JavaScript" and
write the program to process this widget:

Ti_arg0val = Ti;
To_arg0val = To;

ev_wrk=ev_rez="";
off=0;
while(true)
{

ev_wrk=Special.FLibSYS.strParse(event,0,"\n",off);
if(ev_wrk == "") break;
if(ev_wrk == "ws_CombChange:/cw") Cw = cw_value;
else ev_rez += ev_wrk+"\n";

}
cw_value = Cw;
cooler2_speed = Cw/5;

Quick start OpenSCADA 169

The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library will have the
form shown in Fig. 5.3.2.19.

Fig. 5.3.2.19. The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library.

Let's close the dialogue of the properties of visual element editing, create an icon on the basis of our
element, close the inner editing window and save it all.

The development of the complex element is finished.

Quick start OpenSCADA 170

 5.3.3. Adding the complex element to the mnemonic scheme

To test the operability and evaluate the results of our efforts let's add the created widget to the mnemonic
scheme, developed in chapter 5.2. We'll repeat this operation for two coolers "AT101_1" and "AT101_2".

To do this we'll open the frame of mnemonic scheme "AT 101" for editing. Then grab by the "mouse"
our complex element and drag to mnemonic scheme, where we drop it in the desired position. In the dialog
we'll enter the identifiers "AT101_1" and "AT101_2" respectively. The field "Name" is blank. Added
element we'll place the way we desire. After such manipulations, we should get the mnemonic scheme with
the view, similar to Fig.5.3.3.1.

Fig. 5.3.3.1. The view of the mnemonic scheme with complex elements.

Quick start OpenSCADA 171

Let's save the new mnemonic scheme and close its window. Then move on to the project and open this
mnemonic scheme in the project's tree "Signal groups (template)"->"Root page (SO)"->"Group 1"-
>"Mnemos"->"AT 101". As you can see, our new elements are appeared here automatically. And we only
need to connect the links to the new elements. To do this we'll open the dialog of editing the properties of
the mnemonic scheme on the "Links" tab (Fig.5.3.3.2). On this tab, we can see the tree with the elements of
"AT101_1" and "AT101_2". Unwinding any of the elements, we'll see the "Parameter" branch just with the
"Ti", "To" and "Cw" attributes, thus we can simply specify the address of the parameter
"prm:/LogicLev/KM101/AT101_1" in the "Parameter" field and attributes will be placed automatically.

Fig. 5.3.3.2. The "Links" tab of the dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 172

Let's save our mnemonic scheme and verify what we have. To do this, close the dialog of the properties
and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme with the
help of paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.3.3.3.

Fig. 5.3.3.3. The resulting mnemonic scheme.

On this mnemonic scheme through our complex elements we can not only observe but also to control the
productivity of coolers, simply by changing the value in the combo box. Changing the productivity, we can
see the changes in temperature. History of changes we can see on the created in the chapter 5.1 the group of
graphs.

 6. Recipes
This section is intended to provide the descriptions of recipes for solving the common problems and

tasks of the user. Recipes to be placed in this section may be offered by the users.

Conclusion
This document describes in detail the basic process of creating the user interface elements, with

preparation and configuration of the data source. In general, you can quickly get an idea of the work with
the OpenSCADA system, and purposefully look for solutions of associated problems.

Quick start OpenSCADA 173

Module of subsystem “Archives”<FSArch>
Module: FSArch
Name: Arhivator on the file system
Type: Archive
Source: arh_FSArch.so
Version: 1.4.1
Author: Roman Savochenko

Description: Archive module. Provides archiving functions for messages and values on the file
system.

License: GPL

The module is designed for archiving messages and values of OpenSCADA on the file system.

Any SCADA system provides the ability to archive the collected data, i.e. formation of history of the
changes (dynamics) of processes. Archives conditionally can be divided into two types: archives of
messages and archives of values.

A feature of the archives of messages is that so-called events are archived. The characteristic feature of
the events is its time of occurrence. The archives of messages are usually used for archiving, messages in
the system, i.e. conducting of logs and reports. Depending on the source the messages can be classified
according to different criteria. For example, this may be the reports of emergency situations, the reports of
actions of the operators, reports of the glitches of connection and others.

A feature of the archives of values is their frequency, measured in the time lag between two adjacent
values. Archives of values are used for archiving the history of continuous processes. As the process is
continuous, it can only be archived by introducing the notion of quantization of time interviewing, because
otherwise we get the archives of infinite dimensions in view of continuity of the nature of the process. In
addition, practically, we can get value from the time limited by the data sources. For example, a fairly high-
quality data sources in the industry, are rarely allowed to receive data at a frequency of more than 1kHz.
And this is without taking into account of the sensors themselves, which have even less qualitative
characteristics.

For conducting of archives in the system OpenSCADA the subsystem «Archives» is provided. This
subsystem, according to the types of archives, consists of two parts: an archives of messages and archives
of values. The subsystem, in general, is a module that allows you to create archives based on the different
nature and methods of storing of data. This module provides a mechanism for the archiving on the file
system for both: for the flow of messages, and for the flow of values.

 1. Message Archiver
Archives of messages are formed by archiver. There can be the set of archivers, with individual settings,

allowing to share archiving of different classes of messages.

The archiver of messages of this module allows you to store data in XML files or in the flat-text format.
Markup language XML is a standard format that is easily understood by a lot of exterior applications.
However, opening and reviewing of the files in this format requires considerable resources. On the other
hand, the flat-text format requires far fewer resources, although not uniform, but also requires knowledge of
its structure to deal with.

In any case, both formats are supported and the user can select any of them in accordance with his
requirements.

Files of the archive are named by archivers based on the date of the first messages in the archive. For
example so: <2006–06–21 17:11:04. Msg>.

Module of subsystem “Archives”<FSArch> 174

Files of the archive can be limited in size and time. After exceeding the limit a new file is created.
Maximum number of files in a directory of the archiver can also be restricted. After exceeding the limit on
the number of files old files will be deleted!

In order to optimize the use of disk space archivers support package of old archives by gzip packer.
Packaging is made after a long non-use of the archive.

When you are using the archives in the form of XML, appropriate files are loaded entirely! For a long
time unused archives unloading timeout of access to the archive is used, after the exceeding of which the
archive is unloaded from memory and then is packaged.

Module provides additional settings for the archiving process (Fig. 1).

Fig.1. Additional settings of an archiving process of messages by module FSArch.

Module of subsystem “Archives”<FSArch> 175

Those parameters include:
• Selecting of XML-format archive files.
• The maximum size of a single archive file.
• The maximum number of archived files.
• Limiting the size of the archive over time.
• Timeout of package of archive files.
• The frequency of inspection of files by archiver to search for new archives and deleting the old
ones.
• The info-files using for packed archive files.
• The command of immediately verification of directory of archiver. It can be used with the
placement in the directory of archiver of files of archives from other stations.

Module of subsystem “Archives”<FSArch> 176

 1.1. File format of archive messages

The table below shows the syntax of the archive file based on the XML-language:

Tag Description Attributes Contains

FSArch
The root element.
Identifies the file as
belonging to the module.

Version — version of the archive file;
Begin — the start time for the archive (hex – UTC in
seconds from 01/01/1970);
End — the end time for the archive (hex – UTC in
seconds from 01/01/1970).

(m)

m
Tag of the single
message.

tm — time of creation of the message (hex – UTC in
seconds from 01/01/1970);
tmu — microseconds of message's time;
lv — message level
cat — category of message.

Text of
message

Archive file on the basis of the flat text consists of:
• header in the format: [FSArch <vers> <charset> <beg_tm> <end_tm>]

Where:
• <vers> — version of the archiving module;
• <charset> — code page of the file (usually UTF8);
• <beg_tm> — UTC start time for the archive from 01.01.1970, in hexadecimal form;
• <end_tm> — UTC end time for the archive 01.01.1970, in hexadecimal form.

• records of the messages in the format: [<tm> <lev> <cat> <mess>]
Where:

• <tm> — message time in format <utc_sec:usec>, where:
• utc_sec — UTC time from 01.01.1970, in hexadecimal form;
• usec — microseconds of time, in decimal form.

• <lev> — the level of importance of the message;
• <cat> — category of the message;
• <mess> — text of the message.

Text of the message and its category are coded to exclude separator symbols (space character).

Module of subsystem “Archives”<FSArch> 177

 1.2. Example of the archive of messages file

Example of the contents of an archive file in format of the XML language:

<?xml version='1.0' encoding='UTF-8' ?>
<FSArch Version="1.3.0" Begin="4a27dfbc" End="4a28c990">
<m tm="4a28cd01" tmu="942937" lv="4"

cat="/DemoStation/sub_DAQ/mod_DiamondBoards/">dscInit error.</m>
<m tm="4a28cd12" tmu="466631" lv="4"

cat="/DemoStation/sub_Transport/mod_Sockets/out_HDDTemp/">Connect to Internet
socket error: Operation now in progress!</m>

</FSArch>

Example of the contents of the archive file in the format of flat text:

FSArch 1.3.0 UTF-8 4a27dfbb 4a28cd12
4a28cd11:295857 1 /DemoStation/ Start!
4a28cd11:296091 1 /DemoStation/sub_Transport/ Start%20subsystem.
4a28cd11:304391 1 /DemoStation/sub_DAQ/mod_DAQGate/cntr_test/ Enable%20controller!
4a28cd11:306362 1 /DemoStation/sub_DAQ/mod_ModBus/cntr_testTCP/ Enable%20controller!
4a28cd11:310956 1 /DemoStation/sub_DAQ/mod_ModBus/cntr_testRTU/ Enable%20controller!
4a28cd11:313845 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node/ Enable

%20controller!
4a28cd11:531765 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102cntr/ Enable

%20controller!
4a28cd11:557546 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node_cntr/ Enable

%20controller!
4a28cd11:616320 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM101/ Enable%20controller!
4a28cd11:770404 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102/ Enable%20controller!
4a28cd11:935745 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM201/ Enable%20controller!
4a28cd12:64148 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_КМ202/ Enable%20controller!

4a28cd12:212514 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM301/ Enable
%20controller!

4a28cd12:331423 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM302/ Enable%20controller!
4a28cd12:462627 1 /DemoStation/sub_DAQ/mod_System/cntr_AutoDA/ Enable%20controller!
4a28cd12:466631 4 /DemoStation/sub_Transport/mod_Sockets/out_HDDTemp/ Connect%20to

%20Internet%20socket%20error:%20Operation%20now%20in%20progress!
4a28cd12:499705 1 /DemoStation/sub_DAQ/mod_SoundCard/cntr_test/ Enable%20controller!
4a28cd12:502482 1 /DemoStation/sub_DAQ/mod_LogicLev/cntr_experiment/ Enable

%20controller!
4a28cd12:620560 1 /DemoStation/sub_DAQ/mod_JavaLikeCalc/cntr_testCalc/ Enable

%20controller!
4a28cd12:624907 1 /DemoStation/sub_DAQ/mod_Siemens/cntr_test/ Enable%20controller!
4a28cd12:644620 1 /DemoStation/sub_DAQ/mod_DAQGate/cntr_test/ Enable%20controller!
4a28cd12:665980 1 /DemoStation/sub_Archive/ Start%20subsystem.
4a28cd12:843813 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node/ Start

%20controller!
4a28cd12:845059 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102cntr/ Start

%20controller!
4a28cd12:845555 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node_cntr/ Start

%20controller!
4a28cd12:845983 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM101/ Start%20controller!
4a28cd12:846778 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102/ Start%20controller!
4a28cd12:847440 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM201/ Start%20controller!
4a28cd12:849979 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_КМ202/ Start%20controller!
4a28cd12:850851 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM301/ Start%20controller!
4a28cd12:851417 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM302/ Start%20controller!
4a28cd12:852073 1 /DemoStation/sub_DAQ/mod_System/cntr_AutoDA/ Start%20controller!
4a28cd12:854718 1 /DemoStation/sub_DAQ/mod_LogicLev/cntr_experiment/ Start

%20controller!
4a28cd12:889380 1 /DemoStation/sub_Archive/ Start%20subsystem.
4a28cd12:909319 1 /DemoStation/sub_UI/mod_VCAEngine/ Start%20module.

Module of subsystem “Archives”<FSArch> 178

 2. Values Archiver
Archives of values are formed particularly by archivers of the values for each registered archive. There

cen be a lot of archivers with individual settings that allow to divide the archives by various parameters,
such as the accuracy and depth.

Archive of values is an independent component, which includes buffer processed by archivers. The main
parameter of archive of value is a source of data. As a source of data may make the attributes of the
parameters of subsystem “Data acquisition”, as well as other external data sources (passive mode). Other
sources of data could be: network archivers of remote OpenSCADA systems, environment of programming
of systems OpenSCADA etc. No less important parameters are the parameters of the archive buffer. From
the parameters of the buffer the opportunity of working of archivers depends on. Thus, the frequency of
values in the buffer should be no more than the frequency of the fastest archiver, a buffer size not less than
double the amount for the slowest archiver. Otherwise, the possible loss of data!

The overall scheme of archival of values vividly depicted in Fig. 2.

Fig.2. The overall scheme of process of archival values of module FSArch.

Files of archives are named by archivers based on the date of the first value in the archive and archive
identifier. For example in this way: <MemInfo_use 2006–06–17 17:32:56.val>.

Files of archives can be limited in time. After exceeding the limit the new file is created. Maximum
number of files in a directory of archiver also may be limited. After exceeding the limit on the number of
files old files will be deleted!

In order to optimize the use of disk space archivers support package of old archives by gzip packer.
Packaging is made after a long non-use of the archive. For fast archives connection allow to other systems
you can enable info-files using for packed files, that prevent all files forward unpackaging at other system.

Module of subsystem “Archives”<FSArch> 179

Module provides additional settings for the archiving process (Fig. 3).

Fig.3. Additional settings of an archiving process of values by module FSArch.

Module of subsystem “Archives”<FSArch> 180

 2.1. File format of archive values

To implement the archiving to the file system the following requirements are to be done:
• quick (easy) access to add to the archive and reading from the archive;
• the possibility of changing the values of the existing archive (to fill holes in duplicate systems);
• cycle (size restrictions);
• the possibility of the compression by the method of packaging the same values sequence that
preserves the possibility of quick access (consistent packaging);
• the possibility of packaging obsolete data by standard archivers (gzip, bzip2 ...), with the
possibility of extracting on access.

In accordance with the above requirements archiving is organized by method of plurality of files (for
each source). Cyclical of archive sold at the file level, ie a new file is created, and the oldest one is
removed. For fast compression the method of tightening to the last equal value is used. For this purpose, the
bit archiving table is provided with the size of one to one with the number of stored data. Ie each bit
corresponds to the single value in the archive. The presence of bit indicates the presence of value. For the
thread of the same values bits reduced to zero. In the case of the string archive the table is not a bit but the
byte one and contains the length of the appropriate value. In the case of reception of the thread of equal
values, the length will be zero and the first same value will be read. As the table is bite one, the archive will
be able to keep strings with the length more than 255 characters. Thus, the methods of storage can be
divided into a method of fixed and not fixed data size. The overall structure of the archive is shown in Fig.
4.

Fig. 4. The overall structure of the value archive.

When you create a new archive file there is formed: the title (the structure of the title is in the table 1),
zero bit table of package of the archive and the first false value. Thus, the archive will be initialized with
false values. In the future, the new values will be inserted in the area of values with adjustment of index
table of packaging. It follows that the passive archives will dwindle in the files with the size of the title and
the bit table.

Table 1. The structure of the header of archive file
Field Description Size in bite(bit)

f_tp System name of the archive («OpenSCADA Val Arch.») 20
archive Name of the archive to which the file belongs. 20
beg Start time of the archive data (мкс) 8
end End time of the archive data (мкс) 8

Module of subsystem “Archives”<FSArch> 181

Field Description Size in bite(bit)
period Periodicity of the archive (мкс) 8
vtp Type of value in the archive (Boolean, Integer, Real, String) (3)
hgrid Сriterion of using of hard grid in the buffer of the archive (1)

hres Сriterion of using of time of high resolution (mcs) in the buffer of the
archive

(1)

reserve Reserve 14
term The symbol of the end of the header of file (0x55) 1

Explaining of the mechanism of consistent packaging is given in Fig. 5. As can be seen from the figure a
sign of the package contains a length (not fixed types) or a sign of the package (fixed types) of the
separately taken value. This means that to obtain the desired value of displacement it is necessary to sum up
the length of previous valid values. The implementation of this operation each time and for each value is
highly invoice operation. Therefore, the mechanism of caching of displacement of the values is provided.
The mechanism caches displacement of values through predefined their quantity, as well as cashes the last
value for which the access is made (separately for reading and writing).

Fig. 5. The mechanism of follow packaging of values.

Changes of the values in the existing archive is also provided. However, given the necessity to
implement the shifting of the tail of the archive, it is recommended to perform this operation as sparingly as
possible and with as far as possible large blocks.

Module of subsystem “Archives”<FSArch> 182

 3. Efficiency
In the design and implementation of the module it was built mechanisms improving the process of

archiving.

The first mechanism is a mechanism of block (frame-accurate or transactive) location of data in the files
of the archives of values. Such an arrangement allows to achieve a maximum speed of archiving, and thus
allows to archive more data streams at the same time. The experience of the practical using showed that the
system of K8–3000 with a regular IDE hard drive is able to archive to 300000 data streams at a frequency
of 1 second, or K5–400 system with the IDE drive (2.5”) can archive to 100 parameters with 1 millisecond
intervals.

The second mechanism is the package of current values, and outdated files of archives to optimize the
use of disk space. There are two packaging mechanisms: the consistent package (archives of values), and a
mechanism of finish packaging of archives by means of standard packer (gzip). This approach allowed to
achieve high productivity in the process of archiving of current data with the effective mechanism of
consistent compression. And finish packaging by means of standard packer of obsolete archives completes
the overall picture of the compact storage of large volumes of data. Statistics of practical using, in real noise
signal (the worst situation), showed that the extent of consistent packaging is 10%, and the extent of the full
packaging was 71%.

Module of subsystem “Archives”<FSArch> 183

Module of subsystem “Archives” <DBArch>
Module: DBArch
Name: Arhivator on the DB
Type: Archive
Source: arh_DBArch.so
Version: 0.9.2
Author: Roman Savochenko

Description: Archive module. Provides archiving functions for messages and values on the
DB.

License: GPL

The module is designed for archiving messages and values of OpenSCADA to a database maintained by
OpenSCADA.

Any SCADA system provides the ability to archive the collected data, i.e. formation of history of the
changes (dynamics) of processes. Archives conditionally can be divided into two types: archives of
messages and archives of values.

A feature of the archives of messages is that so-called events are archived. The characteristic feature of
the events is its time of occurrence. The archives of messages are usually used for archiving, messages in
the system, i.e. conducting of logs and reports. Depending on the source the messages can be classified
according to different criteria. For example, this may be the reports of emergency situations, the reports of
actions of the operators, reports of the glitches of connection and others.

A feature of the archives of values is their frequency, measured in the time lag between two adjacent
values. Archives of values are used for archiving the history of continuous processes. As the process is
continuous, it can only be archived by introducing the notion of quantization of time interviewing, because
otherwise we get the archives of infinite dimensions in view of continuity of the nature of the process. In
addition, practically, we can get value from the time limited by the data sources. For example, a fairly high-
quality data sources in the industry, are rarely allowed to receive data at a frequency of more than 1kHz.
And this is without taking into account of the sensors themselves, which have even less qualitative
characteristics.

For conducting of archives in the system OpenSCADA the subsystem «Archives» is provided. This
subsystem, according to the types of archives, consists of two parts: an archives of messages and archives
of values. The subsystem, in general, is a module that allows you to create archives based on the different
nature and methods of storing of data. This module provides a mechanism for the archiving on the file
system for both: for the flow of messages, and for the flow of values.

 1. Message Archiver
Archives of messages are formed by archiver. There can be the set of archivers, with individual settings,

allowing to share archiving of different classes of messages.

The archiver of messages of this module stores data in a database table, which is named by the following
way: DBAMsg_{ArchID}. Where:

• ArchID — archiver identifier.

The size of the table of archive may be limited in time. After exceeding the limit the old records will be
deleted!

Module provides additional settings for the archiving process. This module has only one such parameter
and it etermines the size of the archive over time.

Table of the database archiver has the following structure: {TM, TMU, CATEG, MESS, LEV}. Where:

Module of subsystem “Archives” <DBArch> 184

• TM — UTC time of the message, seconds from (01.01.1970). In the DB, containing a specialized
type of storage date and time, can be used this specialized type.
• TMU — microseconds of time
• CATEG — message category.
• MESS — text of the message.
• LEV — level of the message.

 2. Values Archiver
Archives of values are formed particularly by archivers of the values for each registered archive. There

cen be a lot of archivers with individual settings that allow to divide the archives by various parameters,
such as the accuracy and depth.

Archive of values is an independent component, which includes buffer processed by archivers. The main
parameter of archive of value is a source of data. As a source of data may make the attributes of the
parameters of subsystem “Data acquisition”, as well as other external data sources (passive mode). Other
sources of data could be: network archivers of remote OpenSCADA systems, environment of programming
of systems OpenSCADA etc. No less important parameters are the parameters of the archive buffer. From
the parameters of the buffer the opportunity of working of archivers depends on. Thus, the frequency of
values in the buffer should be no more than the frequency of the fastest archiver, a buffer size not less than
double the amount for the slowest archiver. Otherwise, the possible loss of data!

The overall scheme of archival of values vividly depicted in Fig. 1.

Fig.1. The overall scheme of the process of archiving by module DBArch.

Archive of this module stores data in a database table, which is called by the following way:
DBAVl_{ArchID}_{ArchiveID}. Where:

• ArchID — identifier of the archiver of values.
• ArchiveID — identifier of the archive.

The size of the table of archive may be limited in time. After exceeding the limit the old records will be
deleted!

Module provides additional settings for the archiving process. This module has only one such parameter
and it determines the size of the archive over time.

Module of subsystem “Archives” <DBArch> 185

Table of database archiver of values is as follows: {TM, TMU, VAL). Where:
• TM — UTC time of the value, the second from (01.01.1970). In the databases, containing a
specialized type of storage date and time, it can be used this type of specialization.
• TMU — Time value in microseconds.
• VAL — The value, type of value is determined by the type of the column.

 3. Informational table of the archival tables
To store the beginning, end and other information of archives in archival tables the informational table

with the name of the module is created: «DBArch". This table has the structure: {TBL, BEGIN, END,
PRM1, PRM2, PRM3). Where:

• TBL — Name of the table of the archive.
• BEGIN — Beginning of data in the archive.
• END — End of data in the archive.
• PRM1 — Optional parameter 1.
• PRM2 — Optional parameter 2.
• PRM3 — Optional parameter 3.

Module of subsystem “Archives” <DBArch> 186

Module of the subsystem “DB” <DBF>
Module: DBF
Nmae: DB DBF
Type: DB
Source: bd_DBF.so
Version: 2.0.2
Author: Savochenko Roman

Description: DB module. It provides the support of *.dbf files, version
3.0.

License: GPL

The module is designed to provide in the system OpenSCADA support of the type of database
files *.dbf. The module is based on the library for work with dbf files for “Complex2" firm
“DIYA” Ltd. The module allows you to perform operations on databases, tables and contents of
tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of

creating a new database when you open and delete existing at the close. In terms of the subsystem
“DB” of system OpenSCADA opening of DB is its registration for further using of it in the system.

Under the DB, in the case of the dbf-files it is meant the directory containing the dbf-files.
Therefore, operation of the creating and deleting of the database – creates and deletes the directory
where the table (dbf-files) are stored. The role of the address of database plays the full name of the
directory with dbf-files. Access to the database is defined by the system rights of access to the
directory.

The module supports coding of data in the correct code page. To this purpose, for the database as
a whole, you can specify a working code page. During the work it will be carried out data coding,
database coding, from the DB code page to the system code page of OpenSCADA and backwards.

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table

when you open and deleting the existing one at the closing are supported.

Actually dbf-file is the table. Creation and deletion of tables implys creation and deletion of dbf-
file. Table name is the name of dbf-file in the directory of DB. Access to the table are define by the
rights of access to dbf-file.

 3. Operations over the contents of the table
• Scanning of the records of the table;
• Request the values of these records;
• Setting the values of these records;
• Removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s)
fields. Thus, the operation of request of the record implys the preset of key columns of the object
TConfig, which will fulfill the request. Creating a new record(string) is the installation of the values

of record, which does not exist.

The module allows you to dynamically change the structure of the database tables DBF. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
reduced to the the required structure of record. In the case of the request of the value of the record, and
mismatching of the structures of record and the table there will be available only to the values of common
elements of the record and table. The module does not track the order of the elements in the record and in
the structure of the table!

While access to the values of the tables the synchronization is used by through the capture of the
resource to have access to the table. This avoids the destruction of data in the case of multi-access!

The types of the elements of dbf-file that correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of system OpenSCADA Type of field of dbf-file
TFld::String “C”
TFld::Integer, TFld::Real “N”
TFld::Boolean “L”

 4. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8–3000+,256M,120G
Creation of the 1000 records (sek): 1.07
Updating of the 1000 records (sek): 1.6
Getting of the 1000 records (sek): 1.0
Deleting of the 1000 record (sek): 0.95

Module of the subsystem “DB” <DBF> 188

Module of the subsystem “DB” <MySQL>
Module: MySQL
Name: DB MySQL
Type: DB
Source: bd_MySQL.so
Version: 1.6.2
Author: Savochenko Roman
Description: DB module. It provides the support for DB MySQL.
License: GPL

Module <MySQL> gives to the system OpenSCADA support of DB MySQL. MySQL database
is a powerful multi-platform database available for free license. Manufacturer of MySQL database
is the company MySQL AB http://www.mysql.com. The module is based on the library with API of
the manufacturer of DB MySQL. The module allows you to perform operations over databases,
tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of

creating a new database when you open and delete existing at the close. In terms of the subsystem
“DB” of system OpenSCADA opening of DB is its registration for further using of it in the system.
It also supported the operation of requesting the list of tables in the database.

DB MySQL address by string of following type: [<host>; <user>; <pass>; <bd>; <port>;
<u_sock>;<names>]. Where:

• host — the name of the host on which the database server MySQL works;
• user — the name of the user of database;
• pass — user password to access the database;
• bd — the name of the database;
• port — port to listen to by the database server (default is 3306);
• u_sock — the name of UNIX-socket in the case of local access to the database
(/var/lib/mysql/mysql.sock).
• names — MySQL SET NAMES charset.

In the case of local access to the database in the same host, you must use the UNIX socket. For
example: [;roman; 123456; OpenSCADA;;/var/lib/mysql/ mysql.sock]

In the case of remote access to the database you must use the host name and port of the server of
the database. For example: [server.nm.org;roman;123456;OpenSCADA;3306]

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table

when you open and deleting the existing one at the closing, and also the operation of the requesting
of the table's structure are supported.

http://www.mysql.com/

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables MySQL. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is realised support multilanguage text variables. For fields with multilanguage text variable
create the column of separated language in format <lang>#<FldID> (en#NAME). In this time the base
column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB MySQL correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the
system OpenSCADA Types of fields of DB MySQL

TFld::String char (n), text, mediumtext
TFld::Integer int (n), DATETIME [for fields with a flag TFld::DateTimeDec]
TFld::Real double(n, m)
TFld::Boolean tinyint(1)

 4. Access rights
MySQL database provides a powerful mechanism for the separation of access, which is to selectively

identify the access for user of the database to specific SQL-commands. The following table lists the
operation over the database and the required access to the commands of these operations.

Operation SQL-commands
Creation of the database and tables CREATE
Deleting of the database and tables DROP
Adding of records INSERT
Deleting the values of records DELETE
Getting the values of records SELECT
Setting the values of records UPDATE
Manipulation with the structure of the table ALTER

Module of the subsystem “DB” <MySQL> 190

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation
K8–3000+, 384M, 120G, MySQL

5.0.51 (local) MySQL 4.0.24 (remote)

Creation of the 1000 records (sec.): 0.67 0.99
Updating of the 1000 records (sec.): 0.67 1.33
Getting of the 1000 records (sec.): 0.38 0.49
Deleting of the 1000 record (sec.): 0.23 0.34

Module of the subsystem “DB” <MySQL> 191

Module of the subsystem “DB” <SQLite>
Module: SQLite
Name: DB SQLite
Type: DB
Source: bd_SQLite.so
Version: 1.6.2
Aurhor: Savochenko Roman
Description: DB module. It provides the support for DB SQLite.
License: GPL

Module <SQLite> gives to the system OpenSCADA support of DB SQLite. DB SQLite is a small,
embedded database which supports the SQL-queries. SQLite DB is distributed under a free license. To
familiarize with the database it is possible on the website of the database – http://sqlite.org. The module is
based on the library with API of the manufacturer of DB SQLite. The module allows you to perform
operations over databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of creating a new

database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

SQLite database is addressed by specifying the name of the database file in the following format:
[<FileDBPath>]. Where:

• FileDBPath - full path to DB file (./oscada/Main.db).
Use empty path for a private, temporary on-disk database create.
Use ":memory:" for a private, temporary in-memory database create.

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables SQLite. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be

Module of the subsystem “DB” <SQLite> 192

http://sqlite.org/

set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is realised support multilanguage text variables. For fields with multilanguage text variable
create the column of separated language in format <lang>#<FldID> (en#NAME). In this time the base
column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB SQLite correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the system OpenSCADA Types of fields of database SQLite
TFld::String TEXT
TFld::Integer, TFld::Boolean INTEGER
TFld::Real DOUBLE

 4. Access rights
Access rights to the database are defined by the rights of access to the separately taken file of the

database. Module supports the work with SQLite database files in read-only mode, such as demonstrations.

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8–3000+, 256M, 120G, SQLite 3.4.2
Creation of the 1000 records (sec.): 0.45
Updating of the 1000 records (sec.): 0.50
Getting of the 1000 records (sec.): 0.2
Deleting of the 1000 record (sec.): 0.2

Module of the subsystem “DB” <SQLite> 193

Module of the subsystem “DB” <FireBird>
Module: FireBird
Name: DB FireBird
Type: DB
Source: bd_FireBird.so
Version: 0.9.5
Author: Savochenko Roman
Description: DB module. It provides the support for DB FireBird.
License: GPL

Module <FireBird> gives the system OpenSCADA support of DB FireBird and InterBase. DB FireBird
is a small, embedded database, with the functions of a network database that supports SQL-queries. DB
FireBird is built on a commercial DBMS Interbase and distributed under a free license. To familiarize with
the database it is possible on the website of the database – http://www.firebirdsql.org. The module is based
on the library with API of the manufacturer of DB. The module allows you to perform operations over
databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of creating a new

database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

DB FireBird is addressed by specifying the database file name, username and password. In general, the
address database is written in this way: [<file>;<user>;<pass>]. Where:

• file – the full name of the database file;
• user – user of the database on behalf of which the access is made;
• pass – password for the user on behalf of which the access is made;

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables FireBird. Thus, in the

Module of the subsystem “DB” <FireBird> 194

http://www.firebirdsql.org/

event of a discrepancy of the table and the structure determined by record, the structure of the table will be
set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is realised support multilanguage text variables. For fields with multilanguage text variable
create the column of separated language in format <lang>#<FldID> (en#NAME). In this time the base
column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB FireBird correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the system OpenSCADA Types of fields of database FireBird
TFld::String VARCHAR, BLOB SUBTYPE TEXT
TFld::Integer INTEGER
TFld::Real DOUBLE
TFld::Boolean SMALLINT

 4. Access rights
Access rights to the database are defined by the rights of DB.

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8–3000+, 256M, 120G, FireBird
2.0.3 (Local SuperServer)

FireBird 2.0.3 (Remote
SuperServer)

Creation of the 1000 records (sec.): 1.23 2.76
Updating of the 1000 records (sec.): 4.43 6.92
Getting of the 1000 records (sec.): 2.31 4
Deleting of the 1000 record (sec.): 1.01 2.39

Module of the subsystem “DB” <FireBird> 195

Module of the subsystem “DB” <PostgreSQL>
Module: PostgreSQL
Name: DB PostgreSQL
Type: DB
Source: bd_PostgreSQL.so
Version: 0.9.0
Author: Maxim Lysenko
Translated: Maxim Lysenko
Description: DB module. It provides the support for DB PostgreSQL.
License: GPL

Module <PostgreSQL> gives to the system OpenSCADA support of DB PostgreSQL. PostgreSQL
database is a powerful multi-platform database available for free license. Manufacturer of PostgreSQL
database is the PostgreSQL Global Development Group www.postgresql.org. The module is based on the
library with API of the manufacturer of DB PostgreSQL. The module allows you to perform operations
over databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database are supported, with the possibility of creating a

new database when you try to open one and delete the existing at the close. In terms of the subsystem "DB"
of system OpenSCADA opening of DB is its registration for further using of it in the system. It also
supported the operation of requesting the list of tables in the database.

DB PostgreSQL address by string of following type:
[<host>;<hostaddr>;<user>;<pass>;<bd>;<port>;<connect_timeout>]. Where:

• host - the name of host to connect to. If this begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored.
• hostaddr - Numeric IP address of host to connect to. This should be in the standard IPv4 address
format, e.g., 172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP
communication is always used when a nonempty string is specified for this parameter.
• user - the name of the user of database;
• pass - user password to access the database;
• bd - the name of the database;
• port - port to listen to by the database server (default is 5432);
• connect_timeout - maximum wait for connection, in seconds. Zero or not specified means wait
indefinitely. It is not recommended to use a timeout of less than 2 seconds.

In the case of local access to the database in the same host the address string should be as follows:
[;roman;123456;OpenSCADA;;10]

In the case of remote access to the database you must use the address and port of the server of the
database. For example:[server.nm.org;192.168.2.1;roman;123456;OpenSCADA;;10]

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

Module of the subsystem “DB” <PostgreSQL> 196

http://www.postgresql.org/

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the PostgreSQL database tables. Thus, in
the event of a discrepancy of the table and the structure determined by record, the structure of the table will
be set to the required structure of record. In the case of the request of the value of the record, and
mismatching of the structures of record and the table there will be available only to the values of common
elements of the record and table. The module does not track the order of the elements in the record and in
the structure of the table!

The module provides the support of multilanguage text variables. For fields with multilanguage text
variables the columns of the appropriate language are created in format <lang>#<FldID> (en#NAME). In
this time the base column contain value for base language. The columns of other languages are created by
needs, at the time of saving to DB and execution OpenSCADA with appropriate language. In the case of the
value's absence for the language it will be used the values for basic language.

The types of the elements of DB PostgreSQL correspond to types of elements of system OpenSCADA in
the following way:

The types of fields of the
system OpenSCADA

Types of fields of DB PostgreSQL

TFld::String character(n), character varying(n), text

TFld::Integer integer, bigint, timestamp with time zone [for the fields with the flag
TFld::DateTimeDec]

TFld::Real double precision
TFld::Boolean smallint

 4. Access rights
PostgreSQL database contains some mechanism of separation of access, which is to specify the user

privileges for database. The table below lists the necessary privileges for the work in the OpenSCADA.

Operation SQL-commands
Creation of the DB CREATEDB
Creation of the connection LOGIN

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test "DB" of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>. OpenSCADA was launched with the demo configuration.

Operation
K8-3000+, 384M, 120G,
PostgreSQL 8.3 (local) PostgreSQL 8.3 (remote)

Creation of the 1000 records (sec.): 0.89 1.04
Updating of the 1000 records (sec.): 1.02 1.1
Getting of the 1000 records (sec.): 0.61 0.63
Deleting of the 1000 record (sec.): 0.36 0.4

Module of the subsystem “DB” <PostgreSQL> 197

The module of subsystem “Data acquisition”
<DiamondBoards>

Module: DiamondBoards
Name: Diamond cards of data acquisition
Type: DAQ
Source: daq_DiamondBoards.so
Version: 1.2.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides an access to the cards of data acquisition from Diamond Systems. Includes
support for Athena motherboard.

License: GPL

The module provides for the system OpenSCADA support of dynamic data sources, based on the cards
for data collection of Diamond Systems company (http://diamondsystems.com). The module is built on the
basis of auniversal driver of the manufacturer of board. Universal driver is available for almost all known
software platforms in the form of a library. Universal driver has been received at
http://www.diamondsystems.com/support/software. The driver was included in the distribution kit of
OpenSCADA, therefore, for the building of the module external libraries are not required.

The boards of data acquisition of Diamond Systems represent the modules of expansion of the PC/104
format. Boards may include: analog IO (input/outputs), digital IO, and counters. Complete set of cards can
vary greatly. There can be contained only one type of IO or many others. In addition, the function of data
acquisition can be given to the system boards of this company. For example, the motherboard Athena
contains: 16 AI, 4 AO, 24 DIO.

The module provides support for analog and digital IO. The of analog inputs (AI) is supported in two
modes: direct acquisition and the acquisition on interruption. The method of the acquisition on interruption
allows to achieve the maximum frequency of interrogation which is supported by the hardware. In the case
of Athena, the frequency achieves 100 kHz. The process of acquisition on interruption data becomes the
second frames and placed in the archives buffer.

In the case of interrogation of the analog channels on interruption is not possible to configure
individually each channel. Such an opportunity is provided only through direct interrogation.

Discrete channels are usually bi-directional and grouped into 8 channels. Each group of channels can be
separately designate direction. The module provides the ability to configure a group of discrete parameters.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

The module of subsystem “Data acquisition” <DiamondBoards> 198

http://www.diamondsystems.com/support/software
http://diamondsystems.com/

 1. Data controller of Diamond boards
Board of Diamond Systems configured by creating the controller in the system OpenSCADA and

configuration of it. Example of the tab of configuration of the controller of the board is shown in Figure 1.

Fig.1. Tab of configuration of the controller/board of Diamond Systems.

Using this form, it can be set:
• The statis of the controller(card), as follows: Status, "Enable", "Run" and the name of the
database containing the configuration.
• Identifier, name and description of the controller(card).
• The status, in which the controller is to be transfered at the boot time:"To enable" and "To start".
• Horizontal mode of redundancy and performance preference of the controller.
• Type of the card of Diamond Systems company.

The module of subsystem “Data acquisition” <DiamondBoards> 199

• The names of tables for storing of the configuration of analog and discrete parameters of the
controller.
• The switching on of high-speed emulation mode of the data source.
• Base address and hardware interruption of the board(for the acquisition on interruption).
• Sign of the acquisition of analog inputs on the interruption and the frequency of data acquisition
on the same channel.
• The overall configuration of the converter of analog inputs on the following structure: the range
of input voltage, polarity and amplification of the channels.

In the mode of direct interrogation of analog inputs hardware interrupt of the card, frequency of analog
inputs interrogation and the strengthening of the analog converter are not available.

To configure ports of digital inputs / outputs on the controller's page there is the tab of the configuration
(fig. 2).

Fig.2. Tab of configuration of digital inputs / outputs ports.

The module of subsystem “Data acquisition” <DiamondBoards> 200

 2. Parameters of the Diamond controller
Module provides the information on two types of parameters: the digital and analog. Each type of the

parameter is stored in the database and, consequently, has its own tab configuration. Tab of the
configuration of analog parameters is presented in Fig.3. Configuration tab of digital parameters is
presented in Fig.4.

Fig.3. Tab of the configuration of analog parameters.

Using the form of configuration of analog parameters it can be set:
• Mode of the parameter, namely "Enabled" and type of the parameter.
• Id, name and description of the parameter.
• The state in which the parameter is to be transfered at boot time: "To enable".
• The orientation of the parameter - "Input" or "Output".
• Physical channel of the parameter.
• Strengthening of the channel in the case of input(for direct interrogation).

To access the values of analog parameters are attributes must be formed. For analog inputs:
• the percentage value (value);
• input voltage (voltage);
• ADС code (code).

For analog outputs are set:
• the percentage value (value);
• output voltage (voltage).

The module of subsystem “Data acquisition” <DiamondBoards> 201

Fig.4. Configuration tab of digital parameters.

Using the Configuration tab of digital parameters there can be set:
• Mode of the parameter, namely, "Enable" and the type of parameter.
• Id, name and description of the parameter.
• The state in which the parameter is to be transfered at boot time: "To enabled".
• The orientation of the parameter - "Input" or "Output".
• Physical port and number of the channel.

To access the values of digital parameters the attribute, which provides the input value or inserts the new
one, must be formed.

Links
Used version the Linux driver from Diamond systems: dscud5.91linux.tar.gz

The patch for build driver at kernel Linux 2.6.29, used for data gathering by interrupt: lastkernels.patch

The module of subsystem “Data acquisition” <DiamondBoards> 202

http://wiki.oscada.org/Doc/DiamondBoards/files?get=lastkernels.patch
http://wiki.oscada.org/Doc/DiamondBoards/files?get=dscud5.91linux.tar.gz

The module of subsystem “Data acquisition”
<System>

Module: System
Name: Data acquisition of OS
Type: DAQ
Source: daq_System.so
Version: 1.7.2
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides data acquisition from the OS. Supported data sources of OS Linux: HDDTemp,
LMSensors, Uptime, Memory, CPU etc.

License: GPL

The module is a sort of gateway between the system OpenSCADA and OS (operating system). The
module receives data from various data sources of the OS and allows to manage components of the OS (in
the future).

The module provides the ability to automatically search for the supported and active data sources with
the establishment of parameters for access to them as well as the implementation of the function of the
horizontal reservation, namely, working in conjunction with the remote station of the same level.

The module of subsystem “Data acquisition” <System> 203

 1. The controller of data
To add a data source of operating system there is created and configured the controller in the system

OpenSCADA. Example of the configuration tab of the controller of the given type depicted in Fig. 1.

Fig.1. Tab of configuration of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, "Enable","Run" and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state in which the parameter is to be transfered at boot time: "To enable", "To start".
• Horizontal reservation mode and preference of the performance of the controller.
• Feature “Automatic search of active data sources and the creation of parameters for them”.
• Name of table to store the configuration of the controller parameters.
• The period and the priority tasks of the interrogation of data sources.

The module of subsystem “Data acquisition” <System> 204

 2. Parameters
Module System provides only one type of parameters – “All parameters”. Additional configuration fields

of the parameters of the module (Fig. 2) are:
• part of the system;
• optional (depending on the data source).

Fig.2. Tab of configuration of the parameter.

The table below there is a list of supported data sources of the operating system, the value of the
additional configuration field and attributes of the parameters.

Data source Value of the additional
configuration field

Attributes of the parameter Demands

Processor unit
(CPU)

Name/number of the
process. It can be a
number of processor or to
be «in general» for all
processors <gen>.

• [real] load:Load (%)
• [real] sys:System (%)
• [real] user:User (%)
• [real] idle:Idle (%)

Memory
(MEM)

Not used

• [dec] free:Free (кБ);
• [dec] total:Total (кБ);
• [dec] use:Used (кБ);
• [dec] buff:Buffers (кБ);
• [dec] cache:Cache (кБ);
• [dec] sw_free:Swap, free

(кБ);
• [dec] sw_total:Swap, total

(кБ);
• [dec] sw_use:Swap, used

(кБ).

The module of subsystem “Data acquisition” <System> 205

Data source Value of the additional
configuration field

Attributes of the parameter Demands

Sensors
(sensors) Not used

Attributes are defined by
sensors that are available on the
motherboard. For each sensor
the unique attribute is created.

The library libsensors or
program mbmon is used.
Higher priority in the use is
given to the library libsensors,
because mbmon has problems
on multicore architectures.

HDD
temperature
(hddtemp)

HDD. Disks, available in
the system.

• [string] disk:Name;
• [string] ed:Unit of

measurement;
• [real] t:Temperature.

It must be installed configured
and running as a service
program hddtemp

Uptime
(uptime)

Uptime:
• System;
• Station.

• [dec] full:Seconds full;
• [dec] sec:Seconds;
• [dec] min:Minutes;
• [dec] hour:Houres;
• [dec] day:Days.

HDD Smart
(hddsmart)

Disk. Disks, available in
the system.

Attributes are defined by
SMART-fields available for this
disc. For each field the unique
attribute is created.

It must be installed and
available smartctl utility.

HDD
statistics
(hddstat)

Disk or partition. Disks
or partitions, available in
the system.

Attributes:
• [dec] rd:Read (Кб);
• [dec] wr:Written (Кб).

Net statistics
(netstat)

Network interface.
Network interfaces,
available in the system.

Attributes:
• [dec] rcv:Recieved (Кб);
• [dec] trns:Transfered (Кб).

The module of subsystem “Data acquisition” <System> 206

The module of subsystem “Data acquisition”
<BlockCalc>

Module: BlockCalc
Name: Block calculator.
Type: DAQ
Source: daq_BlockCalc.so
Version: 1.4.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides a block calculator.
License: GPL

The module of subsystems «DAQ» BlockCalc provides the system OpenSCADA with the mechanism
for creating custom calculations. The mechanism of calculations based on the formal language of block
circuits(functional blocks).

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

Languages of block programming based on the notion of circuits(functional blocks). Moreover,
depending on the substance of the block, block circuits may include: logic, relay logic circuits, a model of
technological process, and more. The essence of the block circuit is that it contains a list of blocks and
relations between them.

From a formal point of view a block is an element(function), which has inputs, outputs, and an algorithm
for computing. Basing on the concept of programming area, block is a frame of values associated with the
object of function.

Of course, the inputs and outputs of blocks may be needed to be connected for a solid block scheme. The
following types of links are provided:

• Interblock, connecting the input of one block to the output of another one, the input of one block
to another one's input and output of one block to the input of another one;
• Interblock remote, connection of blocks of controllers of different block circuits of the module;
• Coefficients, the transformation of input into the constant, all inputs / outputs by default are
initiated as a constant;
• External attribute of the parameter.

Conditionally, connections of blocks can be represented as links between the blocks as a whole(Fig. 1)
or detailing of the links(Fig. 2). In the process of binding parameters of blocks the connection of parameters
of any type is acceptable. Thus, in the process of computation automatically casting of types will be done.

The module of subsystem “Data acquisition” <BlockCalc> 207

Fig. 1. The general connection between the blocks of block scheme

Fig. 2. Detailed links between blocks

The module of subsystem “Data acquisition” <BlockCalc> 208

 1. The controller of the module
Each controller of this module contains the block circuit, which he computes with the specified period.

In order to provide calculated data in the system OpenSCADA the parameters can be created in the
controller. Example of the configuration tab of the controller of the given type depicted in Fig. 3.

Fig. 3. Tab configuration of the controller.

From this tab you can set:
• The state controller, as follows: State, “Enabled”, “Running” and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller is to be translated at boot time: “Enabled” and “Running”.
• Horizontal mode of redundancy and performance preference of the controller.
• The names of tables to store the parameters and blocks of the controller.
• The period, priority and number of iterations in one cycle of calculating task of the block scheme
of the controller.

The module of subsystem “Data acquisition” <BlockCalc> 209

 2.The block scheme of the controller
The block scheme is formed by means of the tab controller's blocks, configuration of the block (Figure

4) and its connections (Fig. 5).

Blocks of block scheme can connect both among themselves and to the attributes of the parameters.
Blocks themselves do not contain the structure of input/output(IO), but contain values, based on the IO-
structure of related function. Function for linking with a block is used from the object model of the system
OpenSCADA.

Any block may at any time be removed from the process and be reconfigured and then may be again
included in the process. Communications between the blocks can be configured without exception blocks
from the processing and stopping of the controller. All IO values without connections can be changed
during processing.

Using tab of the blocks you can:
• Add/remove a block in the block scheme.
• To monitor the total number, number of enabled and the number of processing blocks.

Fig. 4. Configuration tab of the block scheme.

Using the form of block configuration it can be set:
• The state of the block, as follows: “Enabled” and “Processed”.
• Id, name and description of the block.
• The state in which the block is to be translated at boot time: “Enabled” and “Running”.
• Set block which must calc before this block.
• Appoint a working function from the object model. Back to the function for familiarization.

The module of subsystem “Data acquisition” <BlockCalc> 210

Fig. 5. Configuration tab of links of the block of the block scheme.

Using the configuration tab of links of the block of the block scheme the links can be set for the
parameter of each block separately.

The following types of links are supported:
• Inter-block. Connecting the block input to the output of another block, the input of one block to
another's input and output of one block to the input of another.
• Distant inter-block. The connection of blocks from various controllers of the module.
• Ratio. The transformation of the input to a constant. All inputs/outputs by default are initiated as
constants.
• External attribute of the parameter.

To set values for the parameter of the block there is the corresponding tab (Fig.6).

In accordance with the custom functions in the system OpenSCADA the four main types of IO are
supported: integer, float, boolean and string.

The module of subsystem “Data acquisition” <BlockCalc> 211

Fig. 6. Configuration tab of values of parameters of block of the block scheme.

The module of subsystem “Data acquisition” <BlockCalc> 212

 3. Parameters of the controller
The module provides only one type of parameters – the “Standard”. The parameter used to reflect the

data, calculated in the blocks, on the attributes of the controller's parameters. Example of the configuration
tab of the parameter is shown in Fig.7.

Fig. 7. Configuration tab of values of parameters of the controller.

From this tab you can set:
• The state of the parameter, as follows: “Enabled” and type of the parameter.
• Id, name and description of the parameter.
• The state in which the parameter must be translated at boot time: “Enabled”.
• The list of attributes that are reflected on the parameters of the blocks. It is created as the list of
elements in the format: <BLK>.<BLK_IO>:<AID>:<ANM>. Where:

• <BLK> - block ID, block schemes ID; for constant value set to:
'*s' - string type;
'*i' - integer type;
'*r' - real type;
'*b' - boolean type.

• <BLK_IO> - parameter of the block or of the the block scheme; for constant value set to
attribute value;
• <AID> — attribute of the parameter ID;
• <ANM> — name of the attribute of parameter.

The module of subsystem “Data acquisition” <BlockCalc> 213

 4. Copying of the block schemes
To simplify and expedite the development of complex and repetitive block schemes the mechanism of

copying of the elements of block scheme both individually and block schemes entirely is provided. The
mechanism of copying is integrated into the kernel of OpenSCADA and operates transparently.

The module of subsystem “Data acquisition” <BlockCalc> 214

The module of subsystem “Data acquisition”
<JavaLikeCalc>

Module: JavaLikeCalc
Name: Calculator based on Java-like language.
Type: DAQ
Source: daq_JavaLikeCalc.so
Version: 1.8.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides based on java like language calculator and engine of libraries. The user can
create and modify functions and libraries.

License: GPL

The module of controller JavaLikeCalc provides a mechanism for creating of functions and libraries on
Java-like language. Description of functions on Java-like language is reduced to the binding parameters of
the function with algorithm. In addition, the module has the functions of the direct computation by creation
of the computing controllers.

Direct computations are provided by the creation of controller and linking it with the function of this
module. For linked function it is created the frame of values, with which the periodically calculating is
carried out.

The module implements the functions of the horizontal redundancy, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational function, in
order to shockless catch of the algorithms.

Parameters of functions can be freely created, deleted or modified. The current version of the module
supports up to 65535 parameters of the function in the sum with the internal variables. View of the editor of
functions is shown in Figure 1.

The module of subsystem “Data acquisition” <JavaLikeCalc> 215

Fig.1. View of the editor of functions.

After any program changing or configuration of parameters recompiling of the programs with
forestalling of linked with function objects of values of TValCfg is performed. Language compiler is built
using well-known generator grammar «Bison», which is compatible with the not less well-known tool
Yacc.

The language uses the implicit definition of local variables, which is to define a new variable in the case
of assigning a value to it. This type of local variable is set according to the type of the assigning value. For
example, the expression <Qr=Q0*Pi+0.01;> will define Qr variable with the type of variable Q0.

In working with various types of data language uses the mechanism of casting the types in the places
where such casting is appropriate.

To comment the sections of code in the language it is provided «//» and «/ * ... * /» characters.
Everything that comes after "//" up to the end of the line and between «/ * ... * /», is ignored by the
compiler.

During the code generation language compiler produces an optimization of constants and casting the
types of the constants to the required type. Optimizing of the constants means the implementation of
computing of the constants in the process of building of the code under the two constants and paste the
result in the code. For example, the expression <y=pi*10;> reduces to a simple assignment <y=31.4159;>.
Casting the types of constants to the required type means formation of the constant in the code which
excludes the cast in the execution process. For example, the expression <y=x*10>, in the case of a real type
of the variable x, is transformed into <y=x*10.0>.

The module of subsystem “Data acquisition” <JavaLikeCalc> 216

The language supports calls of the external and internal functions. Name of any function in general is
perceived as a character, test for ownership of which by a particular category is done in the following order:

• keywords;
• constants;
• built-in functions;
• external functions, object's functions and OpenSCADA nodes functions (DOM) ;
• already registered characters of variables, object's attributes and hierarchy of objects DOM;
• new attributes of the system parameters;
• new function parameters;
• new automatic variable.

Call of the external function, attribute of system parameters is written as an address to the object of
dynamic tree of the object model of the system OpenSCADA in the form of:
<DAQ.JavaLikeCalc.lib_techApp.klapNotLin>.

To provide the possibility of writing custom procedures for the administration of the various components
of OpenSCADA module provides the implementation of API pre-compilation of custom procedures of
individual components of OpenSCADA on the implementation of Java-like language. These components
are already: Templates of the parameters of subsystem “Data acquisition” and Visual control area (VCA).

 1. Java-like language

 1.1. Elements of language

Keywords: if, else, while, for, break, continue, return, using, true, false.

Constants:
• decimal: numerals 0–9 (12, 111, 678);
• octal: numerals 0–7 (012, 011, 076);
• hexadecimal: numerals 0–9, letters a-f or A-F (0x12, 0XAB);
• real: 345.23, 2.1e5, 3.4E-5, 3e6;
• boolean: true, false;
• string: «hello».

Types of variables:
• integer: -231...231;
• real: 3.4 * 10308;
• boolean: false, true;
• string: length up to 255 symbols and without next string went.

Built-in constants: pi = 3.14159265, e = 2.71828182, EVAL_BOOL(2), EVAL_INT(-2147483647),
EVAL_REAL(-3.3E308), EVAL_STR("<EVAL>")

Attributes of the parameters of system OpenSCADA (starting from subsystem DAQ, as follows <Type of
DAQ module>.< Controller>.<Parameter>.<Attribute>).

The functions of the object model of the system OpenSCADA.

 1.2. Operations of language

Operations supported by the language presented in the table below. The priority of operations is reduced
from top to bottom. Operations with the same priority is composed of one color group.

Symbol Описание

() Call of the function.

{} Program blocks.

++ Increment (post and pre).

-- Decrement (post and pre).

The module of subsystem “Data acquisition” <JavaLikeCalc> 217

Symbol Описание

- Unary minus.

! Logical negation.

~ Bitwise negation.

* Multiplication.

/ Division.

% The remainder of integer division.

+ Addition

- Subtraction

<< Bitwise shift left

>> Bitwise shift right

> Greater

>= Greater than or equal to

< Less

<= Less than or equal to

== Equals

!= Unequal

| Bitwise «OR»

& Bitwise «AND»

^ Bitwise «Exclusive OR»

&& Boolean «AND»

|| Boolean «OR»

?: Conditional operation (i=(i<0)?0:i;)

= Assignment.

+= Assignment with addition.

-= Assignment with subtraction.

*= Assignment with multiplication.

/= Assignment with division.

 1.3. Embedded functions of language

To ensure a high speed in mathematical calculations module provides embedded mathematical functions
that are called at the level of commands of virtual machine. Predefined mathematical functions:

• sin(x) - sine x;
• cos(x) - cosine x;
• tan(x) - tangent x;
• sinh(x) - hyperbolic sine of x;
• cosh(x) - hyperbolic cosine of x;
• tanh(x) - hyperbolic tangent of x;
• asin(x) - arcsine of x;
• acos(x) - arc cosine of x;
• atan(x) - arctangent of x;
• rand(x) - random number from 0 to x;
• lg(x) - decimal logarithm of x;
• ln(x) - natural logarithm of x;
• exp(x) - exponent of x;
• pow(x,x1) - erection of x to the power x1;
• max(x,x1) - maximum value of x and x1;

The module of subsystem “Data acquisition” <JavaLikeCalc> 218

• min(x,x1) - minimum value of x and x1;
• sqrt(x) - the square root of x;
• abs(x) - absolute value of x;
• sign(x) - sign of x;
• ceil(x) - rounding the number x to a greater integer;
• floor(x) - rounding the number x to a smaller integer.

 1.4. Operators of the language

The total list of operators of the language:
• var - operator for variable initialise;
• if - operator of the condition "If";
• else - operator of the condition "ELSE";
• while - description of the loop while;
• for - description of the loop for;
• in - for-cycle separator for object's properties scan;
• break - interrupt of the execution of the loop;
• continue - continue the execution of the loop from the beginning;
• using - allows to establish scope of functions of often used library (using Special.FLibSYS;) for
future reference only by means of the function name;
• return - interruption of the function and return of the result, the result is copied to the attribute
with the flag return (return 123;);
• new - object creation, realized object "Object" and massif "Array".

 1.4.1. Conditional operators

The language of module supports two types of conditions. First – this is the operation of condition for
use within the expression, the second – a global, based on the conditional operators.

Conditions inside the expression is based on the operations of «?» And «:». As an example we'll write
the following practical expression <st_open=(pos>=100)?true:false;>, which reads as «If the variable
<pos> greater than or equal to 100, the variable st_open is set to true, otherwise – to false.

The global condition is based on the conditional operators «if» and «else». An example is the same
expression, but written by other means <if(pos>100) st_open=true; else st_open=false;>. As shown, the
expression is written in a different way, but is read in the same way.

 1.4.2. Loops

Two types of loops are supported: while, for and for-in. The syntax of the loops corresponds to
programming languages: C++, Java, and JavaScript.

Loop while generally written as follows: while(<condition>) <body of the loop>;

Loop for is written as follows: for(<pre-initialization>;<condition>;<post-calculation>) <body of the
loop>;

Loop for-in is written as follows: for(<variable> in <object>) <body of the loop>;

Where:
<condition> - expression, determining the condition;
<body of the loop> - the body of the loop of multiple execution;
<pre-initialization> - expression of pre-initialization of variable of the loop;
<post-calculation> - expression of modification of parameters of the loop after the next iteration;
<variable> - variable, which will contain object's properties name at scan;
<object> - object for which properties scan gone.

The module of subsystem “Data acquisition” <JavaLikeCalc> 219

 1.4.3. Special characters of string variables

The language supports the following special characters of string variables:
"\n" - line feed;
"\t" - tabulation symbol;
"\b" - culling;
"\f" - page feed;
"\r" - carriage return;
"\\" - the character itself '\'.

 1.5. Object

The language provides the data type "Object" support. The data type "Object" is associated container of
properties and functions. The properties can support data of fourth basic types and other objects. The access
to properties is doing through the dot to object <obj.prop> and also by property placement into the rectangle
brackets <obj["prop”]>.It is obvious that the first mechanism is static, while the second lets you to specify
the name of the property through a variable. Creating an object is carried by the keyword <new>: <varO =
new Object()>. The basic definition of the object does not contain functions. Copying of an object is
actually makes the reference to the original object. When you delete an object is carried out the reducing of
the reference count, and when a reference count is set to zero then object is removed physically.

Different components can define basic object with special properties and functions. The standard
extension of the object is an array "Array", which is created by the command <varO = new
Array(prm1,prm2,prm3,...,prmN)>. Comma-separated parameters are placed in the array in the original
order. If the parameter is the only one the array is initiated by the specified number of empty elements.
Peculiarity of the array is that it works with the properties as the indexes and their complete naming is
meaningless, and therefore the mechanism of addressing only by the placing the index into square brackets
<arr[1]> is accessible. Array stores the properties in its own container of the one-dimensional array.

The array provides a special property of "length" to get the size of the array <var = arr.length;>. Also,
the array provides the following special functions:

• string join(string sep = ","), string toString(string sep = ","), string valueOf(string sep = ",")
- Returns a string array elements separated by <sep> or symbol ','.
• Array concat(Array arr); - Adds to the original array of array elements <arr>. Returns the
original array with the changes.
• int push(ElTp var, ...); - Puts the item(s) <var> to the end of the array as a stack. Returns a new
array size.
• ElTp pop(); - Removing the last element of the array and returns its value as from the stack.
• Array reverse(); - Changing the order of the elements of the array. Returns the original array
with the changes.
• ElTp shift(); - The shift of the array in the top. This first element is removed and its value is
returned.
• int unshift(ElTp var, ...); - Unshift the item(s) <var> in the array. The first element to the 0, the
second one to the 1, etc.
• Array slice(int beg, int end); - Returns an array of fragment <beg> to <end>. If the beginning or
end is negative, then the count is done from the end of the array. If the end is not specified, then the
end is the end of the array.
• Array splice(int beg, int remN, ElTp val1, ElTp val2, ...); - Insert, delete or replace the elements
of array. Returns the original array with the changes. First of all the removing of the items from the
position <beg> and number <remN> is done, and then the values <val1> etc. are inserted from the
position <beg>.
• Array sort(); - Sort the array elements in lexicographical order.

The basic types have the partial properties of the object. Properties and functions of the basic types are
listed below:

• Logical type, functions:
• bool isEVal(); - Check value to "EVAL".
• string toString(); - Performs the value as the string “true” or “false”.

The module of subsystem “Data acquisition” <JavaLikeCalc> 220

• Integer and real number:
 Properties:

• MAX_VALUE - maximum value;
• MIN_VALUE - minimum value;
• NaN - error value.

 Functions:
• bool isEVal(); - Check value to "EVAL".
• string toExponential(int numbs); - Return the string of the number, formatted in
exponential notation, and with the number of significant digits <numbs>. If <numbs> is
missing the number of digits will have as much as needed.
• string toFixed(int numbs); - Return the string of the number, formatted in the notation of
fixed-point, and with the number of significant digits after the decimal point <numbs>. If
<numbs> is missing the number of digits after the decimal point is equal to zero.
• string toPrecision(int prec); - Return the string of the formatted number with the number
of significant digits <prec>.
• string toString(int base); - Return the string of the formatted number of integer type with
the following representation base: octal , decimal, hex.

• String:
 Properties:

• int length - string length.
 Functions:

• bool isEVal(); - Check value to "EVAL".
• string charAt(int symb); - Extracts from the string the symbol <symb>.
• int charCodeAt(int symb); - Extracts from the string the symbol code <symb>.
• string concat(string val1, string val2, ...); - Returns a new string formed by joining the
values <val1> etc. to the original one.
• int indexOf(string substr, int start); - Returns the position of the required string <substr>
in the original row from the position <start>. If the initial position is not specified then the
search starts from the beginning. If the search string is not found then -1 is returned.
• int lastIndexOf(string substr, int start); - Returns the position of the search string
<substr> in the original one beginning from the position of <start> when searching from the
end. If the initial position is not specified then the search begins from the end. If the search
string is not found then -1 is returned.
• string slice(int beg, int end); string substring(int beg, int end); - Return the string
extracted from the original one starting from the <beg> position and ending be the <end>. If
the beginning or end is negative, then the count is conducted from the end of the line. If the
end is not specified, then the end is the end of the line.
• Array split(string sep, int limit); - Return the array of strings separated by <sep> with the
limit of the number of elements <limit>.
• string insert(int pos, string substr); - Insert substring <substr> into this string's position
<pos>.
• string replace(int pos, int n, string substr); - Replace substring into position <pos> and
length <n> to string <substr>.
• real toReal(); - Convert this string to real number.
• int toInt(int base = 0); - Convert this string to integer number in accordance with the base
<base> (from 2 to 36). If base is 0, then the prefix will be considered a record for
determining the base (123-decimal; 0123-octal; 0x123-hex).
• string parse(int pos, string sep = ".", int off = 0); - Get token with numbet <pos> from
the string when separated by <sep> and from offset <off>. Result offset is returned to back
<off>.
• string parsePath(int pos, int off = 0); - Get path token with numbet <pos> from the
string and from offset <off>. Result offset is returned to back <off>.
• string path2sep(string sep = "."); - Convert path into this string to separated by <sep>
string.

For access to system objects (nodes) of the OpenSCADA the corresponding object is provided which is

The module of subsystem “Data acquisition” <JavaLikeCalc> 221

created simply by specifying the enter point "SYS" of the root object OpenSCADA, and then with the point
separator the sub-objects in accordance with the hierarchy are specified. For example, the call of the request
function over the outgoing transport is carried out as follows:
SYS.Transport.Sockets.out_testModBus.messIO(strEnc2Bin("15 01 00 00 00 06 01 03 00 00 00 05"));.

 1.6. Examples of programs on the language

Here are some examples of programs on Java-like language:

//Model of the course of the executive machinery of ball valve
if(!(st_close && !com) && !(st_open && com))
{

tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./frq:t_up;
pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*frq);
pos=(pos>100)?100:(pos<0)?0:pos;
st_open=(pos>=100)?true:false;
st_close=(pos<=0)?true:false; lst_com=com;

}
//Valve model
Qr=Q0+Q0*Kpr*(Pi-1)+0.01;
Sr=(S_kl1*l_kl1+S_kl2*l_kl2)/100.;
Ftmp=(Pi>2.*Po)?Pi*pow(Q0*0.75/Ti,0.5):

(Po>2.*Pi)?Po*pow(Q0*0.75/To,0.5):
pow(abs(Q0*(pow(Pi,2)-pow(Po,2))/Ti),0.5);

Fi-=(Fi-7260.*Sr*sign(Pi-Po)*Ftmp)/(0.01*lo*frq);
Po+=0.27*(Fi-Fo)/(So*lo*Q0*frq);
Po=(Po<0)?0:(Po>100)?100:Po;
To+=(abs(Fi)*(Ti*pow(Po/Pi,0.02)-To)+

(Fwind+1)*(Twind-To)/Riz)/(Ct*So*lo*Qr*frq);

The module of subsystem “Data acquisition” <JavaLikeCalc> 222

 2. Controller and its configuration
The controller of the module connects with the functions of libraries, built with his help, to provide

immediate calculations. In order to provide calculated data in the system OpenSCADA parameters can be
created in the controller. Example of the configuration tab of the controller of the given type depicted in
Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enabled», «Running» and the name of the
database containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «Enabled» and «Running».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the settings.
• Address of the computational function.
• Period, priority and number of iterations in one cycle of computing task.
• Automatic synchronization period of blocks with the database.
• Save/load controller to/from the database.

The module of subsystem “Data acquisition” <JavaLikeCalc> 223

Tab “Calculations” of the controller (Fig. 3) contains the parameters and the text of the program, directly
performed by the controller. Also for monitoring of execution the time of calculating of the program is
shown.

Fig.3. Tab “Calculations” of the controller.

 3. The parameter of the controller and its configuration
Parameter of the controller of the module executes the function of providing the access to the results of

computation of the controller to the system OpenSCADA by attributes if the parameters. Configuration tab
contains only one specific field of the, set the controller only contains a field of listing the parameters of
calculated function, which should be reflected.

The module of subsystem “Data acquisition” <JavaLikeCalc> 224

 4. Libraries of functions of module
The module provides a mechanism to create libraries of user functions on Java-like language. Example

of the configuration tab of the library is depicted in Figure 4. The tab contains the basic fields: status,
identifier, name and description, and also address of the table, in which the library is kept. In the
“Functions” tab of the library besides the list of functions the form of copying functions is contained.

Fig.4. Tab of the configuration of the library.

 5. User functions of the module
Function, as well as the library, contains the basic configuration tab, tab of the formation of the program

and the parameters of function (Fig. 1), as well as the performance tab of the created function.

The module of subsystem “Data acquisition” <JavaLikeCalc> 225

The module of subsystem “Data acquisition”
<LogicLev>

Module: LogicLev
Name: Logic level
Type: DAQ
Source: daq_LogicLev.so
Version: 1.1.2
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the logical level of parameters.
License: GPL

The module is a pure logic-level implementation mechanism, based on the templates of parameters of
the subsystem “Data acquisition – DAQ”. The implementation of the module is based on the “Logical level
of the parameters of the system OpenSCADA” http://diyaorg.dp.ua/oscadawiki/Doc/LogParmUrov.
Practically, this module is an implementation of the subsystem “Options” of the project without templates
and putting it into the module.

The module provides a mechanism for the formation of the parameters of subsystem “DAQ”, based on
other sources of the subsystem at the level of the user. Actually, the module uses templates of subsystem
“DAQ” and the specific format for the description of references to the attributes of the parameters of
subsystem “DAQ”.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

The module of subsystem “Data acquisition” <LogicLev> 226

http://diyaorg.dp.ua/oscadawiki/Doc/LogParmUrov

 1. Data controller
For addition of the data source of parameters of the logical level the controller in the system

OpenSCADA is created and configured. Example of the configuration tab of the controller of the type is
depicted in Figure 1.

Fig.1. Сonfiguration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the settings.
• The period and the priority of the task of the interrogation of data sources.

The module of subsystem “Data acquisition” <LogicLev> 227

 2. Parameters
Module LogicLev provides only one type of parameters – “Standard”. Additional configuration fields of

the parameters of the module (Fig. 2) are:
• mode of the parameter;
• address; in the event of the template – this is the address of the template, and in the case of direct
reflection – this is the address of the parameter.

Fig.2. Configuration tab of the parameter.

When building a template for the controller the peculiarity of the link format of the template must take
into account. Reference should be written in the form: <Parameter>|<identifier>, where:

<Parameter> - line, characterizing the parameter;
<Identifier> - id of the attribute of parameter.

This record allows to group multiple attributes of a source parameter and assign them only by the choice
of the parameter. Ie in the configuration dialog of the template (Fig. 3)it will be shown only parameter. This
does not preclude the possibility to assign the attributes of the parameter each separately, in addition, if you
miss in the configuration of the template the description of the links in the specified format, it will be
assigned an attribute of the parameter (Fig.4).

The module of subsystem “Data acquisition” <LogicLev> 228

Fig.3. Configuration tab of the template of parameter.

Fig.4. Configuration tab of the template of parameter. Show only attributes.

The module of subsystem “Data acquisition” <LogicLev> 229

In accordance with the template underlying the parameter, we get the set of attributes of the parameter
Fig.5.

Fig.5. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition” <LogicLev> 230

The module of subsystem “Data acquisition”
<SNMP>

Module: SNMP
Name: SNMP client
Type: DAQ
Source: daq_SNMP.so
Version: 0.4.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides an implementation of the client of SNMP-
service.

License: GPL

SNMP protocol was designed to verify the operation of network routers and bridges in 1988.
Subsequently, the scope of the protocol coverage and other network devices such as hubs, gateways,
terminal servers, and even devices that are remotely related to the network: printer, uninterruptible power
supplies, PLC, etc. In addition, the protocol allows the possibility of changes in the functioning of these
devices. At this time, SNMP protocol is standardized as RFC-1157, -1215, -1187, -1089.

This module provides the ability to gather information from various devices on the SNMP protocol.
Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

 1. SNMP
The main interacting “individuals” of the protocols are the agents and management systems. If we

consider these two concepts in the language of «client – server», then the server role is played by agents,
that is the same devices for the survey of the state of which the protocol has been developed. Accordingly,
the role of the clients is played by the management systems – network applications which are necessary to
gather the information about the functioning of agents. In addition to these two entities in the model of the
protocol it can be identified as two more: control information and the protocol for data exchange.

All information about the objects of system-agent is contained in the so-called MIB (management
information base) – the base of control information, in other words, MIB is the totality of objects (MIB-
variables) accessible to the reading-writing operations.

For this time there are four base of MIB:
1. Internet MIB – database of objects for providing the diagnosis of errors and configurations. It
includes 171 objects (including objects of MIB I).

2. LAN manager MIB – database of 90 objects – passwords, sessions, users, shared resources.
3. WINS MIB – database of objects required for the operation of a WINS server.
4. DHCP MIB – base of objects required for the operation of the DHCP server that serves for
dynamic allocation of IP addresses on the network.

 1.1. MIB

All names of MIB have a hierarchical structure. There are ten root aliases:
1. System – the group of MIB II contains the seven objects, each of which serves to store
information about the system (OS version, time, etc.).

2. Interfaces – contains 23 objects necessary for the conduct of network interfaces of agents (the
number of interfaces, the size of MTU, the rate of transmission, physical addresses, etc.).

The module of subsystem “Data acquisition” <SNMP> 231

3. AT (3 objects) – are responsible for the broadcast address. No longer used. Was included in the
MIB I. In SNMP v2 this information was transferred to the MIB for the relevant protocols.

4. IP (42 objects) – data on the passing IP packets (number of requests, responses, offcast
packages).

5. ICMP (26 objects) – information about control messages (incoming/outgoing messages, errors,
etc.).

6. TCP (19) – all that relates to the same-name transport protocol (algorithms, constants,
connections, open ports, etc.).

7. UDP (6) – the same one for UDP protocol (incoming/outgoing datagram, ports, errors).
8. EGP (20) – data about the traffic Exterior Gateway Protocol (used by routers, object stores
information about the received/sent/ offcast frames).

9. Transmission – is reserved for specific MIB.
10. SNMP (29) – statistics on SNMP – incoming/outgoing packets, limiting package size, errors,
data on the process request, and much more.

 1.2. Addressing

Each of the root alias appears in the form of tree growing down. For example, to the address of the
administrator you can contact by the means of the way: system.sysContact.0, to the time of the system:
system.sysUpTime.0, to the description of the system (version, kernel and other information about the OS):
system.sysDescr.0. On the other hand, the same data can be specified in the point notation. So,
system.sysUpTime.0 value corresponds to 1.3.0, because the system has an index “1” in groups of MIB II,
and sysUpTime – 3 in the hierarchy of the group system. Zero at the end of the path indicates the scalar
type of data storage. During the work symbolic names of the objects are not used, that is, if the manager
asks the agent the contents of the parameter system.sysDescr.0, then in the query string the link to the
object will be converted to “1.1.0”, and will not be handed over «as is».

In general, there are several ways to write the addresses of MIB-variable:
• 1 Direct code addressing – “.1.3.6.1.2.1.1” (root alias System). With this addressing each MIB

variable is coded by the identifier, and the full address is written in the form of a sequence of
identifiers separated by point, from left to right. This record of the address is the main and all other
ways of recording are given to it.

• 2 Full character, in accordance with the previous code – “.iso.org.dod.internet.mgmt.mib-2.system”.

• 3 Addressing from the root alias – “system.sysDescr”. 4 Addresses of the MIB base – “SNMPv2-
MIB:: sysDescr”.

 1.3. Interaction

In the SNMP client interacts with a server on a request-response principle. On its own, the agent is able
to initiate only one action, called a trap interrupt. In addition, all the actions of agents are to respond to
requests sent by managers.

There are 3 main versions of the protocol SNMP (v1 & v2 & v3), which are not compatible. SNMP v3
supports encryption of traffic, which, depending on implementation, uses the algorithms DES, MD5. This
leads to the fact that while transfer the most critical and important data is unavailable for listening. As a
transport protocol the UDP protocol is usually used in the SNMP. Although, in fact, SNMP supports a
variety of other lower-level transport protocols.

 1.4. Authorization

One of the key concepts of SNMP is the notion of group. Procedure of the authorization of the manager
is a simple test for membership of a particular group from the list, which belongs to the agent. If the agent
does not find a group of the manager in its list, their further interaction is impossible. By default, the group
used: private and public.

The module of subsystem “Data acquisition” <SNMP> 232

 2. Module
This module supports the work with the SNMP protocol of version 1. Currently it is only supported the

reading of MIB-parameters. In addition, a list of types of MIB-parameters is restricted by the list:
ASN_OCTET_STR, ASN_INTEGER and ASN_COUNTER. Support of the other types and recording are
scheduled in the following versions of the module.

 2.1. Controller of data

For addition of the SNMP data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller is depicted in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: state, «Enable», «Run» and the name of the database
containing the configuration.

The module of subsystem “Data acquisition” <SNMP> 233

• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start»
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the configuration of the parameters of the controller.
• The period and the priority of the task of data acquisition.
• Address of remote host, a group of access and restriction on the number of attributes in the one
parameter.

 2.2. Parameters

Module SNMP provides only one type of parameters – “Standard”. An additional configuration field of
the parameter of the module(Fig. 2) is a list of MIB-parameters, the branches of which are to be read.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition” <SNMP> 234

In accordance with a specified list of MIB-parameters is carried out a survey of their branches and the
creation of the attributes of the parameter. Further, updating of the values of parameters is carried out.
Attributes are named in accordance with the code addressing of MIB-parameters, as the ID, and the
addressing from the base of MIB objects in the name of the attribute(Figure 3).

Fig.3. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition” <SNMP> 235

The module of subsystem “Data acquisition”
<Siemens>

Module: Siemens
Name: Siemens DAQ
Type: DAQ
Source: daq_Siemens.so
Version: 1.2.3
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides a data source PLC Siemens by means of Hilscher CIF cards by using the
MPI protocol and Libnodave library for the rest.

License: GPL

The primary aim of creating the module is to provide support for industrial controllers of firms Siemens
of series S7(S7–300, S7–400). Historically, access to the controllers of the firm in the Profibus network is
made only through its own communication processor (CP5412, CP5613, etc.) and the protocol S7. These
communications processors and API to the protocol S7 are rather expensive, in addition to the drivers for
the communication processors and S7 API are closed and are only available for the platform Intel +
Windows (I met the information on opportunities to buy for Linux).

As an alternative to these decisions of the company Siemens, which allows you to fully work with the
controllers of Siemens, is the range of communication products of fitm Hilscher (http://hilscher.com),
through the communications processors CIF of series PB(Profibus) and the library Libnodave
(http://libnodave.sourceforge.net).

Feature of Hilscher products is completely open specification of the protocol of exchange with the
communication processor, the unified driver for all cards CIF, the availability of drivers for many common
operating systems(OS) and openness of the driver for OS Linux(GPL).

The basis of the module is the driver of version 2.621 of Hilsher, kindly provided by Hilsher in the face
of Devid Tsaava for the 2.6 series kernels of OS Linux. Everything needed files to building are included in
the module and it is don't needed to satisfy any special dependencies. The driver version 2.621 for the CIF
cards is available for download cif2621.tgz.

The range of boards of CIF family of firm Hilsher and unified driver supports the widest range of
equipment. To lay support all these features in this module without having all the equipment on hand, it is
not possible. Therefore, the support of the equipment will be added on demand and availability of
equipment. As of version 1.1.0 module provides support for data sources on the network via Profibus or
MPI by means of MPI protocol at the network speed of 9600Bod to 12MBod. In particular, supported and it
is carried out check on the controllers of the Siemens company of family S7 (S7–300, S7–400).

Library Libnodave is an implementation of the MPI, S7, ISO-TSAP and others protocols by means of
revers-engineering, that are used in interaction with the controllers of Siemens. Library supports many MPI
and USB adapters, as well as ProfiNet. Communication processors firm Siemens, on platforms other than
Windows, the library doesn't support. At this stage, module support the protocol ISO-TSAP (ProfiNet)
through the library Libnodave. Library Libnodave fully incorporated in this module and does not require a
special permit of any dependencies during building and in the performance.

The module of subsystem “Data acquisition” <Siemens> 236

http://wiki.oscada.org/Doc/Siemens/files?get=cif2621.tgz
mailto:DTsaava@hilscher.com
http://libnodave.sourceforge.net/
http://hilscher.com/

 1. Communication controllers CIF
CIF family card driver supports the ability to install up to 4 CIF boards. In order to control the

availability of cards in the system and their possible configurations, the module provides a form of control
and configuration of the CIF-cards(Fig. 1).

Fig.1. Configuration tab of CIF-boards.

The module of subsystem “Data acquisition” <Siemens> 237

Use this form you can verify the existence of communication processors and their configuration, and
configure the network settings of PB Profibus in the form of addresses of communication processor and
speeds of bus Profibus. In the other tab of the module(Fig.2) you can verify the presence of various stations
in the network Profibus.

Fig.2. Monitoring tab of Profibus network.

The module of subsystem “Data acquisition” <Siemens> 238

 2. The controller of the data source
To add a data source it is created and configured the controller in the system OpenSCADA. Example of

the configuration tab of the controller of this type is depicted in Figure 3.

Fig.3. Configuration tab of the controller.

Using this tab you can set:
• The state of the controller, as follows: State, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the configuration of the parameters of the controller.
• The period and the priority of the task of data acquisition.
• The mode of the asynchronous recording in the remote controllers.
• Connection type. Supported CIF_PB and ISO_TCP

The module of subsystem “Data acquisition” <Siemens> 239

• Address of the industrial controller. If the connection type CIF it is the address of the network
Profibus, and in the case of ISO_TCP it is the IP-address in the Ethernet.
• Slot CPU in which the central processor of the controller is placed.
• CIF card used for access to the industrial controller through CIF communication processors.

 3. The parameters of the data source
Given the high intellectuality of data sources in the face of industrial controllers of Siemens S7–300 and

S7–400, the options are executed on the basis of templates. This approach allows us to go beyond a rigid
list of types of parameters, which limits the possibilities of the controllers, and provide users with the ability
to build the necessary types of parameters independently or use the library of already been developed types
of parameters (templates).

Accordingly, the module provides only one type of parameters – “Logical”. Additional configuration
fields of the parameters of the module(Figure 4) is the field of selection of template of the parameter.

Fig.4. Configuration tab of the parameter.

To configure a template of parameter it is made the appropriate tab. The contents of this tab is defined by
the configuration of the template that is the corresponding link fields and fields of setting the constants are
formed.

Types of links depend on the type of parameter in the template (boolean, integer, real and string) and the
definition of link value(for the group of links). Definition of the group link in the template is written in the
format: "<Name of the link>|<The offset in the database>|<The size of the value>", where:

• <Name of the link> — Name of the group link. All links with the same name are grouped and

The module of subsystem “Data acquisition” <Siemens> 240

http://wiki.oscada.org.ua/Doc/LogParmUrov?v=91z

shown as a link to the database or database with the specified offset.
• <The offset in the database> — Name of the offset in the data block (DB). If the only database in

the configuration of the template is specified the offset will be specified for the parameter, but if in
the configuration of the template the offset will be specified too, the both offsets are summarized
together. This approach allows to access a variety of structures in the single data block.

• <the size of the value> — Optional field that specifies a custom size of the value in the controller.
The following sizes of types of values are provided:

• Integer: — 1 byte(signed), 2 byte(signed by default) and 4 byte(signed).
• Real: — 4 byte(float by default), 8 byte(double).
• Boolean: — always one byte (with a bit through the point – DB1.10.1).
• String: — 10 byte(by default) and 1–200 can be set.

An illustrative example of the overall process of the configuration of parameter form the template and to
the values is shown in Figures from 5 to 8.

Fig.5. Example of the template with grouping.

The module of subsystem “Data acquisition” <Siemens> 241

Fig.6. Configuration tab of the template of parameter

Fig.7. Configuration tab of template of the parameter with an indication of the parameters separately.

The module of subsystem “Data acquisition” <Siemens> 242

Fig.8. The values of the parameter.

Module supports only the data blocks(DB) of the controllers addressing!

The module of subsystem “Data acquisition” <Siemens> 243

 4. Asynchronous recording mode
The standard recording mode for SCADA-systems interacting with the PLC, is the synchronous, because

it allows to control the correctness of the conclusion of the record operation. However, in cases of recording
multiple parameters at once and often, this approach is not justified in view of sending a multitude of small
requests to the controller that overrides the PLC and has a large time interval. The solution is asynchronous
recording of an adjacent values by means of the single block. This is supported by this module and allows
you to record all parameters immediately by the adjacent blocks of 240 byte. Read and write in this mode is
performed by the adjacent blocks with the periodicity of survey of the controller.

 5. Comments
After a targeted search was found a few solutions of the problem of communication with industrial

controllers of firm Siemens through various communication interfaces:
• Found a lot of solutions from the company Siemens, which supplied with solutions that support
an open operating system "Linux"
(http://www.automation.siemens.com/net/html_76/produkte/040_cp_1616.htm, ...).

Links
Firm's Hilscher driver for boards family CIF: cif2621.tgz

The patch for build driver for kernel Linux 2.6.29: lastkernels.patch

The module of subsystem “Data acquisition” <Siemens> 244

http://wiki.oscada.org/Doc/Siemens/files?get=lastkernels.patch
http://wiki.oscada.org/Doc/Siemens/files?get=cif2621.tgz
http://www.automation.siemens.com/net/html_76/produkte/040_cp_1616.htm

The modules <ModBus> of subsystem “Data
acquisition” and subsystem “Transport protocols”
Parameter Module 1 Module 2

ID: ModBus ModBus
Name: ModBus ModBus
Type: DAQ Protocol
Source: daq_ModBus.so daq_ModBus.so
Version: 1.1.1 0.6.1
Author: Roman Savochenko Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides implementation of client service of the
protocol ModBus. Modbus/TCP, Modbus/RTU
and Modbus/ASCII protocols are supported.

Provides implementation of protocols
ModBus. Modbus/TCP, Modbus/RTU and
Modbus/ASCII protocols are supported.

License: GPL GPL

ModBus – communication protocol based on the client-server architecture. It was developed by Modicon
for using in the programmable logic controllers (PLC). It became the de facto standard in the industry and is
widely used for the connection of industrial electronic equipment. Used to transfer data via serial line RS-
485, RS-422, RS-232, and network TCP/IP. Currently supported non-profit organization ModBus-IDA.

There are three modes of the protocol: ModBus/RTU, ModBus/ASCII and ModBus/TCP. The first two
use the serial communication lines (mostly RS-485, less RS-422/RS-232), the last uses TCP/IP network to
transfer data.

Module of the data acquisition provides an opportunity to gather the information from various devices by
means of the protocol ModBus in all modes. Also, the module implements the functions of the horizontal
reservation, namely, working in conjunction with the remote station of the same level. At the same time, the
module of the protocol allows you to create and issue data by means of the protocol ModBus in various
modes, and through interfaces that are supported by modules of subsystem “Transports”.

 1. General description of the ModBus protocol
Protocol ModBus/RTU requires one lead(requesting) device in the line(master), which can send

commands to one or more driven devices(slave), referring to them by a unique in the line address. Syntax of
the commands of the protocol allows to address 247 devices on the one connection line of standard RS-
485(less RS-422 or RS-232). In the case of TCP addressing mode is excluded from the protocol, as it is
implemented in the TCP/IP stack.

Initiative of exchange always comes from the leading device. Slave devices listen the line. Master
request (package, the sequence of bytes) in the line and turns into a listening line. Slave device responds to
the request, which came to him. The end of the response package the master determines by the time interval
between the end of the reception the previous byte and the beginning of the reception of the following. If
this interval exceeds the time required to receive one and a half of the byte on the given speed, receiving of
the response frame is considered complete. Frames of the request and reply in the ModBus protocol have
the fixed format.

 1.1. Addressing

All data operations are tied to zero, each type of data (register, bit, register of input or bit of input)
addresses begin with 0000 and ends 65535.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 245

 1.2. Standard codes of functions

In ModBus protocol it can be divided into several subsets of commands(Table 1).

Table 1: The subset of commands of ModBus protocol
Subset Range of codes

Standard 1–21
Reserve for advanced features 22–64
Custom 65–119
Reserve for own needs 120–255

Module of the protocol process the requests by the commands 0x03 and 0x06 for reading and writing
registers, 0x01 and 0x05 for reading and writing bits.

 2. Module of the implementation of the protocol
ModBus protocol module contains the code implementing of the protocol part of ModBus, namely

particular variants of protocols ModBus/TCP, ModBus/RTU and ModBus/ASCII. Module of the protocol
in conjunction with the selected transport is actively used by the data acquisition module for direct queries
implementation. Because of the module of the protocol is independent, by using of it you can create
additional modules for data acquisition by non-standard functions of the expansion of ModBus of various
automation equipment.

 2.1. API functions of outgoing requests

API functions for outgoing queries operate with the exchange of blocks PDU, XML-wrapped in
packages with the following structure:

<prt id="sId" reqTm="reqTm" node="node" reqTry="reqTry">[pdu]</prt>

Where:
• prt - name of the tag with the name of the used variant of the protocol (TCP, RTU or ASCII).
• sId - identifier of the source of the query. Used for placing to the protocol the output protocol.
• reqTm - time of the request, namely the time during which the answer is expected.
• node - number of the destination node or the identifier of the unit ModBus/TCP.
• reqTry - number of attempts of repeating the request with the error in the answer. Only for
ModBus/RTU and ModBus/ASCII.
• pdu - directly block of the unit of the protocol data (PDU) ModBus.

The resulting pdu replaces the request pdu in the XML-package, and set the attribute "err" with the code
and text of the errors, if it is took place.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 246

 2.2. Servicing of the requests for ModBus protocol

Input part of servicing of the requests to the module of the protocol realizes verification and processing
of the requests through objects of the nodes, provided by the module(Fig. 1). Actually, the mechanism is
implemented, that allow the system OpenSCADA to perform the role of the ModBus/TCP server or the
slave device of ModBus/RTU and ModBus/ASCII. Thus the system OpenSCADA gets an opportunity to
serve the role of any participant of the ModBus networks.

Fig.1. Tab of the list of the nodes of servicing incoming requests of the protocol.

The node of the protocol is equivalent to the physical node of the device of ModBus network. Node of
the protocol can operate in three modes:

• "Data" - mode of the reflection of data of OpenSCADA on arrays of registers and bits of ModBus
to transfer them at the request of the client node or master.
• "Gateway of the node" - mode of the redirecting of the requests to the node of the another
ModBus network through this node.
• "Gateway of the network" - mode of the redirecting of the requests to any node in another
ModBus network, actually carrying out the integration of several ModBus networks into one.

Since the protocol nodes can be created a great number, it turns out that on the one interface, ie in the
one network, one station on the basis of OpenSCADA can clear provide multiple nodes of ModBus network
with different data.

Lets consider particular configuration of the node of the protocol in various modes.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 247

The mode of the node of the protocol “Data”

Mode is used to reflect the data of OpenSCADA on arrays of registers and bits of ModBus. The overall
configuration of the node is made in the tab “Node”(Fig. 2) by the parameters:

• The state of the node, as follows: «Enable» and the name of the database containing the
configuration.
• Id, name and description of the node.
• The state, in which the node must be translated at boot: «To enable».
• Address of the node in the ModBus network from 1 to 247.
• Inbound traffic, to the network of which the node is belonged to. It is selected from the list of
input transport of the subsystem “Transports” of OpenSCADA. Specifying as the transport the
symbol "*" makes this node a participant of any ModBus network with the processing of requests
from any transport.
• Variant of the ModBus protocol, requests in which must be processed by the node from the list:
All, RTU, ASCII, TCP/IP.
• The choice of the mode, in this case the mode “Data”.
• Period of calculation of data in seconds. Specifies the frequency of processing of forming for the
requests data, namely, data tables of ModBus, calculation of data programs and servicing of links to
the data of OpenSCADA.

Node in this mode process the following standars commands of the ModBus protocol:
• 01 - reading of the group of bits;
• 03 - reading of the group of registers;
• 05 - settig of the single bit;
• 06 - settig of the single register.

Fig.2. The tab “Node” of the configuration page of the node of the protocol in the “Data” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 248

To form the table of the reflection of the data of ModBus network, namely, registers and bits the tab
"Data" is provided(Fig.3). The tab "Data" contains a table of parameters and program for processing of the
parameters with the specified programming language, which is available in the system OpenSCADA. Table
contains the parameters with the properties:

• Id - ID of the parameter. It is the key for the formation of the tables of registers and bits of
ModBus. To specify that this parameter is the register of the ModBus, identifier must be written as
"R[N]w", where N - number of the register's number from 0 to 65535, and w - optional character
indicating the possibility of setting of it by the ModBus request eg: R23, R456, R239w. For the
ModBus bit specifying, ID must be written as "C[N]w", where N - number of bits from 0 to 65535,
and w - optional character indicating the possibility of setting of it by the ModBus request, eg:
C437, C0, C39w. All other parameters are internal and are used for a variety of intermediate
calculations, processing and conversion.
• Name - The name of the parameter is used for the naming of the connection.
• Type - Type of the parameter from the list: "Real", "Integer", "Boolean" and "String". For the
registers and bits of ModBus it makes sense to set "Integer" and "Boolean" type, respectively.
• Connection - Sign that this option should be to connect with the attribute of the parameter of
subsystem "Data acquisition". These connections are set in the "Connection" tab.
• Value - The original or current, if the node is switched on, the value of the parameter.

The table by default identifies several parameters of special significance:
• f_frq - frequency of computing the table by the program;
• f_start - sign of the first computing, the start up of the program.
• f_stop - sign of the last execution, the stop of the program.

Fig.3. The tab “Data” of the configuration page of the node of the protocol in the “Data” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 249

For the parameter which are signed as links above it can be set the links only to switched off node of the
protocol in the tab “Connections”(Figure 4).

Fig.4. The tab “Links” of the configuration page of the node of the protocol in the “Data” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 250

The mode of the node of the protocol “Gateway of the node”

Mode is used to carryover the requests to a separate device in the other ModBus network to the ModBus
network, in which this node is configured. The overall configuration of the node is made in the tab
“Node”(Fig. 2) by the parameters:

• The state of the node, as follows: Status, «Enable» and the name of the database containing the
configuration.
• Id, name and description of the node.
• The state, in which the node must be translated at boot: «To enable».
• Address of the node in the ModBus network from 1 to 247.
• Inbound traffic, to the network of which the node is belonged to. It is selected from the list of
input transport of the subsystem “Transports” of OpenSCADA. Specifying as the transport the
symbol "*" makes this node a participant of any ModBus network with the processing of requests
from any transport.
• Variant of the ModBus protocol, requests in which must be processed by the node from the list:
All, RTU, ASCII, TCP/IP.
• The choice of the mode, in this case the mode “Gateway of the node”.
• Transport, in which the request must be redirected, from the list of outgoing transports of
subsystem “Transports”.
• Protocol in which to redirect the request.
• Address of the node of ModBus network from 1 to 247, in which the request is forwarded to.

Fig.5. The tab “Node” of the configuration page of the node of the protocol in the “Gateway of the node”

mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 251

The mode of the node of the protocol “Gateway of the network”

Mode is used to carryover the requests of the network at whole to the other ModBus network from the
ModBus network, in which this node is configured. The overall configuration of the node is made in the tab
“Node”(Fig. 2) by the parameters:

• The state of the node, as follows: «Enable» and the name of the database containing the
configuration.
• Id, name and description of the node.
• The state, in which the node must be translated at boot: «To enable».
• Incoming transport of the network, from which the requests are transfered.It is selected from the
list of input transport of the subsystem “Transports” of OpenSCADA.
• Variant of the ModBus protocol, requests in which must be processed by the node from the list:
All, RTU, ASCII, TCP/IP.
• The choice of the mode, in this case the mode “Gateway of the network”.
• Transport, in which the request must be redirected, from the list of outgoing transports of
subsystem “Transports”.
• Protocol in which to redirect the request.

Fig.6. The tab “Node” of the configuration page of the node of the protocol in the “Gateway of the

network” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 252

 2.3 Report of the ModBus requests

To be able to monitor the correct implementation of requests to the various components the a module
provides an opportunity to incorporate the report of the requests that pass through the protocol module. The
report included by indication of non zero number of entries in the tab “Report” of the page of the module of
the protocol(Fig.7).

Fig.7. “Report” tab of the page of the module of the protocol.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 253

 3. Data acquisition module
Module of the data acquisition provides an opportunity to interrogate and write registers and bits of

devices through protocol modes TCP, RTU, ASCII and commands of request 0x01 – 0x06.

 3.1. Controller of data

For addition of a ModBus data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller is depicted in Fig.8.

Fig.8. Configuration tab of the controller.

Using this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 254

• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the configuration of the parameters of the controller.
• The period and the priority of the task of data acquisition.
• ModBus protocol, used for request to real device (TCP/IP, RTU or ASCII).
• Address of outbound transport from the list of configured outbound transports in the subsystem
“Transports” of OpenSCADA.
• ModBus destination node. In the case of protocols RTU and ASCII – this is the unique address of
the physical device, and when TCP/IP – the identifier of the unity.
• Combining fragments of registers. Standard functions 01–04 let to request at once multiple
adjacent registers or bits. This strategy often allows to optimize the traffic. However, the required
registers are not always located adjacent to each other, this option allows you to collect them in
blocks of up to 100 registers, or 1600 bits. The installing of this parameter must be approached with
caution, since not all devices support access to registers between fragments.
• Connection timeout in milliseconds. Specifies the time interval during which the answer is
expected. If there is zero waiting time by default the transport waiting time is used.
• Time of connection recovery in seconds. Specifies the time interval after which the re-attempt of
the request to previously inaccessible device is done.
• Attempts of request for the protocols RTU and ASCII. Indicates the number of attempts by the
repetition of the request in case of incomplete or damaged answer.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 255

 3.2. Parameters

Module of data acquisition provides only one type of parameters - "Standard". An additional
configuration parameter field of the module(Fig.9) is a list of processed attributes(registers ModBus).
Attribute in the list is written as follows: <dt>:<numb>:<wr>:<id>:<name>.

Where:
dt - Type of ModBus data (R-register, C-bit, RI- input register, CI-input bit). R and RI can

expanded by suffixes: i2-Int16, i4-Int32, f-Float, b5-Bit5.
numb - number of reguster or bit of ModBus device (decimal, octal or hexadecimal);
wr - read-write mode (r-read, w-write, rw-read and write);
id - ID of the attribute OpenSCADA;
name - name of the attribute OpenSCADA.

Fig.9. Сonfiguration tab of the parameter.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 256

In accordance with a specified list of attributes interrogation and the creation of the attributes of the
parameter is carried out(Figure 10).

Fig.10. Tab of the attributes of the parameter.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 257

The module of subsystem “Data
acquisition”<DCON>

Module: DCON
Name: DCON client
Type: DAQ
Source: daq_DCON.so
Version: 0.3.3
Author: Almaz Kharimov
Translated: Maxim Lysenko

Description:
Provides an implementation of DCON-client protocol. Supports I-7000 DCON
protocol.

License: GPL

DCON – the protocol of controllers' family ADAM(http://www.advantech.com/, http://ipc2u.ru/), ICP
DAS(http://www.icpdas.com/, http://ipc2u.ru/), RealLab(http://www.RLDA.ru/) and the like ones. It uses
serial lines RS-485 to transfer data.

This module provides the ability of input/output of information from various devices on the protocol
DCON. Also, the module implements the functions of the horizontal reservation, namely, working in
conjunction with the remote station of the same level.

 1. General description of the protocol DCON
DCON protocol requires one lead(requesting) device in the line (master), which can send commands to

one or more driven devices (slave), referring to them by a unique address in the line. Syntax of the
commands of the protocol allows the address 255 devices at one line of standard RS-485.

Initiative to exchange always comes from the leading device. Slave devices listen the line. Master
request (package, the sequence of bytes) in the line and turns into a listening the line. Slave device responds
to the request, which came to him.

The module of subsystem “Data acquisition”<DCON> 258

http://www.rlda.ru/
http://ipc2u.ru/
http://www.icpdas.com/
http://ipc2u.ru/
http://www.advantech.com/

 2. Module
This module provides the ability of clear interrogation and record of input-output ports of devices that

are compatible with ICP DAS I-7000. On the settings tabs of DCON module the necessary settings are
inserted, and on the attributes tabs the corresponding to the given parameters variables of input-output
appear.

 2.1. Data controller

For addition of the DCON data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller of the type is depicted in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.

The module of subsystem “Data acquisition”<DCON> 259

• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the configuration of the parameters of the controller.
• The period and the priority of the task of data acquisition.
• Name of the outgoing transport of serial interface configured in the module of transport “Serial”.

 2.2. Parameters

Module DCON provides only one type of parameters – “Standard”. On the parameters tab you can set:
• The state of the parameter "Enable": requires disabling-enabling for the changes on this tab take
effect.
• Id, name and description of the prameter.
• The state, in which the parameter must be translated at boot: "To enable".
• Type of the input-output module I-7000.
• Address of I-7000 device in the network RS-485. In decimal form from 0 to 255.
• Flag of checking the checksum. Must correspond to the one of the input/output module I-7000.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition”<DCON> 260

In accordance with the settings of the parameter and the interrogation and creation of the attributes is
carried out(Fig. 3).

Fig.3. Tab of the attributes of the parameter.

 3. Compatibility table of input/output modules of different
manufacturers
№№ Module ICP DAS ADAM RealLab
1 I-7051 I-7051, I-7053* ADAM-4051*, ADAM-4053* NL-16DI*, NL-16HV*
2 I-7045 I-7045, I-7043* NL-16DO*
3 I-7063 I-7063

4 I-7017 I-7017, I-7018*,
I-7019*, I-7005*

ADAM-4017*, ADAM-4018*,
ADAM-4019*

NL-8TI*, NL-8AI*

5 I-7024 I-7024 ADAM-4024 NL-4AO
* – not tested.

The module of subsystem “Data acquisition”<DCON> 261

The module of subsystem “Data acquisition”
<ICP_DAS>

Module: ICP_DAS
Name: ICP_DAS equipment
Type: DAQ
Source: daq_ICP_DAS.so
Version: 0.7.2
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides support for ICP DAS hardware. The support of I-87000 and I-7000 DCON
modules and I-8000 fast modules is included.

License: GPL

The module provides the OpenSCADA system with the support of various equipment of ICP DAS
company (http://www.icpdas.com/, http://ipc2u.ru/) through the API library of company libi8k.a. Most of
the equipment of the ICP DAS company is working under the DCON protocol, but some new equipment
such as I-8000 Series operates on a parallel bus, while another part is set into the parallel bus slots of I-8000
which are available under the serial interface and DCON protocol, they are not addressed directly and
require call of the specialized command of the slot selection. Access to equipment that uses direct requests
under the DCON protocol, can be implemented by the module DAQ.DCON. Support for the rest of the
equipment is not added to the module DAQ.DCON, but it was implemented in this module due to the
availability of API library of the ICP_DAS company only for the x86_32 platform, which brings
restrictions on access to the equipment of the ICP DAS company and other equipment under the DCON
protocol on the other hardware platforms.

The reason for creating this module was the works with the controller LP-8781 of LinPAC series of
ICP_DAS company with the purpose to implement runtime PLC based on the OpenSCADA system.

API library of the ICP_DAS company (libi8k.a) is available with source code of the module and does
not require separate installation.

The module of subsystem “Data acquisition” <ICP_DAS> 262

http://ipc2u.ru/
http://www.icpdas.com/

 1. Data controller
To add the ICP DAS data source the controller is created and configured in the OpenSCADA system.

Example of the configuration tab of the controller of this type is shown in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• State of the controller, namely: the status, "Enable" and "Run" and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the configuration of the parameters of the controller.
• The period and the priority of the task of data acquisition.
• Bus, on which the modules are placed. If you specify a serial interface (COMx), then access is

The module of subsystem “Data acquisition” <ICP_DAS> 263

made under the protocol DCON. If the main controller bus is LP-8x81 the access is made through
the parallel bus API or mixed.
• Parameters LinPAC. Wrapped to XML generic parameters of PLC family LinPAC. In generic
cases this field don't edited manual and edited into.
• Data transfer rate for the serial interface. It is indicated for the not main bus.
• Serial request's tries.

 2. Parameters
Module provides only one type of parameters - "Standard". On the parameters tab you can set:

• The state of the parameter, namely the type and the status "Enable"
• Id, name and description of the parameter.
• The state, in which the parameter must be translated at boot: "To enable".
• Type of the input-output module.
• Address of the I/O module, in the case of work not on the main bus - in the decimal value from 0
to 255.
• Slot of the module in the case of work with a series of devices I-8000.
• More options of the module. It is used not by all the modules and contains the text in XML. Not
intended for manual editing, and is formed on the Configuration tab, which is usually specific to the
each type of modules.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition” <ICP_DAS> 264

In accordance with the parameter settings the poll and the creation of attributes is made (Fig. 3).

Fig.3. Tab of the attributes of the parameter.

 2.1 Module I-8017

Fast analog input module that runs on a parallel bus. Provides speed access to data on one channel at 130
kHz. However, because of the pledged hardware limitations it does not allow to reach speed over 33 kHz
per channel when scanning multiple channels. Data expectation is in the blind cycle, which leads to great
losses of the CPU at high frequencies of the acquisition.

Module provides eight analog input attributes i{x} and eight signs of violation of the upper ha{x} and
the lower la{x} boundaries. Also the configuration tab is available with advanced configuration:

• Number of processed parameters - indicates how many inputs to process. It is characteristic for
the mode of fast data acquisition and used to limit the number of processed channels, commensurate
with used resources of the CPU.
• Frequency of the fast data acquisition (seconds) - indicates how often to carry out fast data
acquisition for the number of channels listed above. Fast mode of data acquisition is turned off by
indicating zero period.
• Modes of the gain for each input define a the following gains: +-1.25V, +-2.5V, +-5V, +-10V and
+-20mA.

The module of subsystem “Data acquisition” <ICP_DAS> 265

 2.2 Module I-8042

Fast digital input/output module works on a parallel bus. Provides 16 attributes for input i{x} and 16 for
the output o{x}.

 2.3 Module I-87019

The module of the analog input for the eight channels works on the serial bus and accessible under the
DCON protocol. Provides eight analog input attributes i{x} and eight signs of violation of the upper ha{x}
and the lower la{x} boundaries. The module provides temperature measurement of cold junctions of
thermocouples.

Module provides the tab "Configuration" with the advanced configuration of modes of inputs: +-15mV,
+-50mV, +-100mV, +-150mV, +-500mV, +-1V, +-2.5V, +-5V, +-10V +-20mA, J type, K type, T type, E
type, R type, S type, B type, N type, C type, L type, M type, L type (DIN43710C).

 2.4 Module I-87024

Analog output module for the four channels working on the serial bus and accessible under DCON
protocol. Provides four analog output attributes o{x}.

In addition it include tab "Configuration" with configuration host watchdog and output values wich set at
enable and reset by watchdog.

 2.5 Module I-87057

Digital output at 16 channels working on the serial bus and accessible under DCON protocol. Provides
16 diskret outputs o{x}.

In addition it include tab "Configuration" with configuration host watchdog and output values wich set at
enable and reset by watchdog.

 3. LP-8x81 series controllers configuration
For common properties the controllers series LP-8x81 configuration allowed accordingly tab on

module's page, where you can get information about controller's serial number, SDK version and DIP-
switch value, and also set value for controller's watchdog timer. The watchdog timer is disabled by set it to
zero value. Watchdog timer's value updated into controller's task and with it period. The acquisition task
hang consequently follow controller's restart!

Links
Special modules for Linux kernel 2.6.29 for controllers LP-8x81: lp8x81_2629.tgz

The driver from VIA for controllers LP-8x81 network: rhinefet20070212111037.tgz

On standard Linux network driver the speed is droped significant after days work

The patch for build network driver for Linux 2.6.29: build_2.6.29.patch

The module of subsystem “Data acquisition” <ICP_DAS> 266

http://wiki.oscada.org/Doc/ICPDAS/files?get=build_2.6.29.patch
http://wiki.oscada.org/Doc/ICPDAS/files?get=rhinefet20070212111037.tgz
http://wiki.oscada.org/Doc/ICPDAS/files?get=lp8x81_2629.tgz

The module of subsystem “Data acquisition”
<DAQGate>

Module: DAQGate
Name: Gateway of the data sources
Type: DAQ
Source: daq_DAQGate.so
Version: 0.9.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Allows you to perform the locking of the data sources of the remote OpenSCADA
stations in the local ones.

License: GPL

The main function of this module is the reflection of the data of the “Data acquisition”
subsystem of the remote OpenSCADA stations on the local ones. In its work, the module uses the
self protocol of the OpenSCADA system (Self System) and service functions of the subsystem
“Data acquisition”.

Module realizes the following functions:
• The reflection of the structure of the parameters of the subsystem “Data acquisition” of
the remote station. The structure is periodically synchronized while working.
• Access to the configuration of the parameters. Configuration of the parameters of the
controllers of remote stations is transparently reflected that lets you to change it remotely.
• Access to the current value of the attributes of the parameters and the possibility of their
modification. The values of the attributes of the parameters are updated at a frequency of
execution of the local controller. Requests for modification of the attributes are transmitted
to the remote station.
• Reflection of the archives of values of individual attributes parameters. The reflection of
the archives is realized in two ways. The first method includes creating of the local archive
for the attribute and its synchronization with the remote, the restoration of the archive at the
stop of the station is provided. The second method is the translation of the requests of the
local archive file to the one of the remote station.
• Provides the implementation of the mechanism of the vertical redundancy as an
opportunity to reflect data from the multiple stations at the same level.
• Realization of the functions of horizontal redundancy, namely, working in the
conjunction with the remote station of the same level.

Using of the available redundancy schemes is graphically represented in Figure 1.

http://wiki.oscada.org.ua/HomePageEn/Doc/SelfSystem?v=1cju

Fig.1. Horizontal and vertical redundancy.

The module of subsystem “Data acquisition” <DAQGate> 268

 1. Controller of data
For addition of the data source the controller is created and configured in the system OpenSCADA.

Example of the configuration tab of the controller is depicted in Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: «Enable», «Run» and the name of the database containing
the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Horizontal mode for redundancy and performance mode of the controller.
• The period in seconds, and the priority of the date acquisition task.
• Recurrence interval of time of the attempting to restore a lost connection with the station in
seconds.
• Maximum depth of data of the archive to restore when start in the hours.
• The period of synchronization with a remote station in seconds.

The module of subsystem “Data acquisition” <DAQGate> 269

• List of the reflected remote stations. Several stations in the list include a mechanism of vertical
redundancy.
• The list of the reflected controllers and parameters. The list can be used as for controllers for the
reflection of all their parameters, and for individual parameters too.
• The commands to go to the configuration of remote stations.

 2. Parameters
The module does not provide the possibility of setting up the parameters manually, all parameters are

created automatically, taking into account the list of reflected controllers and parameters. Example of the
reflected parameter is shown in Fig. 3.

Fig.3. Configuration tab of the reflected parameter.

The module of subsystem “Data acquisition” <DAQGate> 270

The module of subsystem “Data
acquisition”<SoundCard>

Module: SoundCard
Name: Sound card
Type: DAQ
Source: daq_SoundCard.so
Version: 0.6.1
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides an access to the sound card.
License: GPL

This module is designed to provide data from the inputs of sound cards of the system. The module is
based on the multi-platform library of work with sound PortAudio (http://www.portaudio.com). The feature
of this library is the unified API, which allows you to easily adapt this module to work on different
platforms and even different audio subsystems on a single platform.

Structure of the module is the reflection of the object “Controller” of subsystem “Data acquisition” on a
separate audio input device available in the system. The object “Parameter” of the subsystem “Data
acquisition” reflects a separate channel available from the sound input device to the attribute “val”. The
most functional is to use the attribute “val” in conjunction with the archive, or at least with its buffer. In the
case of the archiving enabling data of the channel of audio input are placed in the buffer of the archive by
the packages with the frequency of data fetch of input device that allows you to perform further operations
on that data. In addition, the last package value is installed as the current value of the attribute. In the case
of archive absence operation of the last package value placing as the current value of the attribute is
performed only.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

The module of subsystem “Data acquisition”<SoundCard> 271

 1. Controller of the data
To add an audio input device the controller is created and configured in the system OpenSCADA.

Example of the configuration tab of the controller is depicted in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the configuration of the parameters of the controller.
• Card device from the list of available ones.
• Frequency of the fetch of values of cards in hertz.
• Type of values of fetch from the list: Real 32, Integer 32 and Integer 16.

The module of subsystem “Data acquisition”<SoundCard> 272

 2. Parameters
To add a channel of input sound device the parameter of controller is created and configured in the

system OpenSCADA. Example of the configuration tab of the parameter is depicted in Figure 2.

Fig.2. Configuration tab of the parameter.

From this tab you can set:
• Type of the parameter and indicate the status "Enable".
• Id, name and description of the parameter.
• The state, in which the parameter must be translated at boot: «To enable».
• Channel of the audio input device from the list of available channels.

The module of subsystem “Data acquisition”<SoundCard> 273

Tab of attributes of the parameter has the form presented in Figure 3, the tab of the values of the
attribute's archive “val” is presented in Fig.4.

Fig.3. Tab of the attributes of the parameter.

Fig.4. Tab of the values of the archive of the attribute “val”.

The module of subsystem “Data acquisition”<SoundCard> 274

The <OPC_UA> module of “Data acquisition”
and “Transport protocols” subsystems

Parameter Module 1 Module 2
ID: OPC_UA OPC_UA
Name: OPC_UA OPC_UA
Type: DAQ Protocol
Source: daq_daq_OPC_UA.so
Version: 0.6.0 0.6.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description: Provides the implementation of client
service of OPC UA.

Provides the implementation of the OPC
UA protocol.

License: GPL

OPC (OLE for Process Control) - it is the family of protocols and technologies that provide the single
interface to control the objects of automation and technological processes. The creating and support of
specifications of OPC coordinates an international nonprofit organization OPC Foundation, established in
1994 by the leading manufacturers of industrial automation.

In view of the fact that a significant influence in the OPC Foundation organization has the Microsoft
corporation, OPC protocols, until recently, was single platform and closed, due to binding to the closed
technologies of MS Windows. However, more recently, the OPC Foundation organization has created
multi-platform interfaces such as OPC XML DA and OPC UA. The most interesting of them is the OPC
UA interface, as unifying all the earlier interfaces in an open and multi-platform technology.

This module implements the interface and protocol support for OPC UA in the form of client service,
and as the OPC UA server. Client service of OPC UA is implemented by the same name module of the
subsystem "Data acquisition", and the server is implemented by the subsystem's "Protocols" module.

In the current version of these modules it is implemented the binary part of the protocol and basic
services in unsafe mode and safe mode of policies "Base128Rsa15" и "Base256". Later it is planned to
extend the module to work via HTTP/SOAP and implementation of other OPC UA services.

Although the OPC UA protocol is multi-platform, its specification and SDK are not freely available, but
are provided only to members of the OPC Foundation organization. For this reason, the implementation of
these modules has faced significant obstacles and problems.

First, the protocol OPC UA is complex and its realization in general without specification an extremely
laborious. For this reason, the work on these modules for a long time was not started, and only thanks to
sponsorship by an organization-member of OPC Foundation the OpenSCADA project received
documentation of the specification. The SDK and source code ANSIC-API of the OPC-UA protocol have
not been received due to their incompatibility with the GPL license and as a consequence, the potential
threat of violation of the license when working with source code, which could lead to subsequent legal
problems with the free distribution of these modules.

Secondly, even the presence of specification does not allow to solve some technical question without an
example of implementation and the possibility of test the working prototype of the client and server of OPC
UA. For example, it is the technical features of the implementation of symmetric encryption algorithms and
the keys for them do not allowed to make the implementation of support for security policy at once.

To debug the operation of modules the demonstration software of company Unified Automation
consisting of the OPC UA client - UA Expert and Server - OPC UA Demo Server, from SDK package, was
used.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 275

 1. OPC UA protocol
OPC UA - is the platform-independent standard by the means of which the systems and devices of

various types can interact by sending messages between the client and the server through various types of
networks. The protocol supports secure communication through the validation of clients and servers, as
well as the counteraction to attacks. OPC UA defines the concept Services that the servers can provide, as
well as services that the server supports for the client. Information is transmitted as the data types defined
by OPC UA and producer, in addition the servers define object model, for which the clients can implement
the dynamic review.

OPC UA provides the combination of integrated address space with service model. This allows the
server to integrate data alarms and events, the history in this address space, as well as provide access to
them through integrated services. Services also provide an integrated security model.

OPC UA allows servers to provide for clients the definitions of types for access to the objects of the
address space. OPC UA supports the provision of data in various formats, including binary structures and
XML-documents. Through the address space clients can request the server metadata that describe the data
format.

OPC UA adds the support for multiple connections between nodes instead of a simple hierarchy. Such
flexibility in combination with types' definition allows to use OPC UA for solving problems in the wide
problem area.

OPC_UA is designed to provide the reliable output of data. The main feature of all OPC servers - the
ability to issue the data and events.

OPC_UA is designed to support the wide range of servers, from simple PLC to industrial servers. These
servers are characterized by the wide range of sizes, performance, platforms and functional capacity.
Consequently, the OPC UA defines the comprehensive set of possibilities, and the server can implement the
subset of these possibilities. To ensure the interoperability between OPC UA defines the subsets, named the
Profiles that the server can indicate for agreement Clients may subsequently make the review of server's
profiles and make the interaction with the server, based on the profiles.

OPC UA specification is designed as the core in the layer, isolated from the underlying computer
technologies and network transports. This allows OPC UA if necessary to expand on the future
technologies without exclusion the framework of design. Currently, the specification defines two ways to
data encode: XML/text and UA Binary. In addition, the two types of transport layer are defined: TCP and
HTTP/SOAP.

OPC UA is designed as the solution for migration from OPC clients and servers, which are based on
Microsoft COM technologies. OPC COM servers (DA, HDA and A&E) can be easily reflected in the OPC
UA. Producers can independently make such migration or recommend users to use wrappers and converters
between these protocols. OPC UA unifies the previous models in the single address space with the single
set of services.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 276

 2. The module of the protocol implementation
Protocol module contains the implementation code for the protocol part of the OPC UA for both the

client and for server services. To construct the OPC UA server it is enough to create an incoming transport,
for ordinarily this TCP-transport of module Sockets, and select in it the module of the protocol, and also
configure although one enpoint node of protocol module, about it bellow.

 2.1. Service the requests on the OPC UA protocol

Incoming requests to the module-protocol are processed by the module in accordance with configured
end points of OPC UA (EndPoints) (Fig. 1).

Fig.1. End points of the protocol.

Endpoint of the OPC UA protocol is actually the server object of OPC UA. End points in OPC UA can
be either local or remote. The local one is designed to provide the resources of OpenSCADA station to
protocol OPC UA, while the remote end points are both for the service and review of available OPC-UA
units, and for locking requests to remote stations. In this version of the module is only supported the
configuration of the local endpoints.

The general configuration of the endpoint is made on the main tab of the endpoint page (Fig. 2) with the
parameters:

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 277

• Node status, namely: the state, "Enable" and the name of the database containing the
configuration.
• ID, name and description of the node.
• The state, in which to transfer the node at start: "Enable".
• Type of the protocol coding. At the moment it is only "binary".
• URL of the end point.
• The server certificate in the PEM format.
• The private key in the PEM format.
• Security Server Policy.

Fig.2. The main tab of the end node.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 278

 3. Data acquisition module
Data acquisition module provides the ability of inquiry and recording the value's attributes (13) of points

with the "Variable" type.

 3.1. Data controller

To add the OPC UA data source controller in the OpenSCADA system is created and configured. An
example of the configuration tab of the controller is shown in Figure 3.

Fig.3. Controller's configuration tab.

From this tab you can set:
• The state controller, namely: Status, "Enable", "Run"and the name of the database containing the
configuration.
• ID, name and description of the controller.
• The state, in which to transfer the controller at start: "Enable", "Run".
• The mode of horizontal redundancy and preference for the execution of the controller.
• The name of the table to store the configuration of parameters of the controller.
• The parameters of the execution the acquisition task scheduler and its priority.
• The period of the synchronization of the configuration of attributes of the parameters with the
remote station, and try time for connection restore.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 279

• The address of the outgoing transport from the list of configured outgoing transports in the
subsystem "Transports" of OpenSCADA.
• The URL of the endpoint of remote station.
• Security policy and the mode of messaging security.
• The client certificate and private key in PEM format.
• The limit of the number of attributes in the parameter for the import mode of all the attributes
belonging to the object.

To facilitate the identification of nodes on the remote station, as well as their choice to be inserted in the
parameter of the controller in the controller's object it is provided the navigation on the remote station's
nodes tab, where you can walk through the tree of objects and familiar with their attributes (Figure 4).

Fig.4. The "Server nodes browser" tab of the controller's page.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 280

 3.2. Parameters

Data acquisition module provides only one type of parameters - "Standard". Additional configuration
field of the parameter of the module (Fig. 5) is the list of OPC UA nodes. Attribute in this list is written as
follows: [ns:id].

Where:
ns - names scope, number, zero value can missed;
id - node identifier, number, string, bytes string and GUID.

Example:
84 - root directory;
3:"BasicDevices2" - basic devices node in the names scope 3 and string view;
4:"61626364" - node in the names scope 4 and byte string view;
4:{40d95ab0-50d6-46d3-bffd-f55639b853d4} - node in the names scope 4 and GUID view.

Fig.5. The configuration tab of the parameter.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 281

In accordance with the specified list of nodes the inquiry and the creation of the parameter's attributes is
made (Fig. 6).

Fig.6. The parameter's attributes tab.

 4. Notes
During the implementation of modules supporting OPC UA was detected several inconsistencies with

the official SDK specification OPC UA:

• OPC UA Part 6 on page 27 contains an image of a handshake to establish a secure channel. The
message of session create is signed by the client symmetric key and encrypted by server. In fact,
both signature and encryption of the server key made.

• OPC UA Part 4 on page 141 contains a description of data structure signatures, which are the first
data signature, and then the string algorithm. In fact, the reverse order is implemented.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 282

Module <Sockets> of subsystem “Transports”
Module: Sockets
Name: Sockets
Type: Transport
Source: tr_Sockets.so
Version: 1.4.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides transport, based on the socket. It supports internet and unix sockets. Internet
socket uses TCP and UDP protocols.

License: GPL

Transport module Sockets provides support of transport based on the socket to the system. incoming and
outgoing transport, based on internet sockets: TCP, UDP and UNIX sockets are supported. Addition of the
new incoming and outgoing sockets can be done through the configuration of the transport subsystem in
any system configurator of OpenSCADA.

Module <Sockets> of subsystem “Transports” 283

 1. Incoming transports
Configured and running incoming transport opens the server socket for the expectation of connection of

the clients. In the case of the UNIX socket, the UNIX socket file is created. TCP and UNIX sockets are
multi-stream, ie when the client connects to a socket of these type, the client socket and the new stream in
which the client is served are created. Server socket in this moment switches to the waiting for the request
from the new client. Thus the parallel service of the clients is achieved.

Each incoming socket is necessarily associated with one of the available transport protocols, to which
incoming messages are transmitted. In conjunction with the transport protocol is supported by a mechanism
of the combining of pieces of requests, disparate while transferring.

Configuration dialog of the incoming socket is depicted in Figure 1.

Fig.1. Configuration dialog of the incoming socket.

Using this dialog you can set:
• The state of transport, namely: “Status”, “Running” and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport. The format of the address is listed in the table below.
• The choice of transport protocol.
• The state, in which the controller must be translated at boot: «Running».

Module <Sockets> of subsystem “Transports” 284

• The length of the queue of sockets, the maximum number of clients to serve and the size of the
input buffer.
• The limits the mode "Keep-alive" by requests counter and timeout.
• Transport's tasks priority.

Features of the formation of addresses of incoming sockets are shown in the table below:

Socket's
type

Address

TCP

TCP:[address]:[port]:[mode] where:
• address – Address, on which the socket is opened. It must be one of the addresses of

the host. If nothing is specified, the socket will be available in all the host interfaces.
There may be as symbolic as well as IP presentation of address.

• port – Network port, on which the socket is opened. Indication of the character name
of the port (according to /etc/services) is available.

• mode – mode of working of the incoming socket (0 – close the connection after the
session reception-response, 1 – do not close).

Example: <TCP::10001:1> – TCP-socket is available on all interfaces, is opened on port
10001 and doesn't close the connection.

UDP

UDP:[address]:[port] where:
• address – the same as in the TCP;
• port – the same as in the TCP.

Example: <UDP:localhost:10001> – UDP-socket is only available on the “localhost”
interface and is opened on the port 10001.

UNIX

UNIX:[name]:[mode] where:
• name – UNIX socket file name;
• mode – the same as in the TCP.

Example: <UNIX:/tmp/oscada:1> – UNIX-socket is available through the file /tmp/oscada
and it doesn't close the connection.

Module <Sockets> of subsystem “Transports” 285

 2. Outgoing transports
Configured and running outgoing transport opens a connection to the specified server. In the case of

destroying of the connection, outgoing transport is disconnected. In order to resume the connection
transport must be re-run.

Main tab of the configuration page of outgoing socket is shown in Fig.2.

Fig.2. Main tab of the configuration page of the outgoing socket.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport. The format of the addresses is listed in the table below.
• The state, in which the controller must be translated at boot: «To start».
• Default timeout for connection and respond wait, separated.

Module <Sockets> of subsystem “Transports” 286

The addresses of outgoing sockets of different types are formed as follows:

Socket's
type

Address

TCP/UDP

TCP:[address]:[port] UDP:[address]:[port] where:
• address – Address to which the connection is performed. There may be as the

symbolic representation as well as IP one of the address.
• port – Network port, with which the connection is made. Indication of the character

name of the port is available(according to /etc/services).
Example: <TCP:127.0.0.1:7634> – To connect to the port 7634 on the host 127.0.0.1.

UNIX

UNIX:[name] where:
• name – UNIX socket file name.

Example: <UNIX:/tmp/oscada> – to connect to the UNIX-socket through the file
/tmp/oscada.

Module <Sockets> of subsystem “Transports” 287

Module <SSL> of subsystem “Transports”
Module: SSL
Name: SSL
Type: Транспорт
Source: tr_SSL.so
Version: 0.9.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides transport based on the secure sockets' layer. OpenSSL is used and SSLv2,
SSLv3 and TLSv1 are supported.

License: GPL

The module SSL of the transport provides the support of transport based on secure sockets layer (SSL)
into the system. In the basis of the module there is the library OpenSSL. Incoming and outgoing transports
of protocols SSLv2, SSLv3 and TLSv1 are supported.

It is possible to add new incoming and outgoing transports through the transport subsystem configuration
in any configurator of OpenSCADA system.

Module <SSL> of subsystem “Transports” 288

http://www.openssl.org/

 1. Incoming transports
The configured and runnig incoming transport opens server SSL-socket for the expectation of connection

of the clients. SSL-socket is a multi-stream, ie when the client connects, the client SSL-connection and a
new stream in which the client is served are created. Server SSL-socket in this moment switches to the
waiting for the request from the new client. Thus the parallel service of the clients is achieved.

Each incoming transport is necessarily associated with one of the available transport protocols, to which
incoming messages are transmitted. In conjunction with the transport protocol is supported by a mechanism
of the combining of pieces of requests, disparate while transferring.

Configuration dialog of the incoming SSL-transport is depicted in Figure 1.

Fig.1. Configuration dialog of the incoming SSL-transport.

Using this dialog you can set:
• The state of transport, namely: “Status”, “Running” and the name of the database, containing the
configuration.
• Id, name and description of transport.

Module <SSL> of subsystem “Transports” 289

• Address of the transport in the format: "[address]:[port]:[mode]", where:
• address – Address, on which the SSL is opened. It must be one of the addresses of the
host. If the "*" is indicated then SSL will be available in all the host's interfaces. There may
be as the symbolic representation as well as IP one of the address.
• port – Network port, on which the SSL is opened. Indication of the character name of the
port (according to /etc/services) is available.
• mode – SSL-mode and version (SSLv2, SSLv3, SSLv23, TLSv1). By default and in case
of error the SSLv23 is used.

• The choice of transport protocol.
• The state, in which the transport must be translated at boot: «To start».
• Certificates, private SSL key and password of private SSL key.
• The maximum number of clients to serve and the size of the input buffer.
• The limits the mode "Keep-alive" by requests counter and timeout.
• Transport's tasks priority.

 2. Outgoing transports
Configured and running outgoing transport opens the SSL connection to the specified server. In the case

of destroying of the connection, outgoing transport is disconnected. In order to resume the connection
transport must be re-run.

Main tab of the configuration page of outgoing SSL-transport is shown in Fig.2.

Fig.2. Main tab of the configuration page of the outgoing SSL-transport.

Module <SSL> of subsystem “Transports” 290

Using this dialog you can set:
• The state of transport, namely: “Status”, “Running” and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport in the format: "[address]:[port]:[mode]", where:

• address – Address with which the connection is made. There may be as the symbolic
representation as well as IP one of the address.
• port – Network port with which the connection is made. Indication of the character name
of the port (according to /etc/services) is available.
• mode – SSL-mode and version (SSLv2, SSLv3, SSLv23, TLSv1). By default and in case
of error the SSLv23 is used.

• The state, in which the transport must be translated at boot: «To start».
• Certificates, private SSL key and password of private SSL key.
• Default timeout for connection and respond wait, separated.

 3. Certificates and keys
For a valid module work certificates and private keys are required. In the case of the incoming SSL-

transport (the server) they are compulsory. In the case of outgoing SSL-transport they can not be even
installed though their using is desirable.

The simplest configuration of the certificate is self-subscription certificate and private key. The
following describes how to create them using the tool openssl:

Generation the secret key
$ openssl genrsa -out ./key.pem -des3 -rand /var/log/messages 2048
Generation of self-subscription certificate
$ openssl req -x509 -new -key ./key.pem -out ./selfcert.pem -days 365

Next, the contents of the files key.pem and selfcert.pem is copied into the text field of the certificate and
key. Password of the private key is installed in the appropriate field.

Module <SSL> of subsystem “Transports” 291

Module <Serial> of subsystem “Transports”
Module: Serial
Name: Serial Interface
Type: Transport
Source: tr_Serial.so
Version: 0.7.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides a serial interface. It is used to data exchange via the serial interfaces of type
RS232, RS485, GSM and more.

License: GPL

Module of transport Serial provides support of transports based on the type of serial interfaces RS232,
RS485, GSM, and others to the system. Incoming and outgoing transports are supported. To add new
incoming and outgoing interfaces is possible by means of configuration of the transport subsystem in the
system configurator of OpenSCADA.

Into modem mode by the module support misc work mode. Misc mode mean an input transport allow,
which wait ingoing connections, and also an output transport allow at idem device. That is the input
transport will ignore all requests while the output transport's established connection allow, in idem time the
output transport will not try make connection while the input transport have connection or other an output
transport connected to other telephone, for example.

Module <Serial> of subsystem “Transports” 292

 1. Incoming transports
The configured and runnig incoming transport opens port of serial interface for the expectation of the

requests of the clients. Each incoming interface is necessarily associated with one of the available transport
protocols, to which the incoming messages are transmitted.

Configuration dialog of the incoming serial interface is depicted in Figure 1.

Fig.1. Configuration dialog of the incoming serial interface.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport in the format: "[dev]:[spd]:[format]:[fc]:[mdm]". Where:

• dev - address of the serial device (/dev/ttyS0);
• spd - speed of the serial devices from a number of: 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400, 460800, 500000, 576000 or 921600;
• format - asynchronous data format "<size><parity><stop>" (8N1, 7E1, 5O2, ...);
• fc - flow control: 'h' - hardware (CRTSCTS), 's' - software (IXON|IXOFF);
• mdm - modem mode, listen for 'RING'.

• The choice of transport protocol.
• The state, in which the transport must be translated at boot: "To start".
• Time intervals of the interface in the format of string: "[symbol]:[frm]". Where:

• symbol - symbol time, in milliseconds. Used for control of the end of the frame;

Module <Serial> of subsystem “Transports” 293

• frm - the maximum time of the frame in milliseconds. Used to limit the maximum size of
the package of the request (frame).

Transport supports the ability to work as a modem. This mode is activated by the fifth parameter of the
addresse and includes call waiting from the remote modem (request "RING"), answering the call (command
"ATA") and the subsequent transfer the requests from the remote station to the transport's protocol. Turning
off the communication session is made by the initiator of the connection and leads to the reconnect of the
modem-receiver for the waiting for new calls.

To configure the modem of the incoming transport the special tab "Modem" is provided (Fig. 2).

Fig.2. "Modem" tab of the modem's configuration of the incoming serial interface.

With this dialog you can set the following properties of working with modem:
• Requests timeout of the modem in seconds.
• The time delay before initializing the modem in seconds.
• The time delay after initializing the modem in seconds.
• The first initialization string typically contains the reset command of the modem "ATZ".
• The second initialization string.
• The result string of the modem's initialization, usually "OK", with which the modem answers for
initializing and which must be expected.
• The call's request, usually is "RING", which is sent by the modem in the case of an outgoing call.
• The answer to the call, usually is "ATA", which is sent to the modem to answer the call.
• String result of the answer the call, usually is "CONNECT", with which the modem answers to
the answer command, and that is to be expected.

Module <Serial> of subsystem “Transports” 294

 2. Outgoing transports
Configured and running outgoing transport opens port of the serial interface for the sending the requests

through it.

Main tab of the configuration page of outgoing serial interface is shown in Fig.2.

Fig.2. Main tab of the configuration page of outgoing serial interface.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport in the format: "[dev]:[spd]:[format]:[fc]:[modTel]". Where:

• dev - address of the serial device (/dev/ttyS0);
• spd - speed of the serial devices from a number of: 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400, 460800, 500000, 576000 or 921600;
• format - asynchronous data format "<size><parity><stop>" (8N1, 7E1, 5O2, ...);
• fc - flow control: 'h' - hardware (CRTSCTS), 's' - software (IXON|IXOFF);
• modTel - modem telephone, the field presence do switch transport to work with modem
mode.

• The state, in which the transport must be translated at boot: "To start".
• Time intervals of the interface in the format of string: "[conn]:[symbol]". Where:

• conn - waiting time of the connection i.e. response from the remote device.
• symbol - symbol time, in milliseconds. Used for control of the end of the frame.

Module <Serial> of subsystem “Transports” 295

Transport supports the ability to work as a modem. This mode is activated by the fifth parameter of the
addresse, and implies the phone call making at the number, specified in the fifth parameter, at the moment
of transport's start. After installation the connection with the remote modem all requests are sent to the
station behind the remote modem. Turning off the communication session at the transport's stop is made
using the activity timeout.

To configure the modem of the outgoing transport the special tab "Modem" is provided (Fig. 4).

Fig.4. "Modem" tab of the configuration of modem of outgoing serial interface.

With this dialog you can set the following properties of working with modem:
• Requests timeout of the modem in seconds.
• Lifetime of the connection in seconds. If during this time there will be no data transmission over
the transport the connection will be aborted.
• The time delay before initializing the modem in seconds.
• The time delay after initializing the modem in seconds.
• The first initialization string typically contains the reset command of the modem "ATZ".
• The second initialization string.
• The result string of the modem's initialization, usually "OK", with which the modem answers for
initializing and which must be expected.
• Dialing string to the remote modem, usually is "ATDT". When you dial the phone number is
appended to this prefix.
• The string result of the successful connection, typically is "CONNECT".
• The string result of the busy line, usually is "BUSY".
• The string result of the absence of the carrier in line, usually is "NO CARRIER".
• The string result of the lack of dial tone in the line, typically is "NO DIALTONE".
• The command hang up, is usually "+++ATH". This command is called whenever there is need to
break the connection.
• The string result of the hang up command, usually is "OK", with which the modem answers to
the command and which must be expected.

Module <Serial> of subsystem “Transports” 296

Module <HTTP> of subsystem “Protocols”
Module: HTTP
Name: HTTP
Type: Protocol
Source: prot_HTTP.so
Version: 1.5.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides support for the HTTP protocol for WWW-based user interfaces.
License: GPL

Module of the transport protocol HTTP is designed to support the implementation of network
protocol HTTP (Hypertext Transfer Protocol) in the system OpenSCADA.

HTTP Protocol is used to transfer the WWW contents. For example, via HTTP the following
types of documents are transmitted: html, xhtml, png, java, and many others. Adding the HTTP
support in OpenSCADA system together with the Sockets transport allows to implement various
user functions based on the WWW interface. The module implements two main methods of the
HTTP protocol: "GET" and "POST". "HTTP" module provides control of the integrity of HTTP-
queries and, jointly with "Sockets" transport, allows to "collect" holistic requests of their fragments,
as well as maintain the keeping of the connection alive (Keep-Alive).

For flexible connection of the user interfaces to the module the modular mechanism within the
module HTTP is used. In the role of modules the modules of subsystem the "User interfaces" are
used with the additional information field "SubType" with the value of "WWW".

In the requests for the Web resources the URL(Universal Resource Locator) are commonly used,
hence the URL is passed as the main parameter via HTTP. The first element of the requested URL
is used to identify the module UI. For example URL: http://localhost:10002/WebCfg means -
address to module WebCfg on the host http://localhost:10002. In the case of an incorrect indication
of the module ID, or when you address without identifier of the module at all, HTTP module
generates the dialogue of the information on the input and with the choice of one of the available
user interfaces. Example of a dialogue is shown in Figure 1.

Fig.1. Dialog of the choice of WWW-interface module.

 1. Authentication
Module supports authentication in the system OpenSCADA while providing access to the WEB-

interface modules (Fig.2). Dialogue is formed in the language of XHTML 1.0 Transitional!

Fig.2. Authentication dialogue in the system OpenSCADA.

For ease of Web-based interface module provides the ability to automatically log on behalf of the
specified user. Configuring automatic logon to make by the module settings page (Fig.3).

Fig.3. The module configuring page.

On the module settings you can specify the lifetime of the authentication and set up automatic login.
Automatic login is carried out by matching the address indicated in the column "Address", on behalf of the
user specified in the column "User".

Module <HTTP> of subsystem “Protocols” 298

 2. The modules of user WEB-interface
Modules of the user interface (UI) designed to work with HTTP module, should indicate an information

field "SubType" with the value "WWW" and "Auth" field with the value "1" if the module requires an
authentication at login. For communication of HTTP module and UI modules an advanced communication
mechanism is used. This mechanism involves the export of interface functions. In this case the UI modules
must export the following function:

• void HttpGet(const string &url, string &page, const string &sender, vector<string> &vars,
const string &user); - GET method with the parameters:
url - address of the request; page - page with the answer; sender - address of the sender; vars -
request variables; user - user of the system.
• void HttpPost(const string &url, string &page, const string &sender, vector<string> &vars,
const string &user); - POST method with the parameters:
url – address of the request; page – page with the answer and with the contents of the body of the
POST request; sender – address of the sender; vars – request variables; user - user of the system.

Then, in the case of a HTTP GET request, the function HttpGet will be called, and in the case of the
POST request, the function HttpPost will be called in the appropriate UI module.

 3. Outgoing requests function's API
The outgoing function of API operate by HTTP-request's content which wrapped to XML-packages. The

request structure is:

<req Host="host" URI="uri">
<prm id="pId">pVal</prm>
<cnt name="cName" filename="cFileName">

<prmid="cpId">cpVal</prm>
cVal

</cnt>
</req>

Where:
• req - request method, supported methods "GET" and "POST".
• host - http-server address into format [HostAddr]:[HostIp]. If that field have been passed then
used node address which set into address field of the transport.
• uri - resource address, file or direcory, at http-server.
• pId, pVal - identifier and value of addition http-parameters. You can set multiply http-parameters
by different prm tags set.
• cName, cFileName, cVal - name, file-name and value of content-element of POST-request. You
can set multiply content-elements by different cnt tags set.
• cpId, cpVal - identifier and value of addition content-parameters. You can set multiply content-
parameters by different prm tags set.

Request result's structure is:

<req Host="host" URI="uri" err="err" Protocol="prt" RezCod="rCod" RezStr="rStr">
<prm id="pId">pVal</prm>
respVal

</req>

Where:
• req - request method.
• host - http-server address.
• uri - resource address.
• err - the error wich appear in request time. For successed requests the field is empty.
• RezCod, RezStr - request result into view code and text.
• pId, pVal - identifier and value of addition http-parameters. Respond can set multiply http-
parameters by different prm tags set.

Module <HTTP> of subsystem “Protocols” 299

• respVal - respond's content.

Into example role we accord using the function into users procedures for GET and POST requests
making by language JavaLikeCalc.JavaScript:

//GET request
req = SYS.XMLNode("GET");
req.setAttr("URI","/");
SYS.Transport.Sockets.out_testHTTP.messIO(req,"HTTP");
test = req.text();

//POST request
req = SYS.XMLNode("POST");
req.setAttr("URI","/WebUser/FlowTec.txt");
cntNode = req.childAdd("cnt").setAttr("name","pole0").setAttr("filename","Object2-
k001-100309-17.txt");
cntNode.childAdd("prm").setAttr("id","Content-Type").setText("text/plain");
cntText = "Object2-k001\r\n";
cntText += "\r\n";
cntText += "v002\r\n";
cntText += " n1\r\n";
cntText += " 09.03.10 16 Polnyj 7155.25 216.0 32.000 17.5\r\n";
cntText += "v005\r\n";
cntText += " n1\r\n";
cntText += " 09.03.10 16 Polnyj 188.81 350.0 4.000 40.0\r\n";
cntText += "\r\n";
cntNode.setText(cntText);
SYS.Transport.Sockets.out_testHTTP.messIO(req,"HTTP");

Module <HTTP> of subsystem “Protocols” 300

Module <SelfSystem> of subsystem “Protocols”
Module: SelfSystem
Name: OpenSCADA system own protocol
Type: Protocol
Source: prot_SelfSystem.so
Version: 0.9.3
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: OpenSCADA system own protocol, it supports the basic functions.
License: GPL

The module of the transport protocol SelfSystem is designed to reflect the interface management of
OpenSCADA system to the network, to provide an opportunity to the external systems to interact with the
OpenSCADA system, as well as for the interaction of the stations constructed on the basis of OpenSCADA
among themselves.

The first experience of using the functions of this module was the support of remote configuration of one
OpenSCADA station from another through the network, by means of the module of configuration QTCfg.

 1. The syntax of the protocol
The protocol is built on the mechanism of request-response. Requests and their structure are summarized

in Table 1.

Table 1 Structure of the request.
Requests
REQ: «SES_OPEN <user> <password>\n»
REZ OK: «REZ 0 <ses_id>\n»
REZ ERR: «REZ 1 Auth error. User or password error.\n»
The request for the opening of the session on behalf of the user <user> with the password <password>.
In case of success it will be received the session identifier, otherwise – the code and the error message.
REQ: «SES_CLOSE <ses_id>\n»
REZ: «REZ 0\n»
Closure of the session. The result is always successful.
REQ 1: «REQ <ses_id> <req_size> \n <control interface command>"
REQ 2: «REQDIR <user> <password> <req_size> \n <control interface command>"
REZ OK: «REZ 0 <rez_size> \n <control interface command result>"
REZ ERR: «REZ 1 Auth error. Session is not valid.\n»
REZ ERR: “REZ 2 <control interface err>"
The main requests: the session and the direct are implemented by sending the standard command of
OpenSCADA control interface to the field <control interface command>. As the result will it be received
an answer from the management interface <control interface command result> or one of the errors.
REQ: “ERR REQUEST”
REZ ERR: «REZ 3 Command format error.\n»
Any invalid request.

Protocol supports the package of traffic. only the data of the management interface is to be packed
<control interface command> and <control interface command result>. The fact of the arrival of packaged
request or response is determined by the negative value of the size of the request <req_size> or response
<rez_size>.

Module <SelfSystem> of subsystem “Protocols” 301

http://wiki.oscada.org.ua/Doc/API?v=hpl
http://wiki.oscada.org.ua/HomePageEn/Doc/QTCfg?v=1dow

To control the parameters of the package the module provides the configuration form (Fig. 1).

Fig.1. The form of the configuration of the package parameters.

On this form, you can specify:
• the lifetime of the authentication session;
• level of compression of the protocol, ranging from 0 to 9 (0-disable compression-1-optimal in
performance and quality compression level);
• lower threshold for the compression using, turns off the compression of small requests.

 2.The internal structure of an outgoing protocol
The internal structure if formed by means of the tree of XML requests of the language OpenSCADA

control interface with the reservation of the redundant additional service attributes of the protocol in the
root tag:

• rqDir — sign of the sending the message passing the procedure of the opening the session (0-open
session, 1-send immediately);

• rqUser — user;
• rqPass — password.

The result of the request is the tree of XML language of the management interface of OpenSCADA.

Module <SelfSystem> of subsystem “Protocols” 302

http://wiki.oscada.org.ua/Doc/API?v=hpl
http://wiki.oscada.org.ua/Doc/API?v=hpl

Module <UserProtocol> of subsystem “Protocols”
Module: UserProtocol
Name: User protocol
Type: Protocol
Source: prot_UserProtocol.so
Version: 0.6.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Allows you to create your own user protocols on any OpenSCADA's
language.

License: GPL

Module UserProtocol of the transport protocol is made to provide the user with the possibility of creation
the implementations of different protocols by himself at one of the internal languages of OpenSCADA,
usually JavaLikeCalc, without necessity of low-level programming of OpenSCADA.

The main purpose of the module is to simplify the task of connecting to the OpenSCADA system
devices of data sources, that have limited distribution and/or provide access to their own data on a specific
protocol that is usually fairly simple to implement in the internal language of OpenSCADA. For
implementation of this the mechanism for the formation of the outgoing request protocol is provided.

In addition to the mechanism of the outgoing request protocol the mechanism for incoming request
protocol is provided, which allows OpenSCADA to process the requests for data get on specific protocols,
which simply can be implemented in the internal language of OpenSCADA.

The module provides the ability to create multiple implementations of different protocols in the object
"User protocol" (Fig. 1).

Fig.1. The main tab of the object "User protocol".

Module <UserProtocol> of subsystem “Protocols” 303

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=6tt

The main tab contains the basic settings of the user protocol:
• Section "Status" - contains properties that characterize the status of the protocol:

• Status - current status of the protocol.
• Enable - the protocol's status "Enabled".
• DB - DB that stores configuration.

• Section "Config" - directly contains the configuration fields:
• ID - information on the protocol's identifier.
• Name - specifies the name of the protocol.
• Description - brief description of the protocol and its purpose.
• To enable - indicates the status "Enable", in which to transfer the protocol at startup.

 1. Part of the protocol for incoming requests
Protocol of incoming requests is working in cooperation with the incoming transport and the separate

object "User Protocol" is set in the configuration field of transport protocol, together with the UserProtocol
module's name. In the future, all requests to the transport will be sent to the processing procedure of the
protocol's request (Fig. 2).

Fig.2. Tab of the processing procedures of the incoming requests.

Tab of the processing procedures of the incoming request contains the field for selecting the internal
programming language of OpenSCADA and the text entry field for the typing the processing procedure.

For the processing procedure the following exchange variables with incoming traffic are predetermined:
• rez - processing result (false-full request;true-not full request);
• request - request message;
• answer - answer message;
• sender - request sender.

The overall scenario of processing of the incoming requests:

Module <UserProtocol> of subsystem “Protocols” 304

• Request is formed by the remote station and through the network it gets on the transport of
OpenSCADA.
• OpenSCADA transport sends the request to the selected in the protocol's field UserProtocol
module and to the objects of the user's protocol in the form of the variable's "request" values - for
the block of the request and "sender" - for the sender address of the request.
• The execution of the the procedure of protocol of the incoming request is started, during which
the contents of the variable "request" is analyzed and the response in the variable "answer" is
formed. At the end of the procedure's execution the variable "rez" is formed, which indicates the
transport to the fact of reception of full request and the formation of the correct answer (false) or to
the necessity for the transport to expect for the remaining data (true).
• If the result of the processing procedure is the variable "rez" with the 'false' and the response in
the variable "answer" is not zero, then the transport sends the response and reset the accumulation of
"request".
• If the result of the processing procedure is the variable "rez" with 'true' then the transport
continues to expect for the data. When it receives the next portion of data they are added to the
variable "request" and this procedure is repeated.

 2. Part of the protocol for outgoing requests
The protocol of outgoing requests is working in cooperation with the outgoing transport and with the

separate object of the "User Protocol". The source of the request through the protocol may be a function of
the system-wide API of the user programming of the outgoing transport int messIO(XMLNodeObj req,
string prt);, in the parameters of which it must be specified:

• req - request as an XML tree with the structure corresponding to the input format of the
implemented protocol;
• prt - the name of the "UserProtocol" module.

The request which is sent with the aforesaid way is directed to the processing procedure of the protocol's
request (Fig. 3) with the user protocol's ID which is specified in the attribute req.attr("ProtIt").

Fig.3. Tab of the processing procedures of the outgoing requests.

Module <UserProtocol> of subsystem “Protocols” 305

The tab of the processing procedure for outgoing requests includes the field to select the internal
programming language of OpenSCADA and text field for typing the processing procedure.

For the processing procedure the following exchange variables are predetermined:
• io - XML node of the exchange with the client, through which the protocol gets the requests and
into which it puts the result with the format implemented in the procedure;
• tr - The transport object is provided for the call the transport function string messIO(string mess,
real timeOut = 1000); "tr.messIO(req)".

The overall scenario of the formation if the outgoing request:
• Building of the XML-tree in accordance with the structure implemented by the protocol and
setting of the user protocol identifier in the attribute "ProtIt".
• Sending the request to transport through the protocol SYS.Transport["Modul"]
["OutTransp"].messIO(req,"UserProtocol");.
• Selection of the user interface in accordance with req.attr("ProtIt") and initialization of variables
of outgoing transport io - respectively to the first argument messIO() and tr - object of the
"OutTransp".
• Calling the procedure for execution which after the processing the "io" structure forms the direct
request to the transport tr.messIO(req);, result of which is processed and put back in io.

The essence of the allocation the protocol part of the code to the procedure of the user protocol is to
facilitate the interface of the client exchange for multiple use and assumes the formation of the structure of
XML-node of the exchange as the attributes of the addresses of remote stations, addresses of the read and
write variables and the values of the variables themselves. The entire work of direct coding of the request
and decoding of the response is assigned to procedure of the user protocol.

Module <UserProtocol> of subsystem “Protocols” 306

The module <FLibComplex1> of the subsystem
“Specials”

Module: FLibComplex1
Name: Library of functions compatible with SCADA Complex1.
Тип: Specials
Source: spec_FLibComplex1.so
Version: 1.0.6
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides the library of functions compatible with SCADA Complex1 of the firm SIC
“DIYA”.

License: GPL

Special module FLibComplex1 provides the OpenSCADA system with the static library of functions
compatible with SCADA Complex1 of firm SIC 'DIYA'. These functions are used in the SCADA system
Complex1 in the form of algoblocks to create inner-computings on the virtual controller. Provision of the
library of these functions lets to do the transfer of computational algorithms from the system Complex1.

To address the functions of this library must it is necessary to use the path: <Special.FLibComplex1.*>,
where '*' – function identifier in the library.

Below is the description of each function of the librariy. For each function it was evaluated the execution
time. Measurements were made on the system with the following parameters: Athlon 64 3000 + (ALTLinux
4.0 (32bit)) by measuring the total execution time of the function when you call it 1000 times. Sampling
was carried out of the five calculations, rounded to integer. Time is in angle brackets and is measured in
microseconds.

 1. Alarm (alarm) <111>
Description: Set alarm sign in the case of going out of the variable for the specified boundary.

Formula:
out = if(val>max || val<min) true; else false;

 2. Condition '<' (cond_lt) <239>
Description: Operation of branching in accordance with the condition “<".

Formula:
out = if(in1<(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;

 else in4_1*in4_2*in4_3*in4_4;

 3. Condition '>' (cond_gt) <240>
Description: Operation of branching in accordance with the condition “>".

Formula:
out = if(in1>(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;

 else in4_1*in4_2*in4_3*in4_4;

The module <FLibComplex1> of the subsystem “Specials” 307

 4. Full condition (cond_full) <513>
Description: Full check of the conditions, including more, less and equal.

Formula:
out = if(in1<(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;
else if(in1>(in4_1*in4_2*in4_3*in4_4) in5_1*in5_2*in5_3*in5_4;
else in6_1*in6_2*in6_3*in6_4;

 5. Digital block (digitBlock) <252>
Description: Function contains the control algorithm of digital signals acquisition for valves and pumps

that contain: signs of “Open”, “Close” and the command “Open”, “Close”, “Stop”. Supports work with
pulse commands, i.e. can read the signal through the specified period of time.

Parameters:
ID Parameter Type Mode

cmdOpen Command “Open” Bool Out
cmdClose Command “Close” Bool Out
cmdStop Command “Stop” Bool Out
stOpen Position “Opened” Bool In
stClose Position “Closed” Bool In
tCmd Command hold time (s) Integer In
frq Frequency of calculation (milliseconds) Integer In

 6. Division (div) <526>
Description: Makes division of the set of variables.

Formula:
out = (in1_1*in1_2*in1_3*in1_4*in1_5 +

in2_1*in2_2*in2_3*in2_4*in2_5 + in3)
/(in4_1*in4_2*in4_3*in4_4*in4_5 +

in5_1*in5_2*in5_3*in5_4*in5_5 + in6);

 7. Exponent (exp) <476>
Description: Calculating the exponent under the group of variables.

Formula:
out = exp (in1_1*in1_2*in1_3*in1_4*in1_5 +

(in2_1*in2_2*in2_3*in2_4*in2_5+in3) /
(in4_1*in4_2*in4_3*in4_4*in4_5+in5))

 8. Flow (flow) <235>
Description: Calculation of the gas flow.

Formula:
f = K1*((K3+K4*x)^K2);

 9. Iterator (increment) <181>
Description: Iterative calculation with the increment specifying. Gain ratio for different directions is

different.

Formula:
out = if(in1 > in2) in2 + in3*(in1-in2);

 else in2 - in4*(in2-in1);

The module <FLibComplex1> of the subsystem “Specials” 308

 10. Lag (lag) <121>
Description:Variation of the variable lag. Practice, this is the filter without reference to time.

Formula:
y = y - Klag*(y - x);

 11. Simple multiplication(mult) <259>
Description: Simple multiplication with division.

Formula:
out = (in1_1*in1_2*in1_3*in1_4*in1_5*in1_6)/

 (in2_1*in2_2*in2_3*in2_4);

 12. Multiplication + Division(multDiv) <468>
Description: Branched multiplication + division.

Formula:
out = in1_1*in1_2*in1_3*in1_4*in1_5 *

(in2_1*in2_2*in2_3*in2_4*in2_5 +
(in3_1*in3_2*in3_3*in3_4*in3_5) /
(in4_1*in4_2*in4_3*in4_4*in4_5));

 13. PID regulator (pid) <745>
Description: Proportional-integral-differential regulator.

Parameters:
ID Parameter Type Mode By defaults

var Variable Real In 0
sp Set point Real Out 0
max Maximum of scale Real In 100
min Minimum of scale Real In 0
manIn Manual input (%) Real In 0
out Out (%) Real Return 0
auto Auto Bool In 0
casc Cascade Bool In 0
Kp Kp Real In 1
Ti Ti (ms) Integer In 1000
Kd Kd Real In 1
Td Td (ms) Integer In 0
Tzd Td lag (ms) Integer In 0
Hup Upper limit of the out (%) Real In 100
Hdwn Lower limit of the out (%) Real In 0
Zi Insensitivity (%) Real In 1
followSp Follow sp from var on manual Bool In 1
K1 Koef. of the input 1 Real In 0
in1 Input 1 Real In 0
K2 Koef. of the input 2 Real In 0
in2 Input 2 Real In 0
K3 Koef. of the input 3 Real In 0
in3 Input 3 Real In 0

The module <FLibComplex1> of the subsystem “Specials” 309

ID Parameter Type Mode By defaults
K4 Koef. of the input 4 Real In 0
in4 Input 4 Real In 0
f_frq Frequency of calculation (Hz) Real In 1

Structure:

 14. Power (pow) <564>
Description: Raising to the power

Formula:
out = (in1_1*in1_2*in1_3*in1_4*in1_5) ^

(in2_1*in2_2*in2_3*in2_4*in2_5 +
(in3_1*in3_2*in3_3*in3_4*in3_5) /
(in4_1*in4_2*in4_3*in4_4*in4_5));

 15. Selection (select) <156>
Description: Selection of the one from four options.

Formula:
out = if(sel = 1) in1_1*in1_2*in1_3*in1_4;

 if(sel = 2) in2_1*in2_2*in2_3*in2_4;
 if(sel = 3) in3_1*in3_2*in3_3*in3_4;
 if(sel = 4) in4_1*in4_2*in4_3*in4_4;

 16. Simple integrator (sum) <404>
Description: A simple summation with the multiplication.

Formula:
out = in1_1*in1_2+in2_1*in2_2 + in3_1*in3_2+in4_1*in4_2 +

 in5_1*in5_2+in6_1*in6_2 + in7_1*in7_2+in8_1*in8_2;

 17. Sum with the division (sum_div) <518>
Description: The summation the set of values with the division.

Formula:
out = in1_1*in1_2*(in1_3+in1_4/in1_5) +

 in2_1*in2_2*(in2_3+in2_4/in2_5) +
 in3_1*in3_2*(in3_3+in3_4/in3_5) +
 in4_1*in4_2*(in4_3+in4_4/in4_5);

The module <FLibComplex1> of the subsystem “Specials” 310

 18. Sum with the multiplication. (sum_mult) <483>
Description: The summation the set of values with the multiplication.

Formula:
out = in1_1*in1_2*(in1_3*in1_4+in1_5) +

 in2_1*in2_2*(in2_3*in2_4+in2_5) +
 in3_1*in3_2*(in3_3*in3_4+in3_5) +
 in4_1*in4_2*(in4_3*in4_4+in4_5);

The module <FLibComplex1> of the subsystem “Specials” 311

The module <FLibMath> of the subsystem
“Specials” <FLibMath>

Module: FLibMath
Name: The library of standard mathematical functions.
Type: Specials
Source: spec_FLibMath.so
Version: 0.5.2
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides the library of standard mathematical
functions.

License: GPL

Special FLibMath module provides the library of standard mathematical functions into the
system.

For addressing to the functions of the library you must use the path: <Special.FLibMath.*>.
Where '*' – function's identifier in the library.

 1. Functions
Table 1 provides a description of each function of the library. For each function the evaluation

time of execution is measured. The measurement was made on a system with the following
parameters: Athlon 64 3000 + (ALTLinux 3.0 (32bit)), by measuring the total time of execution of
the function, while calling it 1000 times.

Table 1: The functions of the library of standard mathematical functions
Id Name Description Time (micro-seconds)
abs Module Math. function – the number module. 81
acos Anti-cosine Math. function – anti-cosine. 149
asin Anti-sine Math. function – anti-sine. 140
atan Anti-tangent Math. function – anti-tangent. 109

ceil Rounding up to a
larger

Math. function – rounding up to a larger
integer.

96

cos Сosine Math. function – cosine. 93
cosh Hyperbolic cosine Math. function – hyperbolic cosine. 121
exp Exponent Math. function – exponent. 145
floor Rounding to the lower Math. function – rounding to the lower integer 95
if If Condition Condition function – “If”. 92
lg Common logarithm Math. function – common logarithm. 168
ln Natural logarithm Math. function – natural logarithm. 185
pow Power Math. function – involution. 157
rand Random number Math. function – random number generator. 147
sin Sine Math. function – sine. 127
sinh Hyperbolic sine Math. function – hyperbolic sine. 199

Id Name Description Time (micro-seconds)
sqrt The square root Math. function – the square root. 94
tan Tangent Math. function – tangent. 153
tanh Hyperbolic tangent Math. function – hyperbolic tangent. 177

The module <FLibMath> of the subsystem “Specials” <FLibMath> 313

The module <FLibSYS> of the subsystem
“Specials”

Module: FLibSYS
Name: Library of system API functions.
Type: Specials
Source: spec_FLibSYS.so
Version: 0.9.2
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the library of system API of user programming area.
License: GPL

Special module FLibSYS provides static library of functions for working with the OpenSCADA
system at the level of its system API. These functions can be used in an user programming area of
OpenSCADA system for the organization of not ordinary interaction algorithms.

To address the functions of this library must it is necessary to use the path:
<Special.FLibSYS.*>, where '*' – function identifier in the library.

Below is the description of each function of the librariy. For each function it was evaluated the
execution time. Measurements were made on the system with the following parameters: Athlon 64
3000 + (ALTLinux 4.0 (32bit)) by measuring the total execution time of the function when you call
it 1000 times. Sampling was carried out of the five calculations, rounded to integer. Time is in angle
brackets and is measured in microseconds.

 1. System-wide functions

 1.1. Calling the console commands and operating system utilities (sysCall)

Description: Call the console commands of the OS. The function offers great opportunities to the
OpenSCADA user by calling any system software, utilities and scripts, as well as getting the access
to the huge volume of system data by means of them. For example the command “ls-l” returns the
detailed contents of the working directory.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
com Command String In

Example:
using Special.FLibSYS;
test=sysCall("ls -l");
messPut("Example",0,"Example: "+test);

 1.2. SQL query (dbReqSQL)

Description: Formation of the SQL-query to DB.

Parameters:
ID Name Type Mode By defaults

rez Result Object(Array) Return
addr DB address String In
req SQL-query String In

 1.3. XML node (xmlNode)

Description: Creation of the XML node object.

Parameters:
ID Name Type Mode By defaults

rez Result Object(XMLNodeObj) Return
name Name String In

Example:
using Special.FLibSYS;
//Creating the "get" object of the XML node.
Req = xmlNode("get");
//Creating the "get" object of the XML node with creating attributes.
//sub_DAQ/mod_ModBus/cntr_1/prm_1 – The path in accord of project structure.
Req = xmlNode("get").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm%2fst
%2fen");

 1.4. Request of the management interface (xmlCntrReq)

Description: Request of the management interface to the system via XML. The usual request is written
in the form <get path="/OPat/%2felem"/>. When we indicate the station the request to the external station
is made.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
req Request Object(XMLNodeObj) Out
stat Station String In

Example:
using Special.FLibSYS;
//Geting status "Off/On" of the parameter "1" of the controller "1"
//of the module "ModBus".
//sub_DAQ/mod_ModBus/cntr_1/prm_1 - The path in accord of project structure.
req = xmlNode("get").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm
%2fst%2fen");
rez = xmlCntrReq(req);
messPut("test",0,"Example: "+req.text());

//Setting status "On" of the parameter "1" of the controller "1"
//of the module "ModBus".
req = xmlNode("set").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm
%2fst%2fen").setText(1);
rez = xmlCntrReq(req);

//Setting status "Off of the parameter "1" of the controller "1"
//of the module "ModBus".
req = xmlNode("set").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm

The module <FLibSYS> of the subsystem “Specials” 315

%2fst%2fen").setText(0);
rez = xmlCntrReq(req);

 1.5. Values archive (vArh)

Description: Getting the object of the values archive (VArchObj) by connecting to the archive using its
address.

Parameters:
ID Name Type Mode By defaults

rez Result Object(VArchObj) Return

name Name and address to the attribute of the parameter with
the archive or directly to the archive of values.

String In

VArchObj object

Functions:
• begin(usec, archivator) — Getting the start time of the archive through the return of seconds
and microseconds <usec> for the archivator <archivator>.
• end(usec, archivator) — Getting the end time of the archive through the return of seconds and
microseconds <usec> for the archivator <archivator>.
• period(usec, archivator) — Getting the periodicity of the archive through the return of seconds
and microseconds <usec> for the archivator <archivator>.
• get(sec, usec, upOrd, archivator) – Getting the value from the archive at the time
<sec>:<usec> linked to the top <upOrd> for the archivator <archivator>. Real time of the value
obtained is set in <sec>:<usec>.
• set(val, sec, usec) — Writing of the value <val> in the archive buffer for the time
<sec>:<usec>.
• copy(src, begSec, begUSec, endSec, endUSec, archivator) — Copying of the part of the source
archive <src> or its buffer in the current beginning from <begSec>:<begUSec> and ending with
<endSec>:<endUSec> for the archivator <archivator>.
• FFT(tm, size, archivator, tm_usec) -- Performs the Fast Fourier Transformation using the FFT
algorithm. Returns an array of amplitudes of the frequencies for archive's values window for begin
time <tm>:<tm_usec> (seconds:microseconds), depth to history <size> (seconds) and for
archivator <archivator>.

Example:
using Special.FLibSYS;
val = vArh(strPath2Sep(addr)).get(time,uTime,0,archtor);
return val.isEval() ? "Empty" : real2str(val,prec);

 1.6. Buffer of the values archive (vArhBuf)

Description: Getting the object of the buffer of the values archive (VArchObj) to perform the
intermediate operations on frames of data.

Parameters:
ID Parameter Type Mode By defaults

rez Result Object(VArchObj) Return

tp
Type of the values of the archive (0-Boolean, 1-Integer, 4-
Real, 5-String) Integer In 1

sz Maximum buffer size Integer In 100
per periodicity of buffer (in microseconds) Integer In 1000000
hgrd Mode “Hard time grid” Boolean In 0
hres Mode «High time resolution (microseconds)" Boolean In 0

The module <FLibSYS> of the subsystem “Specials” 316

 2. Functions for the astronomical time processing

 2.1. Time string (tmFStr) <3047>

Description: Converts an absolute time in the string of the required format. Recording of the format
corresponds to the POSIX-function strftime.

Parameters:
ID Parameter Type Mode By defaults

val Full date string String Return
sec Seconds Integer In 0
form Format String In %Y-%m-%d %H:%M:%S

Example:
using Special.FLibSYS;
test=tmFStr(SYS.time(),"%d %m %Y");
messPut("Example",0,"tmFStr(): "+test);

 2.2. Full Date (tmDate) <973>

Description: Returns the full date in seconds, minutes, hours, etc., based on the absolute time in seconds
from the epoch of 1/1/1970.

Parameters:
ID Parameter Type Mode By defaults

fullsec Full seconds Integer In 0
sec Seconds Integer Out 0
min Minutes Integer Out 0
hour Hours Integer Out 0
mday Day of the month Integer Out 0
month Month Integer Out 0
year Year Integer Out 0
wday Day of the week Integer Out 0
yday Day of the year Integer Out 0
isdst Daylight saving time Integer Out 0

Example:
using Special.FLibSYS;
curMin=curHour=curDay=curMonth=curYear=0;
tmDate(tmTime(),0,curMin,curHour,curDay,curMonth,curYear);
messPut("test",0,"Current minute: "+curMin);
messPut("test",0,"Current hour: "+curHour);
messPut("test",0,"Current day: "+curDay);
messPut("test",0,"Current month: "+curMonth);
messPut("test",0,"Current Year: "+curYear);

 2.3. Absolute time (tmTime) <220>

Description: Returns the absolute time in seconds from the epoch and in microseconds, if <usec> is
installed in a non-negative value.

Parameters:
ID Parameter Type Mode By defaults

sec Seconds Integer Return 0
usec Microseconds Integer Out -1

The module <FLibSYS> of the subsystem “Specials” 317

 2.4. Conversion the time from the symbolic representation to the time in seconds from
the epoch of 1/1/1970 (tmStrPTime) <2600>

Description: Returns the time in seconds from the epoch of 1/1/1970, based on the string record of time,
in accordance with the specified template. For example, template "%Y-%m-%d %H:%M:%S" corresponds
the time «2006–08–08 11:21:55». Description of the format of the template can be obtained from the
documentation on POSIX-function “strptime”.

Parameters:
ID Parameter Type Mode By defaults

sec Seconds Integer Return 0
str Date string String In
form Date record format String In %Y-%m-%d %H:%M:%S

Example:
using Special.FLibSYS;
curMin=curHour=curDay=curMonth=curYear=0;
tmDate(tmTime(),0,curMin,curHour,curDay,curMonth,curYear);
test = tmStrPTime(""+curYear+"-"+(curMonth+1)+"-"+curDay+" 9:0:0","%Y-%m-%d %H:%M:
%S");
messPut("Example",0,"tmStrPTime(): "+test);

 2.5. Planning of the time in the Cron format (tmCron)

Description: Returns the time planned in the format of the Cron standard beginning from the base time
of from the current time, if the base is not specified.

Parameters:
ID Parameter Type Mode By defaults

res Result Integer Return 0
str Record in the Cron standard String In * * * * *
base Base time Integer In 0

 3. Functions of the messages processing

 3.1. Messages request (messGet)

Description: Request of the system messages.

Parameters:
ID Parameter Type Mode By defaults

rez Result Object(Array) Return
btm Start time Integer In
etm End time Integer In
cat Category of the message String In
lev Level of the message Integer In
arch Archivator String In

The module <FLibSYS> of the subsystem “Specials” 318

 3.2. Generation of the message (messPut)

Description: Formation of the system message.

Parameters:
ID Parameter Type Mode By defaults

cat Category of the message String In
lev Level of the message Integer In
mess Text of the message String In

Example:
rnd_sq_gr11_lineClr="red";
Special.FLibSYS.messPut("Example",1,"Event: "+rnd_sq_gr12_leniClr);

 4. Functions of the strings processing

 4.1. Getting the size of the string (strSize) <114>

Descroption: It is used to get the size.

Parameters:
ID Parameter Type Mode By defaults
rez Result Integer Return
str String String In

Example:
Special.FLibSYS.messPut("Example",1,"ReturnString: "+strSize("Example"));

 4.2. Getting the part of the string (strSubstr) <413>

Description: It is used to det the part of the string.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
str String String In
pos Position Integer In 0
n Quantity Integer In -1

Example:
using Special.FLibSYS;
test=strSubstr("Example", 0, strSize("Example")-1);
messPut("Example",1,"ReturnString: "+test);

 4.3. Insert of the on string to the another (strInsert) <1200>

Description: It is used to insert of the on string to the another.

Parameters:
ID Parameter Type Mode By defaults

str String String Out
pos Position Integer In 0
ins Inserting string String In

The module <FLibSYS> of the subsystem “Specials” 319

 4.4. Change the part of the string with the another one (strReplace) <531>

Description: It is used to change the part of the string with the another one.

Parameters:
ID Parameter Type Mode By defaults

str String String Out
pos Позиция Integer In 0
n Quantity Integer In -1
repl Changing string String In

 4.5. Parsing the string on separator (strParse) <537>

Description: It is used to parse the string on separator.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
str String String In
lev Level Integer In
sep Separator String In "."
off Offset Integer Out

Example:
using Special.FLibSYS;
ExapleString="Example:123";
test=strParse(ExapleString,1,":");
messPut("Example",0,"strParse(): "+test);

 4.6. Path parsing (strParsePath) <300>

Description: It is used for the parsing the path on the elements.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
path Path String In
lev Level Integer In
off Offset Integer Out

Example:
using Special.FLibSYS;
test=strParsePath(path,0,"/");
messPut("Example",1,"strParsePath(): "+test);

 4.7. Path to the string with the separator (strPath2Sep)

Description: It is used to convert the path to the string with the separator.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
src Source String In
sep Separator String In "."

Example:
//Converting value "/ses_AGLKS/pg_so" of the attribute "path"

The module <FLibSYS> of the subsystem “Specials” 320

//into value "ses_AGLKS.pg_so"
using Special.FLibSYS;
test = strPath2Sep(path);
messPut("Example",0,"path: "+path);
messPut("Example",0,"strPath2Sep(): "+test);

 4.8. Coding of the string to HTML (strEnc2HTML)

Description: It is used to code the string for using in the HTML source.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
src Source String In

 4.9. Encode text to bin (strEnc2Bin)

Description: Use for encode text to bin, from format <00 A0 FA DE>.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
src Source String In

 4.10. Decode text from bin (strDec4Bin)

Description: Use for decode text from bin to format <00 A0 FA DE>.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
src Source String In

 4.11. Convert real to string (real2str)

Description: It is used to convert real to string.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
val Value Real In
prc Precision Integer In 4
tp Type String In “f”

 4.12. Convert integer to string (int2str)

Description: It is used to convert integer to string.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
val Value Integer In
base Base, supported: 8, 10, 16 Integer In 10

The module <FLibSYS> of the subsystem “Specials” 321

 4.13. Convert the string to real (str2real)

Description: It is used to convert string to real.

Parameters:
ID Parameter Type Mode By defaults
rez Result Real Return
val Value String In

 4.14. Convert the to integer (str2int)

Description: It is used to convert string to integer.

Parameters:
ID Parameter Type Mode By defaults

rez Result Integer Return
val Value String In
base Base Integer In 0

 5. Functions for the real processing

 5.1. Splitting the float to the words (floatSplitWord) <56>

Description: Splitting the float (4 bites) to the words (2 bites).

Parameters:
ID Parameter Type Mode By defaults

val Value Real In
w1 Word 1 Integer Out
w2 Word 2 Integer Out

 5.2. Merging the float from words (floatMergeWord) <70>

Description: Merging the float (4 bites) from words (2 bites).

Parameters:
ID Parameter Type Mode By defaults

rez Result Real Return
w1 Word 1 Integer In
w2 Word 2 Integer In

The module <FLibSYS> of the subsystem “Specials” 322

The module <SystemTests> of the subsystem
"Specials"

Module: SystemTests
Name: OpenSCADA system tests.
Type: Specials
Source: spec_SystemTests.so
Version: 1.5.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides the group of test to the OpenSCADA
system.

License: GPL

Special module SystemTests contains a set of tests designed to test various subsystems and components
of the OpenSCADA system. Tests carried out in the form of user API functions. Hence the tests can be run
as a one-time, in the "Execute" page of the function's object and from the procedures of the user as well,
passing them the necessary arguments.

In addition to the usual mechanisms of user API execution an autonomous mechanism is provided. This
mechanism is represented by the separate task, performed with the period of one second, which calls the
functions of tests in accordance with the settings in the configuration file.

The configuration fields of the tests are placed in the section of the modulus SystemTests of subsystem
"Special". The format of the configuration fields is: <prm id="Test Id" on="1" per="10" /> Where:

• id - test ID;
• on - sign "Test is enabled";
• per - repetition period of the test (seconds).

In addition to the basic attributes the reflection of the input parameters of tests' functions on the same
name attributes of tag "prm" is made. For example, the attribute "name" of function "Param", you can
specify in the tag "prm".

It is allowed to indicate the set of tags "prm" for the same or different tests with the same or different
parameters, thus indicating the separate test execution with the specified parameters. Here is an example of
description of all available tests:

<?xml version="1.0" encoding="UTF-8" ?>
<OpenSCADA>
 <station id="DemoStation">
 <node id="sub_Special">
 <node id="mod_SystemTests">
 <prm id="Param" on="0" per="5" name="LogicLev.experiment.F3"/>
 <prm id="XML" on="0" per="10" file="/etc/oscada.xml"/>
 <prm id="Mess" on="0" per="10" categ="" arhtor="DBArch.test3"

depth="10"/>
 <prm id="SOAttach" on="0" per="20"

name="../../lib/openscada/daq_LogicLev.so" mode="0"
full="1"/>

 <prm id="Val" on="0" per="1" name="LogicLev.experiment.F3.var"
arch_len="5" arch_per="1000000"/>

 <prm id="Val" on="0" per="1" name="System.AutoDA.CPULoad.load"
arch_len="10" arch_per="1000000"/>

 <prm id="DB" on="0" per="10" type="MySQL"
addr="server.diya.org;roman;123456;oscadaTest" table="test"
size="1000"/>

 <prm id="DB" on="0" per="10" type="DBF" addr="./DATA/DBF"

The module <SystemTests> of the subsystem "Specials" 323

table="test.dbf" size="1000"/>
 <prm id="DB" on="0" per="10" type="SQLite" addr="./DATA/test.db"

table="test" size="1000"/>
 <prm id="DB" on="0" per="10" type="FireBird"

addr="server.diya.org:/var/tmp/test.fdb;roman;123456"
table="test" size="1000"/>

 <prm id="TrOut" on="0" per="1" addr="TCP:127.0.0.1:10001"
type="Sockets" req="time"/>

 <prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:10001"
type="Sockets" req="time"/>

 <prm id="TrOut" on="0" per="1" addr="UNIX:./oscada" type="Sockets"
req="time"/>

 <prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:daytime"
type="Sockets" req="time"/>

 <prm id="SysContrLang" on="0" per="10"
path="/Archive/FSArch/mess_StatErrors/%2fprm%2fst"/>

 <prm id="ValBuf" on="0" per="5"/>
 <prm id="Archive" on="0" per="30" arch="test1" period="1000000"/>
 <prm id="Base64Code" on="0" per="10"/>
 </node>
 </node>
 </station>
</OpenSCADA>

 1. Parameter (Param)
Description: Test of the DAQ parameters. Reads the attributes and configuration fields of the parameter.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
name Address of the DAQ parameter String Input System.AutoDA.CPULoad

 2. XML parsing (XML)
Description: Test of the XML file parsing. Parses and displays the structure of the file.

Parameters:
ID Name Type Mode By defaults
rez Result String Return
file XML file String Input

 3. Messages (Mess)
Description: Test of the messages archive. Periodically reads new messages from the archive for the

specified archiver.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
arhtor Archiver String Input FSArch.StatErrors
categ The template of the messages category String Input
depth Message's depth (s) Integer Input 10

The module <SystemTests> of the subsystem "Specials" 324

 4. SO attaching (SOAttach)
Description: Test connection/disconnection of the modules.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
name Path to the module String Input
mode Mode (1-connect;-1-disconnect;0-change) Integer Input 0
full Full connection(when start) Bool Input 1

 5. Attribute of the parameter (Val)
Description: Test the attribute values of the parameter. Performs periodic polling of the last value of the

specified attribute, as well as a survey archive to the specified depth.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
name Path to the attribute of the parameter String Input System.AutoDA.CPULoad.load
arch_len The depth of the query to the values' archive (s) Integer Input 10
arch_per Period of query to the values' archive (mcs) Integer Input 1000000

 6. DB test (DB)
Description: Complete database test. Includes:

• creating/opening of the DB;
• creating/opening of the table;
• creation of set of records (rows) of the predetermined structure;
• modification of the set of records;
• receiving and verifying the values of the set of records;
• modifying the structure of records and table;
• delete of the records;
• closing/deleting of the table;
• closing/deleting of the database.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
type DB type String Input SQLite
addr DB address String Input ./DATA/test.db
table DB table String Input test
size Number of records Integer Input 1000

The module <SystemTests> of the subsystem "Specials" 325

 7. Transport (TrOut)
Description: Test of the output and/or input transports. Performs testing of the output transport by

sending the request to the specified input transport.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
addr Address String Input TCP:127.0.0.1:10001
type Transport's module String Input Sockets
req Query text String Input

 8. Control system language (SysContrLang)
Description: Test of the control system language. Performs the query of the language elements through

the full path. Full path to the element of language is of the form of system control </Archive/%2fbd
%2fm_per>. Full path consists of two sub-paths. The first one </d_Archive/> is the path to the node of the
control tree. The second one </bd/m_per> is the path to a particular element of the node.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
path Path to the element of language String Input /Archive/BaseArh/mess_StatErrors/%2fprm%2fst

 9. Values buffer (ValBuf)
Description: Tests of the values' buffer. Contains 13 tests of the all aspects of the values' buffer

(subsystem "Archives").

Parameters:
ID Name Type Mode By defaults
rez Result String Return

 10. Values archive (Archive)
Description: Tests of the placing of values in the archive. Contains 7 (8) tests of the values archiver to

verify the correctness of the functioning of a coherent mechanism for packaging.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
arch Values archive String Input
period Values period (mcs) Integer Input 1000000

 11. Base64 code (Base64Code)
Description: Tests of the Mime Base64 encoding algorithm.

Parameters:
ID Name Type Mode By defaults
rez Result String Return

The module <SystemTests> of the subsystem "Specials" 326

The module of subsystems “User Interfaces”
<QTStarter>

Module: QTStarter
Name: QT GUI starter
Type: User Interfaces
Source: ui_QTStarter.so
Version: 1.6.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides the QT GUI starter. QT-starter is the only and compulsory component for all GUI
modules based on the QT library.

License: GPL

The module <QTStarter> provides the system OpenSCADA with the starter of QT GUI modules. A
separate module of running the QT GUI modules is needed because of the need for single-flow execution of
all components and centralized initialization of the main object of the QT-library - QApplication.

To run a QT GUI modules advanced interface of callback of functions of modules is used. This interface
involves exporting of functions by the external modules. In our case, QT GUI modules must export the
following functions:

• QIcon icon(); - Sends an object of icon of the called module.
• QMainWindow *openWindow(); - Creates an object of the main window of the QT GUI module,
and passes it to the starter. It can return NULL in the case of the failure to create a new window.

For identification QT GUI module must identify the information item of the module "SubType" as "QT".
Based on this feature "Starter" works with it.

After receiving the object of the main window "Starter" adds its own control panel and menu item in the
window and runs it. Starter control panel contains icons to call all the available QT GUI modules. To
except the addition of the control panel or the menu item, the module, which contains the window, can
specify the properties of "QTStarterToolDis" or "QTStarterMenuDis" respectively.

For the specifying QT GUI modules that run at startup, the starter module contains the configuration
field StartMod. In this field the identifiers of running modules are recorded via ';'. StartMod configuration
field can be described in the configuration file, as well as in the system database table through dialog of
configuration of the module (Fig. 1).

The module of subsystems “User Interfaces” <QTStarter> 327

Fig.1. The module configuration page.

In the case of closing the windows of all QT GUI modules "Starter" creates a dialog box that offers to
choose the available QT GUI modules, or shut down the system OpenSCADA. The view dialog box is
given in the Figure 2.

Fig.2. The dialog window of the "Starter".

The module of subsystems “User Interfaces” <QTStarter> 328

The module <QTCfg> of subsystems “User
Interfaces”

Module: QTCfg
Name: The system configurator (QT)
Type: User Interfaces
Source: ui_QTCfg.so
Version: 1.9.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the QT-based configurator of the OpenSCADA system.
License: GPL

The <QTCfg> module provides the configurator of the OpenSCADA system. Configurator is based on
multi-platform library of the graphical user interface (GUI) of the firm TrollTech – QT
<http://www.trolltech.com/qt/>.

At the core if the module lies the management interface language of the OpenSCADA system, and thus
provides a uniform configuration interface. Update of the module may be required only in the case of
updating the specification of the language of the management interface.

Lets examine the working window of the configurator in Fig. 1.

Fig.1. Working window of the configurator

The module <QTCfg> of subsystems “User Interfaces” 329

Operating window of the configurator consists of the following parts:
• 1 – Menu — contains a drop-down configurator menu.
• 2 – Toolbar-- contains buttons of quickly control.
• 3 – Navigator — is intended for direct navigation of the control tree.

◦ 3.1 – Text enter field for elements search into current branch of tree.
• 4 – Status line — indicating the status of the configurator.

◦ 4.1 – Indicator/choice of the user — displays the current user. By double-clicking the user
selection dialog opens. As well as an indicator of changes in configuration.

• 5 – Workplace field. It is divided into parts:
◦ 5.1 – Node name – contains the name of the current node.
◦ 5.2 – Tabulator of the working areas – the root page (management areas) of the node are placed

into the tabulator. The management areas of the following levels are placed on the information
panel.

Menu of the configurator contains the following items:
• File — the group of general commands:

• Load from DB — downloads the selected object or branch of object from the database.
• Save to DB — save the selected object or branch of object to the database.
• Close — close the configurator window.
• Quit — termination of the OpenSCADA system.

• Edit — editing commands:
• Add — add a new object to the container.
• Delete — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.

• View — navigation and control of the view commands:
• Up — climb up the tree.
• Previous — open the previous page.
• Next — open the following page.
• Refresh — refresh the current page.
• Start — run periodically update of the contents of the current page with an interval of one
second.
• Stop — stop periodically update od the contents of the current page with an interval of
one second.

• Help — assistance call commands:
• About — information about the module and the OpenSCADA system.
• About Qt — information about the Qt library.
• What's this — the command of the request the information about the elements of the
interface.

The toolbar contains the following management buttons (from left to right):
• Load from DB — downloads the selected object or branch of object from the database.
• Save to DB — save the selected object or branch of object to the database.
• Up — climb up the tree.
• Previous — open the previous page.
• Next — open the following page.
• Add — add a new object to the container.
• Delete — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.
• Refresh — refresh the current page.
• Start — run periodically update of the contents of the current page with an interval of one
second.
• Stop — stop periodically update od the contents of the current page with an interval of one
second.

The module <QTCfg> of subsystems “User Interfaces” 330

• Call buttons of the modules of the graphical interface based on the QT library

In the navigation tree the context menu of following contents is supported:
• Load from DB — downloads the selected object or branch of object from the database.
• Save to DB — save the selected object or branch of object to the database.
• Add — add a new object to the container.
• Delete — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.
• Refresh the elements of a tree — Performs the refreshing of the navigation tree contents.

The control tools are divided into basic, commands, lists, tables and images. All items are displayed in
the sequence strictly appropriate to their location in the description of language of management interface.

 1. Configuration
To adjust your own behavior in the not obvious situations module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 2). These parameters are:
• Initial path to the configurator — allows to determine what page to open when you start the
configurator.
• Initial user of the configurator — points on behalf of the which user to open configuration
without requiring a password.
• The link to the configuration page of the external OpenSCADA stations used to enable the
remote configuration.

Fig.2. The configuration page of the configurator.

The module <QTCfg> of subsystems “User Interfaces” 331

 2. Basic elements
Into the number of the basic elements are included: information elements, the field to input values, the

elements of combo box, flags. In the case of absence of an element name, the basic element connects to the
previous basic element. Examples of basic elements with the connection is shown in Fig.3.

Fig.3. Connection of the basic elements.

The module <QTCfg> of subsystems “User Interfaces” 332

 3. Commands
Commands are the elements for the transfer of the certain instructions of the action to the node and for

the organization of the links on the page. Commands may contain parameters. The parameters are formed
from the basic elements. Example of the commands with the parameters is shown in Fig.4.

Fig.4. Command.

The module <QTCfg> of subsystems “User Interfaces” 333

 4. Lists
Lists contain a group of basic elements of the same type. Operations under the elements are accessible

via the context menu of the list. Through the elements of the list can be performed the moving operations to
other pages. The transition is implemented by double-clicking of the mouse on an element of the list. Lists
can be indexed. An example of the list is shown in Fig. 5.

Fig.5. The list.

The module <QTCfg> of subsystems “User Interfaces” 334

 5. Tables
The tables contain values of the basic elements. Type of the basic element is an individual for each

column. Example of the table is given in Fig. 6. Operations on the structure of the table for editable tables
are accessible through the context menu. Editing of the table is done by double-clicking on the desired cell.

Fig.6. Table.

The module <QTCfg> of subsystems “User Interfaces” 335

 6. Images
The images are designed to transmit graphic information into the configurators. Example of the image is

shown in Fig. 7.

Fig.7. Image.

The module <QTCfg> of subsystems “User Interfaces” 336

The module <WebCfg> of subsystems “User
Interfaces”

Module: WebCfg
Name: The system configurator (Web)
Type: User Interfaces
Source: ui_WebCfg.so
Version: 1.5.4
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the WEB-based configurator of the OpenSCADA system.
License: GPL

The WebCfg module provides the configurator of the OpenSCADA system. Configurator is
based on Web-technologies. For configurator working it is enough the usual WEB-Browser. The
operability of the module <WebCfg> was tested in conjunction with modules <Transport.Sockets>
and <Protocol.HTTP> on the following Web-browsers:

• Mozilla;
• Firefox;
• Konqueror;
• Opera;
• IE.

The module is based on the language of management interface of OpenSCADA system, and thus
provides a uniform configuration interface. Updating of the module may be required only in the
case of updating the specification of the language of management.

In addition to the belonging of the module to the OpenSCADA system, it also belongs, is a
module, to the module transport protocol <HTTP>. Actually, the call ~ Web Cfg makes from of
HTTP. The call is made through enhanced communication mechanism through exported in module
~ Web Cfg features: HttpGet and HttpSet.

The interface of the module is implemented by means of the language XHTML 1.0 Transitional
with inclusions of the JavaScript.

Using the module starts with the opening session, the user authentication of the user module by
the protocol HTTP (Protocol.HTTP) (Fig. 1). For the operation of the authentication and session
saving mechanism the browser must allow Cookies.

http://wiki.oscada.org.ua/HomePageEn/Doc/WebCfg?v=hj3
http://wiki.oscada.org.ua/HomePageEn/Doc/WebCfg?v=hj3

Fig.1. User authentication.

Fig.2. Structure of the operating window of the user.

The module <WebCfg> of subsystems “User Interfaces” 338

After authenticating the user enters the operating window (Fig.2), which consists of the following parts:
• 1.Header – contains the name of the module.
• 2.Control Panel. Consists of:

◦ 2.1.Navigator – serves the navigation functions throug the tree of pages.
◦ 2.2.The name of the node.
◦ 2.3.User of the System – Displays the current user of the session, his address and lets you to

change the user.
• 3.Workplace field – contains the configuration settings of language of management interface,

starting with the root tabs to the end elements.
• 4.Footer – contains the address of current page.

Addressing of the pages begins with an element of second-level URL. This is due to the fact that the
first-level element is used to identify the module of user Web-interface. For example URL:
<http://localhost.localdomain:10002/WebCfg//Functions> can be deciphered as call of the first-level page
“Functions” of the Web module <WebCfg> on the host localhost.localdomain through the port 10002.

The control tools are divided into: basic, commands, lists, tables and images. All four types are displayed
by individual units not depending on their location in the description.

 1. Basic elements
The basic elements include: information elements, the field for input of the values, the elements of

combo box, flags. To set the new values of the basic elements the group method is used, for this there is a
button <Accept> on the form. In the case of the absence of an element name, the basic element connects to
the previous one. Examples of basic elements, with connections, is shown in Fig.3.

Fig.3. The basic elements and their connections.

The module <WebCfg> of subsystems “User Interfaces” 339

 2. Commands
Commands are the elements for the transfer of the certain instructions of the action to the node and for

the organization of the links on the page. Commands may contain parameters. The parameters are formed
from the basic elements. Example of the commands with the parameters is shown in Fig.4.

Fig.4. Command.

 3. Lists
Lists contain a group of basic elements of the same type. For operations on elements of a list the

additional buttons are added. In addition, through the elements of a list the moving operations to other
pages are carried out. To move the button “Go” is added. Lists can be indexed. Example of the list with the
moving is shown in Fig.5.

Fig.5. The list.

The module <WebCfg> of subsystems “User Interfaces” 340

 4. Tables
The tables contain values of basic elements. Type of the basic element is defined separately for each

column. Example of the table is shown in Fig.6.

Fig.6. Table.

The module <WebCfg> of subsystems “User Interfaces” 341

 5. Images
The images are designed to transmit graphic information into the configurators. Example of the image is

shown in Fig. 7.

Fig.7. Image.

The module <WebCfg> of subsystems “User Interfaces” 342

The module <WebCfgD> of subsystems “User
Interfaces”

Module: WebCfgD
Name: Dynamic Web configurator
Type: User Interfaces
Source: ui_WebCfgD.so
Version: 0.6.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides dynamic WEB based configurator. Uses XHTML, CSS and JavaScript
technology.

License: GPL

The <WebCfgD> module provides the configurator of OpenSCADA system. Configurator is
implemented on the basis of Web-technologies:

• HTTP — hypertext transfer protocol;
• XHTML — extended language of markup of the hypertext documents;
• CSS — cascading style sheets of hypertext documents;
• JavaScript — built-in into the hypertext document the browser programming language;
• DOM — document object model of the internal structure of the browser;
• AJAX — arrangement of asynchronous and synchronous requests from the JavaScript to
the server;
• XML — eXtensible Markup Language.

Interface of the configurator is formed in the WEB-browser by reference to the WEB-server and
getting from it the XHTML-document over HTTP. In this case there is the OpenSCADA system in
the role of the WEB-server, which supports standard communication mechanisms of TCP-networks
(module Transport.Sockets), hypertext transfer protocol (module Protocol.HTTP), as well as
encryption of traffic between the browser and the server (Transport.SSL). Based on this to gain
access to the interface configuration of the OpenSCADA, provided by this module, you need to
configure the transport in the OpenSCADA (Transport.Sockets or Transport.SSL) in conjunction
with the protocol HTTP (Protocol.HTTP). In the delivery of the OpenSCADA system there are
configuration files containing settings of Transport.Sockets for ports 10002 and 10004. Hence the
interface of the module in the configuration of the OpenSCADA by default will be available at
URL: http://localhost:10002 or http://localhost:10004.

After receiving the document XHTML the JavaScript program runs to create dynamic interface
configurator.

At the core of the module there is the language of the management interface of the OpenSCADA
system, and thus provides the uniform interface of configuration. Update of module may be
required only in the case of updating the specification of the language of management.

The module was implemented and tested on three WEB-browsers, representatives of the three
types of WEB-engines, as follows:

• Mozilla Firefox 3.0.4
• Opera 9.6.2
• Konqueror 3.5.10

Using the module starts with the opening of the session, the user authentication by the module of
the protocol HTTP (Protocol.HTTP). For the operation of the authentication and the mechanism of

http://localhost:10004/
http://localhost:10002/

saving of the session the browser must allow Cookies.

Fig.1. User authentication.

Fig.2. Working window of the configurator

Lets examine the working window of the configurator in Fig. 2.

Working window of the configurator consists of the following parts:
• 1 – Toolbar — contains the control buttons.
• 2 – Address of the open node — displays the current selected node.
• 3 – Navigator — intended for direct navigation through the control tree.
• 4 – Working field. Divided into parts:

◦ 4.1 – The name of the node – contains the name of the current node.
◦ 4.2 – Tabulator of the working areas -the root pages (control areas) of the node are placed into

the tabulator. The control areas of the following levels are placed on the information panel.
• 5 – Status line — displaying the states of the configurator.

The toolbar contains the following control buttons (from left to right):

The module <WebCfgD> of subsystems “User Interfaces” 344

• Load — downloads the selected object or branch of object from the database.
• Save — save the selected object or branch of object to the database.
• Up — climb up the tree.
• Previous — open the previous page.
• Next — open the following page.
• Add item — add a new object to the container.
• Delete item — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.
• Refresh item and the tree — refresh the current page.
• Start periodic udate — run periodically update of the contents of the current page with an
interval of 5 second.
• Stop periodic update — stop periodically update od the contents of the current page with an
interval of one second.
• About --the information about the module.

The control tools are divided into basic, commands, lists, tables and images. All items are displayed in
the sequence strictly appropriate to their location in the description of language of management interface.

 1. Configuration
To adjust your own behavior in the not obvious situations module provides the ability to customize

individual settings through the management interface of the Open SCADA? (Fig. 3). These parameters are:
• The lifetime of the authentication session (min) – points during which time interval of user
inactivity his session will be saved.
• The link to the configuration page of the external OpenSCADA stations used to enable remote
configuration.

Fig.3. The configuration page of the configurator.

The module <WebCfgD> of subsystems “User Interfaces” 345

http://wiki.oscada.org.ua/HomePageEn/Doc/OpenSCADA/edit?add=1

 2. Basic elements
Into the number of the basic elements are included: information elements, the field to input values, the

elements of choice from the list, flags. In the case of absence of an element name, the basic element
connects to the previous basic element. Example of the group of the basic elements with the connection is
shown in Fig.4.

Fig.4. Connection of the basic elements.

The module <WebCfgD> of subsystems “User Interfaces” 346

 3. Commands
Commands are the elements for the transfer of the certain instructions of the action to the node and for

the organization of the links on the page. Commands may contain parameters. The parameters are formed
from the basic elements. Example of the commands with the parameters is shown in Fig.5.

Fig.5. The command.

The module <WebCfgD> of subsystems “User Interfaces” 347

 4. Lists
Lists contain a group of basic elements of the same type. Operations under the elements are accessible

via the context menu by the mouse click on the list. Through the elements of the list can be performed the
moving operations to other pages. Lists can be indexed. An example of the list is shown in Fig. 6.

Fig.6. The list.

The module <WebCfgD> of subsystems “User Interfaces” 348

 5. Tables
The tables contain values of the basic elements. Type of the basic element is an individual for each

column. Example of the table is given in Fig. 7. Operations on the structure of the table for editable tables
are accessible through the context menu by the mouse clicking on the service button with the line number.
Editing of the table is done by double-clicking on the desired cell.

Fig.7. The table.

The module <WebCfgD> of subsystems “User Interfaces” 349

 6. Images
The images are designed to transmit graphic information into the configurators. Example of the image is

shown in Fig. 8.

Fig.8. The image.

The module <WebCfgD> of subsystems “User Interfaces” 350

 7. Errors
Performance of the configurator may differ for different types of browsers. This is due to the fact that the

basis of this module is quite a lot of complex technologies, as well as differences between them on different
types of WEB-engines.

In addition, each Web-browser has its own problems. Some errors were outflanked in the process of
implementation, but part of them has stayed in sight of the significant difficulties in their outflanking and
also of actual impossiblity to do so.

This section contains a table listing the detected errors of the WEB-browsers, which are appeared in the
configurator.

Error Description Correction
Mozilla FireFox 3.0.4 (stable, few errors)

Offset of the popup
window of the editable
combo-box at 5 pixels
up and left.

The problem lies in the fact that the calculation of the absolute
position of the element of the document doesn't grab exactly 5
pixels. Error of 5 pixels is visible in relation to the coordinates
of the mouse pointer and the position of the newly-created
entirely-positioned window. The algorithm for computing the
position: for(; obj != null; obj = obj.offsetParent) posX +=
obj.offsetLeft;

To correction of
this error to the
estimated value
on this browser
the 5 pixels are
added.

In the element of the
list (<select
size="10"/>) the
vertical scroller is
always shows and
never turned on the
horizontal one.

This element is actively used for building the context menu and
drop-down list of the editable combo-box.

To outflank the
browser's error I
had to include
the list in the
block with scroll
of the block
itself.

The image field is not
updating.

In order to eliminate the need for restructuring of the
configurable page while updating the values of fields in the tree
of the structure objects of the pages which was get from the
XMLHttpRequest, the properties are created with the links to the
object of the tags of the fields (addr_lab, addr_val_w). In objects
with the name of the tag “img”, these properties are not created
by the browser.

The problem is
not solved.

Opera (stable, few errors)
Scroller of the unit of
the page does not turn
on. For example when
displaying large
images of the trend.

The block is fixed with the parameters{ overflow: auto; width:
600px; } however, in the case of the exceeding the size of the
interior elements the scroller is not turned on.

The problem is
not solved.

Konqueror (very unstable on the dynamic resources and contains many errors)

Stable browser
crashing.

Browser repeatedly and consistently crashes while the
computation of JavaScript and when dealing with external
windows.

The problem is
not solved.

The skroll of the
navigation tree doesn't
returned.

If the navigation tree to expand until the vertical scroll is
appeared, then scroll down it, then fold a large branch, the
vertical sсroll disappears, and a part of the tree remains invisible
in the upper part of the block. Ie the contents of the block is not
updated.

The problem is
not solved.

The module <WebCfgD> of subsystems “User Interfaces” 351

Error Description Correction

The images do not
update.

In the fields of images, to update the image from the server, the
property “src” is to be changed. Browser does not feel it, or even
updates the size of the frame, and the image is not updated.
Methods to prevent caching of the images are used, but do not
help.

The problem is
not solved.

Capture of the images
of the buttons

JavaScript modules use non asynchronous, but synchronous
requests to a server to save the sequence of actions. In moments
of such a request if it was caused by the event from the image
(the image is a button), the image is captured as if to move, even
for short mouse clicks.

The problem is
not solved.

Impossible to insert a
new element to the
tree of objects
obtained as a result of
XMLHttpRequest

To monitor the modification of the configuration page the
current tree structure to a new one, just received from
XMLHttpRequest, reduction was used. When inserting a new
element to the tree of the structure through the insertBefore() an
error occurs «DOM error 4". If the paste is made to the tree
created from zero (not from XMLHttpRequest), this error does
not occur. It seems the problem lies in the contrast of object
“document” – the owner of these trees. In such a tree it is not
possible to add a node as document.createElement (). Only
created as a mytree.ownerDocument.createElement() are
inserted.

The procedure
for verifying the
structure was
simplified to
reduced to the
determining the
fact of changes.

The mechanisms of
the formation of the
context menu in the
Konqueror 4 doesn't
work.

Typically, to form a context menu handler oncontextmenu is
used in Firefox and IE, or onmousedown in processing the right
keys on the remaining browsers. In the Konqueror generally
oncontextmenu does not work, but onmousedown only works in
Konqueror 3.5.

The problem is
not solved.

The module <WebCfgD> of subsystems “User Interfaces” 352

The module <VCAEngine> of subsystems "User
Interfaces"

Module: VCAEngine
Name: Visual control area engine
Type: User Interfaces
Source: ui_VCAEngine.so
Version: 1.0.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: The main visual control area engine.
License: GPL

Introduction
VCAEngine module provides visual control area engine (VCA) in OpenSCADA system. Module itself

does not implement the visualization of the VCA, and contains data in accordance with the ideology of
«model/data - Interface». Data visualization of that module is implemented by the visualization modules of
VCA, such as Vision and WebVision.

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client stations with
a view to providing accessible information about the object and to for the the issuance of the control actions
to the object. In various practical situations and conditions the VCA, based on different principles of
visualization may by applied. For example, this may be the library of widgets QT, GTK+, WxWidgets or
hypertext mechanisms based technologies HTML, XHTML, XML, CSS, and JavaScript, or third-party
applications of visualization, realized in various programming languages Java, Python, etc. Any of these
principles has its advantages and disadvantages, the combination of which could become an insurmountable
obstacle to the use of VCA in a practical case. For example, technologies like the QT library can create
highly-reactive VCA, which will undoubtedly important for the operator station for control of technological
processes (TP). However, the need for installation of that client software in some cases may make using of
it impossible. On the other hand, Web-technology does not require installation on client systems and is
extremely multi-platform (it is enough to create a link to the Web-server at any Web-browser) that is most
important for various engineering and administrative stations, but the responsiveness and reliability of such
interfaces is lower that actually eliminates the using of them at the operator of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external interfaces,
including user and in any manner and for any taste. For example, the system configuration OpenSCADA as
now available as by means of the QT library, and also the Web-based.

At the same time creation of an independent implementation of the VCA in different basis may cause the
inability to use the configuration of one VCA into another one. That is inconvenient and limited from the
user side, as well as costly in terms of implementation and follow-up support. In order to avoid these
problems, as well as to create as soon as possible the full spectrum of different types of VCA project of the
creation of the conception of the VCA is established. The result of this project - the engine module(data
model) of the VCA, as well as direct visualization modules Vision and WebVision.

The module <VCAEngine> of subsystems "User Interfaces" 353

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g3
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=12ui
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=fcd
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=fcd
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g3
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=12ui

 1. Purpose
This module of the engine (data model) of the VCA is aimed to create the logical structure of the VCA

and the execution of sessions of individual instances of the VCA projects. Also, the module provides all the
necessary data to the final vizualizers of the VCA, both through local mechanisms of interaction of
OpenSCADA, and through the management Interface of OpenSCADA for remote access.

The final version of the VCA module, built on the basis of this module, will provide:
• three levels of complexity in the formation of visualization interface which let organically to
develop and apply the tools of the methodology from simple to complex:

• formation from the template frames through the appointment of the dynamics (without the
graphical configuration);
• graphical formation of new frames through the use of already made visualization elements
from the library (mimic panel);
• formation of new frames, template frames of the visualization elements in the libraries.

• building of the visualization interfaces of various complexity, ranging from simple flat interfaces
of the monitoring and finishing with the full-fledged hierarchical interface used in SCADA systems;
• providing of the different ways of formation and configuration of the user interface, based on
different graphical interfaces (QT, Web, Java ...) and also through the standard management
interface of OpenSCADA system;
• change of dynamics in the process of execution;
• building of the new template frames on the user level and the formation of the frames libraries,
specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and
accumulation;
• building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;
• description of the logic of new template frames and user visualization elements as with the simple
links, and also with the laconic, a full-fledged programming language;
• the possibility of the inclusion of the functions(or frames of computing of the functions) of the
object model of OpenSCADA to the user elements of the visualization, actually linking the
presentation of the algorithm of computing (for example, by visualizing the library of models of
devices of TP for following visual modeling TP);
• separation of user interfaces and interfaces of visualization of data provides building the user
interface in a single environment, and performance of it in many others (QT, Web, Java ...);
• the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);
• Visual building of various schemes with the superposition of the logical links and the subsequent
centralized execution in the background (visual construction and performance of mathematical
models, logic circuits, relay circuits and other proceedings);
• providing of the the functions of the object API to the OpenSCADA system, it can be used to
control the properties of the visualization interface from the user procedures;
• building of the servers of frames, of elements of the visualization and of the project of the
interfaces of the visualization with the possibility to serve the great number of the client
connections;
• simple organization of client stations in different basis (QT, Web, Java ...) with the connection to
the central server;
• full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;
• adaptive formation of alarms and notifications, with the support of different ways of notification;
• support of the user formation of the palettes and font preferences for the visualization of the
interface;
• support of the user formation of maps of the events under the various items of equipment
management and user preferences;

The module <VCAEngine> of subsystems "User Interfaces" 354

• support for user profiles, allowing to define various properties of the visualization interface
(colors, font characteristics, the preferred maps of events);
• flexible storage and distribution of libraries of widgets, frames, and projects of the visualization
interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

 2. The configuration and the formation of interfaces of the VCA
Module itself does not contain a visual tool for creating interfaces of VCA, based on one of the one of

the mechanisms. Such tools can be given by the final visualization modules of the VCA, for example the
module Vision of such a tool is provided.

Although the visual tool for the formation of the VCA the module doesn't provide the interface,
implemented on the basis of the management interface of the OpenSCADA, to manage the logical structure
is provided, and thus it is available for use in any system configurator of the OpenSCADA. Dialogues of
this interface are considered further in the context of the architecture of the module and its data.

 3. Architecture
Any VCA can operate in two modes - the development and execution. In the development mode the

VCA interface and its components are formed, the mechanisms of interaction are identified. While the
execution it is carried out the formation of VCA interface and еру interaction, based on the developed
VCA, with the final user is made.

VCA interface is formed of the frames, each of which, in its turn, formed from elements of the
primitives, or user interface elements. In doing so, the user interface elements are also formed from the
primitives or other user elements. That gives us a hierarchy and reuse of already developed components.

Frames and user elements are placed in the libraries of widgets. The projects of the interfaces of the final
visualization of the VCA are formed from these libraries' elements. Based on these projects the
visualization sessions are formed.

The structure of VCA is shown in Fig. 3.

The module <VCAEngine> of subsystems "User Interfaces" 355

http://wiki.oscada.org/HomePageEn/Doc/Vision?v=12ui

Fig.3 Generalized structure of the VCA.

This architecture of the VCA allows the support of three levels of complexity of the developing process
of the management interface:

• Forming of the VC interface (visualization and control) using the library of template frames by
placing the templates of the frames in the project and by the assignment of the dynamics.
• In addition to the first level the own creation of frames based on the library of derivatives and
basic widgets is to be done. Perhaps as a direct appointment of the dynamics in the widget, and the
subsequent appointment of it in the project.
• In addition to the second level is performed the independently forming of derivatives widgets,
new template frames and also the frames with the use of mechanism of describing the logic of
interaction and handling of events in one of the languages of a user programming of OpenSCADA
system.

The module <VCAEngine> of subsystems "User Interfaces" 356

 3.1. Frames and elements of visualization (widgets)

Frame is the window which directly provides information to the user in a graphical or text form. The
group of interconnected frames creates whole user interface of VC.

The contents of the frame is forming from the elements of visualization (widgets). Widgets may be the
basic primitives (different flat shapes, text, trend, etc.) and derivatives (formed from the basic or other
derivatives of widgets). All the widgets are grouped into the libraries. In the process, you can build your
own library of derivative widgets.

Actually the frame is also a widget that is used as a final element of visualization. This means that the
widget libraries can store the blanks of frames and the templates of the resulting pages of the user interface.

Frames and widgets are passive elements that do not normally contain links to the dynamics and other
frames, but only provide information about the properties of the widget and the nature of the dynamics
(configuration), connected to the properties of the frame. Activated frames, ie containing links to the
dynamics and active connections, form the user interface and are stored in the projects. In some cases, it is
possible the direct appointment of the dynamics in the blanks of frames.

Derivative frames/widgets can contain other widgets (attached), which can be glued (associated) with the
logic of one another by one of the languages of programming available in the OpenSCADA system
(Fig.3.1.1).

Fig.3.1.1 Example of the structure of the derived widget.

The module <VCAEngine> of subsystems "User Interfaces" 357

The widget is an element, by means of which it is provided:
• visualization of operational and archive information about TP;
• alarm about a violation of conduction of TP;
• switching between the frames of TP;
• management of technological equipment and the parameters of conduction of TP.

Tuning and linkage of the widgets is done through their properties. Parent widget and the widgets it
contains, can be complemented by user properties. Then the user and static attributes are associated with the
properties of embedded widget by internal logic. To show the dynamics (ie, current and archived data),
properties of widgets are dynamized, that is linked with the attributes of the parameters of OpenSCADA or
properties of other widgets. Using to link of the nested widgets by means of the internal logic with the
available programming language of the OpenSCADA system eliminates the question of the implementation
of complex logic of visualization, thus providing high flexibility. Practically, you can create fully
dynamized frames with complex interactions at the level of the user.

Between widgets at different levels of hierarchy complex inheritance relations are arranged, which are
defined by the possibility of using some widgets by other ones, beginning with the library widget, and
finishing with the widget to the session. To clarify these features of the interaction in Fig. 3.1.2
comprehensive map of «uses» inheritance is shown.

The module <VCAEngine> of subsystems "User Interfaces" 358

Fig.3.1.2 Map of “uses” inheritance of the the components of conception/engine

At the session level widget contains a frame of values of calculation procedure. This frame is initiated
and used in the case of presence of the calculation procedure. At the time of the initialization the list of
parameters of the procedure is created and a compilation of procedure is performed with these parameters
in the module, implementing the selected programming language and encoded with the full name of the
widget. A compiled function is connected to the frame of values of the calculation procedure. Further the

The module <VCAEngine> of subsystems "User Interfaces" 359

calculation is performed with the frequency of session.

Calculation and processing of the widget as a whole runs in the following sequence:
• the events, which are available at the time of computation, are selected from the attribute "event"
of the widget;
• events are loaded into the parameter "event" of the frame of computation;
• values of the input connections are loaded in the frame of calculation;
• values of special variables are loaded in the computation frame (f_frq, f_start and f_stop);
• values of selected parameters of the widget are loaded in the frame of computation;
• computation;
• uploading of the computation frame values into the selected parameters of the widget;
• uploading of the event from the parameter "event" of the computation frame;
• processing th events and transfer the unprocessed events at the level above.

 3.2. Project

Direct configuration and properties of the final visualization interface are contained in the project of the
visualization interface of the VCA. It may be created a lot of projects of the visualization interfaces.

Each project includes frames from the libraries of the frames/widgets. A frame provides a tool for the
dynamics to the properties described therein. All properties of the frame may be associated with dynamics
or authorized by the constants, and can act as a template for the formation of derivative pages. In fact, each
frame may contain multiple pages with their own dynamics. This mechanism allows to extremely simplify
the process of creating the same type of the frames by the ACS-TP engineer or by the user of OpenSCADA
for easy monitoring. An example of such one-type frames may be: groups of contours, groups of graphs,
reports and various tables. Mnemonic schemes of technological processes rarely come under this scheme
and will be formed directly in the description of the frame.

To provide the possibility of creation of a complex hierarchical interfaces of VC the frames, placed into
the project, can be grouped by name in the hierarchical form and by the appropriate visualization in the
form of a tree. In addition to this a mechanism of associative description of the calling of the frames
through regular expressions is provided.

Example of hierarchical representations of components of the project of the classical interface of VC of
the technological process with the description of standard expressions is given in Fig. 3.2.

The module <VCAEngine> of subsystems "User Interfaces" 360

Fig.3.2 Hierarchical view of components of the project of classical interface of VC of the technological

process.

In accordance with the Fig.3.1.2 objects of the session of the project inherit from an abstract object
"Widget" and use the appropriate objects of the project. Thus, the session ("Session") uses the project
("Project") and forms expand tree on its basis. Project page "Page" is directly used by the session page
"SessPage". The remaining objects ("SessWdg") are deployed in accordance with the hierarchy of page
elements (Fig.3.1.2).

In addition to the standard properties of an abstract widget ("Widget") elements of the pages of session
themselves get the following properties: storage of the frame of values of computational procedure,
calculation of the procedures and mechanism for processing of the events. Pages of the session, in addition,
contain a container of the following by the hierarchy pages. The session generally is computed with the
frequency and in the consistency:

• «Page of the top level» -> «Page of the lower level»
• «Widget of the lower level» -> «Widget of the top level»

This policy allows you to traverse the pages in accordance with the hierarchy, and to rise on the top

The module <VCAEngine> of subsystems "User Interfaces" 361

during the one iteration for the widget events.

The session supports the special properties of pages:
• Container - page is a container for the underlying pages;
• Template - page is a template for the underlying pages;
• Empty - empty, inactive, page; this feature is used in conjunction with the property Container for
logical containers organization.

Based on these properties the following types of pages are realized:
• Standard - The standard page (none property is set). It is the full final page.
• Container - Full page with the feature of the container (Container).
• Logical container - Logical container is actually not a page (Container|Empty). Performs
property of the intermediate and bunching element in the tree of pages.
• Template - Template page (Template). Pure template page is used to describe the common
properties and hipping them in privately order in nested pages.
• Container and template — The template and a container page (Template|Container). Combines
the functions of the template and the container.

Switching, opening, substitution and navigation through the pages is based on processing of the events
by the scenario in the attribute of the active widget "evProc". The scenario of this attribute is stored as a list
of commands with the syntax:<event>:<evSrc>:<com>:<prm>. Where:

• event - the expected event;
• evSrc - the path of the nested widget-source of the event;
• com - session command;
• prm - parameter of the command;

The following commands are implemented:
• open - Opening page. Page to open is specified in the parameter <prm> both: in direct way and as
a template (example: /pg_so/1/*/*).
• next - The opening of the next page. Page to open is specified in the parameter <prm> as a
template (example: /pg_so/*/*/$).
• prev - Opening of the previous page. Page to open is specified in the parameter <prm> as a
template (example: /pg_so/*/*/$).

Special characters of the template are deciphered as follows:
• pg_so - direct name of the desired page with the prefix. Requires the compulsory accordance and
is used to identify the last open page;
• 1 - name of a new page in a general way, without a prefix. It is ignored when it detects a previous
open pages;
• * - the page is taken from the name of a previous opened page or the first available page is
substituted, if the previous opened page is missing;
• $ - points the place of the opened page relative to which you are to go to the next or to the
previous one.

To understand the mechanism of the templates lets cite some real examples:
• Changing the signal object:
Command: open:/pg_so/2/*/* In was: /pg_so/pg_1/pg_mn/pg_1 It is: /pg_so/pg_2/pg_mn/pg_1
• Switching of the type:
Command: open:/pg_so/*/gkadr/* It was: /pg_so/pg_1/pg_mn/pg_1 It is:
/pg_so/pg_1/pg_gkadr/pg_1
• Next/previous page of the type:
Command: next:/pg_so/*/*/$ It was: /pg_so/pg_1/pg_mn/pg_1 It is: /pg_so/pg_1/pg_mn/pg_2

As an example lets cite the scenario of operation of the main page of the user interface:
ws_BtPress:/prev:prev:/pg_so/*/*/$
ws_BtPress:/next:next:/pg_so/*/*/$
ws_BtPress:/go_mn:open:/pg_so/*/mn/*
ws_BtPress:/go_graph:open:/pg_so/*/ggraph/*
ws_BtPress:/go_cadr:open:/pg_so/*/gcadr/*
ws_BtPress:/go_view:open:/pg_so/*/gview/*
ws_BtPress:/go_doc:open:/pg_so/*/doc/*

The module <VCAEngine> of subsystems "User Interfaces" 362

ws_BtPress:/go_resg:open:/pg_so/rg/rg/*
ws_BtPress:/so1:open:/pg_so/1/*/*
ws_BtPress:/so2:open:/pg_so/2/*/*
ws_BtPress:/so3:open:/pg_so/3/*/*
ws_BtPress:/so4:open:/pg_so/4/*/*
ws_BtPress:/so5:open:/pg_so/5/*/*
ws_BtPress:/so6:open:/pg_so/6/*/*
ws_BtPress:/so7:open:/pg_so/7/*/*
ws_BtPress:/so8:open:/pg_so/8/*/*
ws_BtPress:/so9:open:/pg_so/9/*/*
ws_BtPress:*:open:/pg_control/pg_terminator

In conjunction with the mechanism, above described, on the side of the visualization (RunTime) there is
the logic regulating how to open the pages. The logic is built on the following attributes of the basic
element "Box":

• pgOpen - Sign "The page is opened".
• pgNoOpenProc - Sign "Perform the page, even if it is not opened".
• pgOpenSrc - Contains the address of the widget or of the page which has opened the current. In
the case of the nested container widget here it is contained the address of the included page. To open
the pages from the script here it is enough to indicate the address of the widget-source of the
opening.
• pgGrp - Group of pages. Used for conjunction of the containers of the pages with the pages in
accordance with the general group.

The logic of the method of the opening the pages work in the following way:
• if the page has the group "main" or coincides with a group of the page in the main window or
there is no page on the main window, then open the page in the main window;
• if the page has a group which coincides with the group one of the containers of the current page,
then open it in the container;
• if the source of the opening of the page coincides with the current page, then open it as an
additional window over the current page;
• transmit a call for request for the opening to the additional windows with the processing in each
of the first three paragraphs;
• if any one of the relative windows doesn't open a new page, then open it as a related window of
the main window.

 3.3. Styles

We know that people can have individual characteristics in the perception of graphical information. If
these features are not taken into account, it is possible to obtain the rejection and seizure of the user to the
interface of VC. This rejection and seizure can lead to fatal errors in the management of TP, as well as
traumatize the human by the continuous work with such interface. In SCADA systems the agreements are
adopted, which regulate the requirements for creating a unified interface of VC normally perceived by most
people. This is actually eliminates the features of people with some deviations.

In order to take this into account and allow centralized and easy to change the visual properties of the
interface module is scheduled to implement a theme manager of the visualization interface.

User can create many themes, each of which will keep the color, font and other properties of the
elements of the frame. Simple changing of the theme will allow you to change the interface of VC, and the
possibility of appointing an individual theme in the user's profile allows to take into account his individual
characteristics.

To realize this opportunity, when you create a frame, it is necessary for the properties of color, font and
others set the «Config» (of the table if the «process» tab) in the value of «From style» (Fig. 3.7). And in the
parameter «Config template» to specify the identifier of the style field. Further, this field will automatically
appear in the Style Manager and will be there to change. Style Manager is available on the project
configuration page in the tab «Styles» (Fig. 3.3). On this tab you can create new styles, delete old ones,
change the field of the style and delete unnecessary.

The module <VCAEngine> of subsystems "User Interfaces" 363

Fig. 3.3 "Styles" tab of the configuration page of the project.

In general the styles are available from the project level. At the level of libraries of widgets you can only
define styles fields of widgets. At the project level, at the choice of style it is started the work with styles,
which includes access to the fields of styles instead of direct attribute values. In fact, this means that when
reading or writing a widget attribute these operations will be carried out with the corresponding field of the
chosen style.

When you run the project execution it will be used the set in the project style. Subsequently, the user can
select a style from the list of available ones. The user's style will be saved and used next time you run the
project.

The module <VCAEngine> of subsystems "User Interfaces" 364

 3.4. Events, their processing and the events' maps

Given the range of tasks for which the OpenSCADA system may be used, it is necessary to provide a
tool for management of interactive user events. This is due to the fact that in dealing with individual tasks
of embedded systems, input and control devices can greatly vary. But it is enough to look at the regular
office keyboard and notebook one, that would remove any doubt about the necessity for the manager of
events.

Event manager must work using the maps of events. Map of the events - is the list of named events,
indicating their origin. The origin of the events can be a keyboard, mouse, paddle, joystick, etc. If you have
any event manager of the events is looking for it in the active map and compares with the name of the
event. A comparison name of the event is placed in the queue for processing. Widgets in this case must
process the given queue of events.

The active map of events is specified in the profile of each user or is set by default.

In general, four types of events are provided:
• events of the images of VCA (prefix: ws_), for example, pressing of the button event-
ws_BtPress;
• keyboard events (prefix: key_) - all events from mouse and keyboard in the form of -
key_presAlt1;
• user events (prefix: usr_) are generated by the user in the procedures of the calculation of
widgets;
• mapping of the event (prefix: map_) - events from the map of events.

Event itself represents little information, especially if its processing occurs at higher level. For the
unequivocal identification of the event and its source in the whole the event is recorded as follows:
"ws_BtPress:/curtime". Where:

ws_BtPress - event;
/curtime - the path to the child element that has generated the event.

Table 3.4 provides a list of standard events, the support of which should be provided in visualizers of
VCA.

Table 3.4. Standard events
Id Description

Keyboard events: key_[pres|rels][Ctrl|Alt|Shift]{Key}
*SC#3b Scan code of the kye.
*#2cd5 Code of the unnamed key.
*Esc "Esc".
*BackSpace Removing of the previous character - "<--".
*Return, *Enter Enter - "Enter".
*Insert Insertion - "Insert".
*Delete Deleting - "Delete".
*Pause Pause - "Pause".
*Print Print of the screen - "Print Screen".
*Home Home - "Home".
*End End - "End".
*Left Left - "<-".
*Up Up - '^'.
*Right Right - "->".
*Down Down - '\/'.
*PageUp Page up - "PageUp".
*PageDown Page down - "PageDown".
*F1 - *F35 Function key from "F1" to "F35".
*Space Space - ' '.

The module <VCAEngine> of subsystems "User Interfaces" 365

Id Description
*Apostrophe Apostrophe - '`'.
Asterisk Asterisk on an additional field of the keyboard - ''.
*Plus Plus on an additional field of the keyboard - '+'.
*Comma Comma - ','.
*Minus Minus - '-'.
*Period Period - '.'.
*Slash Slash - '\'.
*0 - *9 Number from '0' to '9'.
*Semicolon Semicolon - ';'.
*Equal Equal - '='.
*A - *Z Keys of Latin alphabet from 'A' to 'Z'.
*BracketLeft Left square bracket- '['.
*BackSlash Backslash - '/'.
*BracketRight Right square bracket - ']'.
*QuoteLeft Left quote - '''.
Keyboard focus events.
ws_FocusIn Focus is obtained by a widget.
ws_FocusOut Focus is lost by a widget.
Mouse events:
key_mouse[Pres|Rels][Left|
Right|Midle] Pressed/released the mouse button.

key_mouseDblClick Double-click the left mouse button.
Events handshake on the side of the visualizer.
ws_alarmLev Acknowledgment of all violations by all means notice.
ws_alarmLight Acknowledgment of all violations of the notification by flashing/light.
ws_alarmAlarm Acknowledgment of all violations of the notification buzzer.
ws_alarmSound Acknowledgment of all violations of the notification sound/speech.
Events of the primitive of elemental figure ElFigure:
ws_Fig{n}[Left|Right|Midle] Activating of the figure (fill) {n} by the mouse button.
Events of the primitive of form elements FormEl:
ws_LnAccept A new value in the input line is set.
ws_TxtAccept The value of the the text editor is changed.
ws_ChkChange The state of the flag is changed.
ws_BtPress The button is pressed.
ws_BtRelease The button is released.
ws_BtToggleChange Button toggle is changed.
ws_CombChange The value of the combo box is changed.
ws_ListChange The current list item is changed.
ws_SliderChange Changing of the the slider position.
Events of the primitive of media contentMedia:
ws_MapAct{n}[Left|Right|Midle] Media area with the number {n} is activated by the mouse button.

Events are the main mechanism of notification and is actively used for user interaction. For the event
processing there are two mechanisms: the scriptы used to control the opening of the pages and the
computational procedure of the widget.

The mechanism "Scripts for the control the opening of pages" based on the basic attribute of the widget
"evProc" and is described in detail in section 3.2.

The mechanism "Processing the event with the help of computational procedure of the widget" is based
on the attribute "event" and the user procedure of calculating written with the help of the language of the

The module <VCAEngine> of subsystems "User Interfaces" 366

user programming of OpenSCADA. Events, in process of receipt, are accumulated in the attribute "event"
till the moment of call of computational procedure. Computational procedure is called with the specified
frequency of calculating the widget and receives a value for the attribute "event" as the list of events. In the
calculation procedure the user can: analyze, process and delete the processed events from the list, and add
to the list new events. The remaining, after the procedure execution, events are analyzed for compliance
with the conditions of the call by means of script of the first mechanism, after which the remaining events
are transmitted to the upper by the hierarchy widget to be processed by it, with the correction of the path of
events in accordance with the hierarchy of the penetration of the event.

The contents of the attribute "event" is a list of events in the format <event>:<evSrc>, with the event on
the separate line. Here is an example of processing events in the Java-like programming language of the
OpenSCADA:

using Special.FLibSYS;
ev_rez = "";
off = 0;
while(true)
{

sval = strParse(event,0,"\n",off);
if(sval == "") break;
else if(sval == "ws_BtPress:/cvt_light") alarmSt = 0x1000001;
else if(sval == "ws_BtPress:/cvt_alarm") alarmSt = 0x1000002;
else if(sval == "ws_BtPress:/cvt_sound") alarmSt = 0x1000004;
else ev_rez+=sval+"\n";

}
event=ev_rez;

 3.5. Signaling

An important element of any visualization interface is the user notification about the violation - alarm.
To simplify the perception, but also in mind the close connectivity of visualization and notification
(typically notification is amplified with the visualization) it is decided to integrate the interface of a
notification in the visualization interface. To do this, all the widget provides two additional attributes (of
the session level): "alarm" and "alarmSt". Attribute "alarm" is used to form the signal by the widget,
according to his logic, and attribute "alarmSt" is used to control the signaling fact of the branch of the tree
of the session of the project.

Attribute "alarm" is a line and has the following format: {lev|categ|message|type|tp_arg} Where:
• lev - signaling (alarm) level; number from 0 to 255;
• categ - alarm category; parameter of the acquisition subsystem, object, path, or a combination.
• message - signaling (alarm) message, for placement in a status line, displaying in the protocol,
and placement in the archive of messages;
• type - type of notification (visual, speech, and beep) is formed as a the integer number, which
contains the flags of notification methods:

• 0x01 - visual;
• 0x02 - beep, is frequently made through the PC-speaker;
• 0x04 - sound signal from the sound file or the speech synthesis, and if in the <tp_arg> the
name of the resource of the sound file is specified, then play it, or in other case the speech
synthesis from the text specified in <message> is made.

• tp_arg - argument of the type; it is used in the case of the audible signal to indicate the resource
of the sound alarm (file of the sound format).

Attribute "alarmSt" is an integer number that represents the maximum alarm level and the fact of the
quittance of the branch of the tree of the session of the project. Format of the number is as follows:

• first bite (0-255) characterizes the level of the alarm of the branch;
• the second byte indicates the type of notification (as well as in the attribute "alarm");
• the third byte indicates the type of notification without quittance (as well as in the attribute
"alarm");
• the first bit of the the fourth byte has a special appointment, setting this bit is the fact of the
quittance of the notification referred to the first byte.

The module <VCAEngine> of subsystems "User Interfaces" 367

Alarm formation and receipt of it by the visualizer. Alarm formation is performed by the widget by
setting its own attribute "alarm" in appropriate way and in accordance with it the attribute "alarmSt" of
current and the parent widget is set. Visualizers receive notification of the alarm using a standard
mechanism for notifications of the changes of attributes of widgets.

This mechanism provides the ability to build the signaling (alarm) interfaces at the level of subsystems
"data acquisition", or directly at the level of representation.

Taking into account that the processing of conditions of the signaling is made in the widgets, the page
containing the objects of signaling should be performed in the background, regardless of their openness to
the moment. This is done by setting a flag of the background execution of the page.

Although the mechanism of signaling is built in the visualization area the possibility of formation of
visual signaling elements remains, for example by creating the page that will never be opened.

Quittance Quittance is done by specifying the root of the branch of the widgets and the types of
notification. This allows to make quittance on the side of visualizer both as by groups, for example by the
signaling objects as well as individually by the objects. It is possible to independently quit different types of
alarms. Setting of the quittance is made by the simple modification of the attribute "alarmSt".

Example of the script to work with the signals is listed below:

//Allocation of the existence of alarms of different ways of notification
cvt_light_en = alarmSt&0x100;
cvt_alarm_en = alarmSt&0x200;
cvt_sound_en = alarmSt&0x400;
//Allocation of the existence of not quited alarms of
//different ways notification
cvt_light_active = alarmSt&0x10000;
cvt_alarm_active = alarmSt&0x20000;
cvt_sound_active = alarmSt&0x40000;
//Processing of the event buttons of quittance and quittance of
//different ways of notification
ev_rez = "";
off = 0;
while(true)
{

sval = strParse(event,0,"\n",off);
if(sval == "") break;
else if(sval == "ws_BtPress:/cvt_light") alarmSt = 0x1000001;
else if(sval == "ws_BtPress:/cvt_alarm") alarmSt = 0x1000002;
else if(sval == "ws_BtPress:/cvt_sound") alarmSt = 0x1000004;
else ev_rez+=sval+"\n";

}
event=ev_rez;

 3.6. Rights management

For the separation of access to the interface of VC and its components every widget contains information
about the owner, about its group and access rights. Access rights are recorded as is the convention in the
OpenSCADA system, in the form of a triad: <user><group><rest> where each element consists of three
attributes of access. For the elements of the VCA the following interpretation is taken:

• 'r' - the right to review the widget;
• 'w' - the right to control over the widget.

In the development mode a simple scheme of access "root.UI:RWRWR_" is used, which means - all
users can open and view the libraries, their components and projects, and all users of group "UI" user
interfaces) can edit.

In the performance mode the right described in the components of interface work

The module <VCAEngine> of subsystems "User Interfaces" 368

 3.7. Linkage with the dynamics

To provide relevant data in the visualization interface the data of subsystems "Data acquisition (DAQ)"
must be used. The nature of these data as follows:

1. parameters that contain some number of attributes;
2. attributes of the parameter can provide information of four types: Boolean, Integer, Real and
String;

3. attributes of the parameter can have their history (archive);
4. attributes of the parameter can be set to read, write, and with full access.

Considering the first paragraph it is necessary to allow the possibility of the group of destination links.
To do this we use the conception of of the logic level.

In accordance with paragraph 2, links provide transparent conversion of connection types and do not
require special configuration.

To satisfy the opportunities for access to archives, in accordance with paragraph 3, links make check of
the type of the attribute, and in the case of connection to the "Address", the address of linkage is put into the
value.

In terms of the VCA, the dynamic links and configuration of the dynamics are the one process, to
describe a configuration of which the tab "Processing" of the widgets is provided (Fig.3.7.a). The tab
contains a table of configuration of the properties of the attributes of the widget and the text of calculation
procedure of the widget.

Fig. 3.7.a The tab "Processing" of the configuration page of the widget.

The module <VCAEngine> of subsystems "User Interfaces" 369

http://wiki.oscada.org/Doc/DAQ?v=v4n

In addition to configuration fields of the attributes the column "Processing" in the table is provided, for
selective using of the attributes of the widgets in the computational procedure of the widget, and the
columns "Configuration" and "Configuration template", to describe the configuration of links.

Column "Configuration" allows you to specify the linkage type for the attribute of the widget:
• Constant - in the tab of widget links the field for indication of a constant appears, for example of
the special color or header for the template frames;
• Input link - linkage with the dynamics for a read-only;
• Output link - linkage with the dynamics just for the record;
• Full link - complete linkage with dynamic (read/write).

Column "Configuration template" makes it possible to describe the groups of dynamic attributes. For
example it may be different types of parameters of subsystem "DAQ". Furthermore, in the case of correct
formation of this field, the mechanism of automatically assign of the attributes with the only indication of
the parameter of subsystem "DAQ" is working, which simplifies and accelerates the configuration process.
The value of this column has the following format: <Parameter>|<identifier>, where:

• <Parameter> - the group of the attribute;
• <Identifier> - identifier of the attribute, this value is compared with the attributes of the DAQ
parameters with automatic linkage, after the group link indication.

Installation of the links may be of several types, which are determined by the prefix:
• val: - Direct download of the value through the links mechanism. For example, link: "val:100"
loads in the attribute of the widget the value of the 100. It is often used in the case of absence of end
point of the link, in order to direct value indicating.
• prm: - Link to the attribute of the parameter or parameter, in general, for a group of attributes, of
subsystem "Data acquisition". For example, the link "prm:/LogicLev/experiment/Pi/var" implements
the access of the attribute of the widget to the attribute of the parameter of subsystem "Data
acquisition".
• wdg: - Link to an attribute of another widget or a widget, in general, for a group of attributes. For
example, the link "wdg:/ses_AGLKS/pg_so/pg_1/pg_ggraph/pg_1/a_bordColor" implements the
access of the attribute of one widget to the attribute of another one. At that moment this type of link
is not intended for installation by the user manually, and is installed automatically in the mode of
dynamic linkage!

Processing of the links occurs at a frequency of calculating the widget in the following order:
• Receiving of the data from input links.
• The implementation of calculating of the script.
• Transmission of the values by the output links.

In the Fig. 3.7.b the tab of links with the group assignment of the attributes by the only specifying the
parameter is presented, and in Fig. 3.7.c - with the individual appointment of the attributes.

The module <VCAEngine> of subsystems "User Interfaces" 370

Fig. 3.7.b Tab "Links" of the page of configuration of the widget with the group assignment of the attributes

by the only specifying of the parameter.

The module <VCAEngine> of subsystems "User Interfaces" 371

Fig. 3.7.c Tab "Links" of the page of configuration of the widget with the individual appointment of the

attributes.

The module <VCAEngine> of subsystems "User Interfaces" 372

When the widget that contains the configuration of links is placed to the container of widgets, all links of
the source widget is added to the list of resulting links of the widgets' container (Fig. 3.7.d

Fig. 3.7.d Tab "Links" of the page of configuration of the container of widgets, including widgets with

links.

The aforesaid shows that the links are set by the user in the configuration interface. However, for the
possibility of creation of the frames for general use, with the function of providing detailed data of various
sources of the same type, a dynamic linkage mechanism is necessary. Such an mechanism is provided
through a reserved key identifier "<page>" of the group of attributes of links in the frames of general
purpose and dynamic linkage with the identifier "<page>" in the process of opening of the frame of general
purpose by means of the signal from another widget.

Lets examine the example when we have the frame of general-purpose "Control panel of graph" and a lot
of "Graphs" in different tabs. "Control panel of graph" has links with the templates:

• tSek --> "<page>|tSek"
• tSize --> "<page>|tSize"
• trcPer --> "<page>|trcPer"
• valArch --> "<page>|valArch"

At the same time, each widget "Graph" has the attributes tSek, tSize, trcPer and valArch. In the case of a
calling of the opening signal of "Control panel of graph" from any widget "Graph" it is happening the
linkage of the attributes of the "Control panel of graph" in accordance with the attribute specified in the

The module <VCAEngine> of subsystems "User Interfaces" 373

template with the attribute of the widget "Graph". As a result, all changes in the "Control panel of graph"
will be displayed on the graph by means of the link.

In the case of presence of external links to the parameters of subsystem "Data acquisition" in the widget
"Graph", the links of "Control panel of graph" will be installed on an external source. In addition, if in the
"Control panel of graph" will be declared the links to the missing attributes directly in the widget "Graph",
it will be made the search for the availability of such attributes from an external source, the first to which
the link is directed, performing, thus, the addition of missing links.

To visualize this mechanism the table 3.7 is cited.

Table 3.7. The mechanism of the dynamic linkage.
Attributes of the "Control panel of
graph" (the template of dynamic

linkage)

"Graph"
attributes

Attributes of an
external

"Parameter"

The resulting link or an
value of the linking

attribute
tSek (<page>|tSek) tSek - "Graph".tSek
tSize (<page>|tSize) tSize - "Graph".tSize
trcPer (<page>|trcPer) trcPer - "Graph".trcPer
valArch (<page>|valArch) valArch - "Graph".valArch
var (<page>|var) var var "Parameter".var
ed (<page>|ed) - ed "Parameter".ed
max (<page>|max) - - EVAL
min (<page>|min) - - EVAL

 3.8. The primitives of the widget

Any newly created widget is based on one of several primitives (finite element of the visualization) by
installing of the related link as directly to the primitive, as well as through the several intermediate user
widgets. Each of the primitives contains a mechanism (logic) of data model. A copy of the widget keeps the
values of the properties of configuration of the the primitive specially for itself.

The purposes of the visualization interface includes support and work with the data model of the
primitives of widgets. Primitives of the widget must be carefully developed and unitized in order to cover
as many opportunities in the as possible to a smaller number of weakly connected with each other by their
purpose primitives.

Table 3.8.a shows the list of primitives of widgets (basic elements of visualization).

Table 3.8.a. The library of the primitives of widgets (basic elements of visualization)
Id Name Function

ElFigure Elementary graphic
figures

Primitive is the basis for drawing basic graphic shapes with their
possible combinations in a single object. The support of the
following basic figures is provided:

• Line.
• Arc.
• Bézier curve.
• Fill of the enclosed space.

For all the figures contained in the widget it is set the common
properties of thickness, color, etc., but this does not exclude the
possibility of indicating the above attributes for each figure
separately.

The module <VCAEngine> of subsystems "User Interfaces" 374

Id Name Function

FormEl Elements of the form.

Includes support for standard form components:
• Line edit.
• Text edit.
• Check box.
• Button.
• Combo box.
• List.
• Slider.
• Scroll bar.

Text Text Text element (labels). Characterized by the type of font, color,
orientation and alignment.

Media Media

Element of visualization of raster and vector images of various
formats, playback of animated images, playback of audio segments
and playback of video fragments. Perhaps it should be included the
OpenGL support!

Diagram Diagram Element of the diagram with the support of the visualization of the
flow of several trends, the spectrum

Protocol Protocol
Element of the protocol, visualizer of the system messages, with
support for multiple operating modes.

Document Document The element of generating the reports, journals and other
documentation on the basis of available in the system data.

Box Container
Contains the mechanism fro other widgets placement with the
purpose of creation of new, more complex widgets and pages of final
visualization.

Function
Function of API of the
object model of
OpenSCADA

Not visual, on the side of execution, widget which allows to include
a computing function of the object model of OpenSCADA in the
VCA.

Each primitive, and the widget at all, contains the common set of properties/attributes in the composition
which is shown in Table 3.8.b:

Table 3.8.b. The common set of properties/attributes in the widget
Id Name № Value

id Id -
Id of the element. The attribute is read-only, designed to provide
information on the ID of the element.

path Path - The path to the widget. The attribute is read-only and disigned to
provide information about the location of the element.

parent Parent -
Ancestor or parent of the widget. The attribute is read-only and
designed to provide information about the location of ancestor
from which the widget is inherited from.

root Root 1 Id of the widget-primitive (basic element) which underlies the
image of visualization of the widget.

owner Owner - Widget's owner and group, separated by ":". By default the
"root:UI".

perm Access - Access to widget into by select octal numbers of view
"RWR_R_". By default the 0664(RWRWR_).

name Name - Name of the element. Modifiable element name.

dscr Description - Description of the element. Text field, serves for attachment to
the widget of the brief description.

en Enabled 5
The state of the element - "Enabled". Disabled element is not
shown in the execution mode.

The module <VCAEngine> of subsystems "User Interfaces" 375

Id Name № Value

active Active 6
The state of the element - "Active". Active element may receive
focus in the execution mode, and thus receive keyboard and other
events with their subsequent processing.

geomX Geometry:x 7 Geometry, coordinate 'x' of the element position.
geomY Geometry:y 8 Geometry, coordinate 'y' of the element position.
geomW Geometry:width 9 Geometry, the width of the element.
geomH Geometry:height 10 Geometry, the height of the element.
geomXsc Geometry:x scale 13 The horizontally scale of the element.
geomYsc Geometry:y scale 14 The vertical scale of the element.

geomZ Geometry:z 11 Geometry, coordinate 'z' (level) of element on the page. It also
defines how to transfer the focus through active elements.

geomMargin Geometry:margin 12 Geometry, the fields of the element.

tipTool Tip:tool 15 The text of a brief help or tip on this element. Usually is realized
as a tool tip, while keeping your mouse cursor over the element.

tipStatus Tip:status 16
Text information on the status of the element or guide to action
over the element. Usually is realized in the form of a message in
the status bar while keeping your mouse cursor over the element.

contextMenu Context menu 17

Configuration of the own context menu of the element. The
configuration is stored as the lines of entries of context menu in
the format:<Name of the entry>:<EventId>. Where:

• <Name of the entry> - Name of the entry of menu.
• <EventId> - Event Id which is generated to the widget

(usr_<EventId>) while the selection the menu entry.

evProc Events process -

Attribute for storing of the script of the processing of event of
direct control of user interface. Script is the list of commands to
the visualization interface generated at the event receipt (attribute
event).

Additional attributes for items placed into the project in the role of a page.
pgOpen Page:open state - Sign "The page is open".

pgNoOpenProc Page:no open
process

- Sign "Execute the page, even if it is closed".

pgOpenSrc Page:open source 3 Full address of the page which has opened this one.
pgGrp Page:group 4 The group of the page.
Additional attributes of the execution mode.

event Event -

Special attributes for the collection of events of the widget in the
list, which is divided by the new line. This attribute is only
available in the session. Access to the attribute is protected by the
resource in order to avoid loss of events. An attribute is always
available in the script of widget.

load Load -1 A virtual command of the group data download.

focus Focus -2

Special attribute of the indicating the fact of receiving the focus
by an active widget. This attribute is only available in the session.
Attribute of the widget and of the the embedded widgets is
available in the script of widget.

perm Permition -3
Virtual attribute of the rights verification of active user on the
viewing and control over the widget.

The module <VCAEngine> of subsystems "User Interfaces" 376

 3.8.1. Elementary graphic figures (ElFigure)

Primitive is the basis for drawing basic graphic shapes with their possible combinations in a single
object. Taking into account the wide range of various shapes, which must be maintained by the primitive,
and at the same time the primitive must be simple enough for using and, if possible, for implementation, it
was decided to limit the list of the basic figures used for the construction of the resulting graphics to these
figures: line, arc, Bézier curve and fill of the enclosed spaces. Based at these basic figures, it is possible to
construct derived figures by combining the basic. in the context of the primitive, there is possibility to set
the transparency of the color in the range [0 .. 255], where '0'- complete transparency.

A list of additional properties/attributes of the primitive is given in Table 3.8.1.

Table 3.8.1. A list of additional properties/attributes of the primitive ElFigure
Id Name № Value

lineWdth Line:width 20 Line width.

lineClr Line:color 21 Line color.(Transparency of the color is defined as follows: red-127 |
#ff0000-127, where "127" is the value of transparency.)

lineStyle Line:style 22 Line style (solid, dashed, dotted).
bordWdth Border:width 23 Line border width. The zero width indicates the lack of border.
bordClr Border:color 24 Border color.
fillColor Fill:color 25 Fill color.
fillImg Fill:image 26 Fill image.

orient Orientation
angle

28 The rotation angle of the content of widget.

elLst Element's list 27

List of graphic primitives in the following format:
• Line. Record form in the list: <line:p1 | (x | y):p2 | (x | y):

[width | w{n}]:[color | c{n}]:[border_width | w{n}]:
[border_color | c{n}]:[line_style | s{n}]>

• Arc. Record form in the list: <arc:p1 | (x | y):p2 | (x | y):p3 |
(x | y):p4 | (x | y):p5 | (x | y):[width | w{n}]:[color | c{n}]:
[border_width | w{n}]:[border_color | c{n}]:[line_style |
s{n}]>

• Bézier curve. Record form in the list: <bezier:p1 | (x | y):p2 |

(x | y):p3 | (x | y):p4 | (x | y):[width | w{n}]:[color | c{n}]:
[border_width | w{n}]:[border_color | c{n}]:[line_style |
s{n}]>

• Fill. Record form in the list: <fill:p1 | (x | y),p2 | (x | y),...,pn |
(x | y):[fillClr | c{n}]:[fillImg | i{n}]>

The attributes for each point from the list of graphic figures elLst
p{n}x Point {n}:x 30+n*6 Coordinates 'x' of the point {n}.
p{n}y Point {n}:y 30+n*6+1 Coordinates 'y' of the point {n}.

The module <VCAEngine> of subsystems "User Interfaces" 377

Id Name № Value
w{n} Width {n} 30+n*6+2 Width {n}.
с{n} Color {n} 30+n*6+3 Color {n}.
i{n} Image {n} 30+n*6+4 Image {n}.
s{n} Style {n} 30+n*6+5 Style {n}.

 3.8.2. Element of the form (FormEl)

Primitive is intended to provide the standard form elements to the user. The general list of attributes
depends on the type of element. A list of additional properties/attributes of the primitive is given in Table
3.8.2.

Table 3.8.2. A set of additional properties/attributes of primitive FormEl
Id Name № Value

elType Element
type 20

Type of element (Line edit, Text edit, Check box, Button, Combo box, List,
Slider, Scroll bar). On its value it is depended a list of additional attributes.

Line edit:
value Value 21 The contents of the line.

view View 22 Type of the editing line (Text; Combobox; Integer; Real Time, Date, Date
and Time).

cfg Config 23 Configuration of the line. The format of the value of the field for different
types of lines:

Text - the formated input configuration with parameters:
A - ASCII alphabetic character required. A-Z, a-z.
a - ASCII alphabetic character permitted but not required.
N - ASCII alphanumeric character required. A-Z, a-z, 0-9.
n - ASCII alphanumeric character permitted but not required.
X - Any character required.
x - Any character permitted but not required.
9 - ASCII digit required. 0-9.
0 - ASCII digit permitted but not required.
D - ASCII digit required. 1-9.
d - ASCII digit permitted but not required (1-9).
- ASCII digit or plus/minus sign permitted but not required.
H - Hexadecimal character required. A-F, a-f, 0-9.
h - Hexadecimal character permitted but not required.
B - Binary character required. 0-1.
b - Binary character permitted but not required.
> - All following alphabetic characters are uppercased.
< - All following alphabetic characters are lowercased.
! - Switch off case conversion.
\\ - Use to escape the special characters listed above to use them as
separators.

Combobox - contains a list of the values of the editable combobox.
Integer - contains the configuration of input field of integer in the

format: <Minimum>:<Maximum>:<Step of
change>:<Prefix>:<Suffix>.

Real - contains the configuration of input field of real in the format:
<Minimum>:<Maximum>:<Step of
change>:<Prefix>:<Suffix>:<The number of digits after the
decimal point>.

Time, Date, Date and time - to form the date following the the template
with parameters:

d - number of the day (1-31);
dd - number of the day (01-31);

The module <VCAEngine> of subsystems "User Interfaces" 378

Id Name № Value
ddd - acronym of the day ('Mon' ... 'Sun');
dddd - the full name of the day ('Monday' ... 'Sunday');
M - number of the month (1-12);
MM - number of the month (01-12);
MMM - acronym of the month ('Jan' ... 'Dec');
MMMM - the full name of the month ('January' ... 'December');
yy - last two digits of the year;
yyyy - full year;
h - hour (0-23);
hh - hour (00-23);
m - minutes (0-59);
mm - minutes (00-59);
s - seconds (0-59);
ss - seconds (00-59);
AP,ap - to display AM/PM or am/pm.

font Font 25 Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

Text edit:
value Value 21 The contents of the editor.
wordWrap Word wrap 22 Automatic division of text by the words.

font Font 25 Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

Check box:
name Name 26 Bame/label of the checkbox.
value Value 21 Value of the checkbox.

font Font 25 Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

Button:
name Name 26 Name, the inscription on the button.
value Value 21 The value for the settled button.
img Image 22 The image on the button.
color Color 23 Color of the button.
colorText Color:text 27 The color of the text.
checkable Checkable 24 Sign of functioning as a settled button.

font Font 25 Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

Combo box:
value Value 21 Current value of the list.
items Items 22 The entries of the list.

font Font 25 Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

List:
value Value 21 The selected list value.

items Items 22 The entries of the list.

font Font 25 Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

The module <VCAEngine> of subsystems "User Interfaces" 379

Id Name № Value
Slider and the scroll bar:
value Value 21 Slider position.

cfg Config 22

Configuration of the slider in the format:
<VertOrient>:<Min>:<Max>:<SinglStep>:<PageStep>. Where:

• VertOrient - sign of a vertical orientation, the default is the
horizontal orientation;

• Min - minimum value
• Max - maximum value;
• SinglStep - the size of a single step;
• PageStep - the size of the page step.

 3.8.3. Text element (Text)

This primitive is designed to display the plain text used as labels, and different signatures. With the aim
of creating a simple frequent decorations the primitive must support the surrounding of the text by frame. A
list of additional properties/attributes of the primitive is given in Table 3.8.3.

Table 3.8.3. The list of additional properties/attributes of the primitive Text
Id Name № Value

backColor Background:color 20 Background color.
backImg Background:image 21 Background image.
bordWidth Border:width 22 Border width.
bordColor Border:color 23 Border color.

bordStyle Border:style 24 Border style
(None;Dotted;Dashed;Solid;Double;Groove;Ridge;Inset;Outset).

font Font 25
Text font in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

color Color 26 Text color.
orient Orientation angle 27 Orientation of text, rotation on angle.
wordWrap Word wrap 28 Automatic division of text by words.

alignment Alignment 29
Alignment of the text (Top left, top right, top center, top justify,
the bottom left, bottom right, bottom justify; V center left, V
center right, center ; V center justify).

text Text 30 The value of the text field.
numbArg Arguments number 40 Arguments number.
Attributes of the arguments

arg{x}val
Argument
{x}:value

50+10
*x Argument value.

arg{x}tp Argument {x}:type 50+10
*x+1

Argument type: "Integer", "Real", "String"

arg{x}cfg Argument
{x}:config

50+10
*x+2

Argument configuration:
• string : [len] - string width;
• real: [wdth];[form];[prec] - value width, the form of

значения ('g','f');
• integer: [len] - value width.

The module <VCAEngine> of subsystems "User Interfaces" 380

 3.8.4. Element of visualization of media materials (Media)

This primitive is designed to play different media materials, ranging from simple images to the full audio
and video streams. Taking into the account the variety of ways and libraries for playing a full audio and
video streams as well as a serious laboriousness of implementing of all of these mechanisms in this widget,
it was decided at the initial stage, only to realize the work with images and with simple animated images
and video formats. A list of additional features/attributes of the primitive is given in Table 3.8.4.

Table 3.8.4. A set of additional properties/attributes of primitive Media
Id Name № Value

backColor Background:color 20 Background color.
backImg Background:image 21 Background image.
bordWidth Border:width 22 Border width.
bordColor Border:color 23 Border color.

bordStyle Border:style 24
Border style
(None;Dotted;Dashed;Solid;Double;Groove;Ridge;Inset;Outset
).

src Source 25 Source of media data.
fit Fit to widget size 26 Sign "Сo-ordinate the contents with the size of the widget".
type Type 27 Type of media (Image;Movie).
areas Map areas 28 Number of active areas.
The attributes of the video (Movie)

speed Play speed 29
The speed of playback, as a percentage from the original speed.
If the value is less than 1%, the playback stops.

Active areas
area{x}shp Area {x}:shape 40+3*x Type of the area (Rect;Poly;Circle).

area{x}coord Area
{x}:coordinates

40+3*x
+1

The coordinates of areas. Coordinates are separated by
commas: "x1,y1,x2,y2,xN,yN"

area{x}title Area {x}:title
40+3*x

+2 Title of the area.

 3.8.5. Element of constructing diagrams/trends (Diagram)

This primitive is designed to construct various diagrams, including graphs/trends showing ongoing
process and archive data. At this time, the following types of diagrams are realized:

• "Graph" - allows you to build a one-dimensional graphs of the values of parameters of
subsystems "Data acquisition" in time, as well as direct use of historical data to graph. It supports
the tracing of current values and the values of the archive modes. It supports also the possibility of
building the graphs of the parameters which have no archive of values.
• "Spectrum" - builds the frequency spectrum of values from the subsystem "Data acquisition".
Window of the data of frequency spectrum is formed on the basis of the size of the widget
horizontally, in pixels, and the available data of the parameters imposed on the horizontal grid size.
In this regard, the minimum frequency is determined by the value of the attribute tSize (1/tSize), and
maximum frequency of allocated frequencies is determined by half-width of the graph in pixels
multiplied by the minimum frequency (width/(2*tSize)). It is supported the formation of the
spectrum in the tracing mode.

The module <VCAEngine> of subsystems "User Interfaces" 381

The process of access to archive data is optimized, by means of an intermediate buffer for the display, as
well as the package of traffic data in the query. A list of additional properties/attributes of the primitive is
given in Table 3.8.5.

Table 3.8.5. A list of additional properties/attributes of the primitive Diagram
Id Name № Value

backColor Background:color 20 Background color.
backImg Background:image 21 Background image.
bordWidth Border:width 22 Border width.
bordColor Border:color 23 Border color.

bordStyle Border:style 24
Border style
(None;Dotted;Dashed;Solid;Double;Groove;Ridge;Ins
et;Outset).

trcPer Tracing period (s) 25 Mode and frequency of tracing.
type Type 26 Diagram type: "Trend".
Attributes of the trend/graph (Trend)
tSek Time:sek 27 Current time, seconds.
tUSek Time:usek 28 Current time, microseconds.
tSize Size, sek 29 Size of the trend, seconds.
curSek Cursor:sek 30 Cursor position, seconds.
curUSek Cursor:usek 31 Cursor position, microseconds.
curColor Cursor:color 32 Cursor color.
sclColor Scale:color 33 Color of the scale/grid.

sclHor Scale:horizontal 34 Horizontal mode of the scale/grid: "No draw",
"Grid;Markers" и "Grid and markers".

sclVer Scale:vertical 35
Vertical mode of the scale/grid: "No draw", "Grid",
"Markers", "Grid and markers", "Grid (log)", "Marker
(log)", "Grid and markers (log)".

sclVerScl Scale:vertical scale
(%)

40 Graphic's vertical scale in percents.

sclVerSclOff
Scale:vertical scale
offset (%) 41 Offset of graphic's vertical scale in percents.

sclMarkColor Scale:Markers:color 36 Color of markers of the scale/grid.

sclMarkFont Scale:Markers:font 37
Font of markers of scale/grid in the form of {<Family>
<Size> <Bold> <Italic> <Underline> <Strikeout>}.

valArch Value archivator 38 Archives of parameters archiver.

parNum Parameters number 39
The number of parameters that can be displayed on the
one trend.

Individual attributes of the parameters of trend/graph

prm{X}addr
Parametr {X}
:address 50+10*{X}

Full address to the parameter {X} or to the archive of
values.

prm{X}bordL Parametr {X} :view
border:lower

50+10*{X}
+1

The lower limit of the parameter {X}.

prm{X}bordU
Parametr {X} :view
border:upper

50+10*{X}
+2 The upper limit of the parameter {X}.

prm{X}color Parametr {X} :color 50+10*{X}
+3

Color fro display of trend of the parameter {X}.

prm{X}val Parametr {X} :value
50+10*{X}

+4 Value of the parameter {X} under the cursor.

The module <VCAEngine> of subsystems "User Interfaces" 382

 3.8.6. The element of building the protocols based on the archives of messages (Protocol)

This primitive is designed to visualize the data of the archive of messages through the formation of
protocols with different ways of visualization, starting from a static scanning view and finishing with
dynamic tracing of protocol of message. A list of additional properties/attributes of the primitive is given in
Table 3.8.6.

Table 3.8.6. A list of additional properties/attributes of the primitive Protocol
Id Имя № Значение

backColor Background:color 20 Background color.
backImg Background:image 21 Background image.

font Font 22
Text font in the full record {<Family> <Size> <Bold>
<Italic> <Underline> <Strikeout>}.

headVis Header visible 23 Show header for table or not.
time Time, sek 24 Current time, seconds.
tSize Size, sek 25 Query size, seconds.
trcPer Tracing period (s) 26 Mode and frequency of tracing.
arch Archival 27 Archiver of the message archive.
tmpl Template 28 Template of the query in the archive.
lev Level 29 The level of messages.

viewOrd View order 30
View order ("By time", "By level", "By category", "By
messages", "By time (reverse)", "By level (reverse)", "By
category (reverse)", "By messages (reverse)").

col View columns 31 The displayed columns.
itProp Item's properties 32 Item's properties number.
Individual attributes of item's properties
it{X}lev Item {X}:level 40+5*{X} Criterion: element's level {X}. More or equal for pointed.

it{X}tmpl Item {X}:template 41+5*{X} Criterion: element's category template {X}. Include special
symbols '*' and '?'.

it{X}fnt Item {X}:font 42+5*{X} Element {X} font.
it{X}сolor Item {X}:color 43+5*{X} Element {X} color.

 3.8.7. Element of formation of documentation(Document)

Primitive is designed to create report, operational and other documents based on templates of documents.
A list of additional properties/attributes of the primitive is given in Table 3.8.7.

Table 3.8.7. A list of additional properties/attributes of the primitive Document
Id Name № Value
style CSS 20 Document style (CSS).
tmpl Template 21 XHTML basic template of the document.
doc Document 22 Pseudo-virtual attribute of the the current (selected) document.

font Font 26 Basic font of the text in the full record {<Family> <Size> <Bold> <Italic>
<Underline> <Strikeout>}.

bTime Time:begin 24 Start time of the document, seconds.
time Time:current 23 Time of the document generation, seconds.
n Archive size 25 Number of documents or the depth of the archive.
Attributes of the enabled archival mode

aCur Cursor:archive -
The position of the current document in the archive. Record of the value <0
produces the archiving of this document.

vCur Cursor:view - Current visual document of the archive. Writing a value of -1 - to select the
next document, -2 - to select the previous instrument.

The module <VCAEngine> of subsystems "User Interfaces" 383

Id Name № Value
Attributes of the archive
doc{X} Document {X} - Archive document X (0...(n-1))

Features of the primitive "Document":
• Flexible formation of the structure of the document based on Hypertext Markup Language. This
will provide support of wide formatting opportunities of documents with the subsequent
implementation of the GUI form of the document formation.
• Formation of documents on command or on a plan into the with the archive with the subsequent
viewing of the archive.
• Document formation in real-time mode, fully dynamic and based on the archives for the specified
time.
• Using the attributes of the widget to pass values and addresses to the archives in the document.
Allows you to use the widget of document as the template for generating reports with other input
data.

The basis of any document is XHTML-template. XHTML-template is the tag "body" of the WEB-page
which contains the document's static in the standard XHTML 1.0 and elements of the executable
instructions in one of the languages of the user programming of OpenSCADA in the form of <?dp
<procedure> ?>. The resulting document is formed by the execution of procedures and insert of their result
into the document.

The source for values of the executable instructions are the attributes of the widget of the primitive, as
well as all the mechanisms of the user programming language. Attributes may be added by the user and
they can be linked to the actual attributes or parameters or they can be autonomous, values of which will be
formed in the script of the widget. In the case of linked attributes the values can be extracted from the
history, archive.

Fig. 3.8.7.a shows a block diagram of the widget of the primitive "Document". According to this
structure "Document" includes: XHTML-template, the resulting documents and the processing script. The
data source for the script and for the resulting documents are the attributes of the widget.

Fig. 3.8.7.a The block diagram of the primitive "Document".

It i provided the work of widget in two modes: Dynamic and Archive. The difference between archive
mode is the availability of the archive of the specified depth and attributes which allow you to control the
process of archiving and viewing of the document in the archive.

The module <VCAEngine> of subsystems "User Interfaces" 384

Generation of the document is always made at the time of installation of the time attribute <time>
relatively to the set start time of the document in the attribute <bTime>. With the archive turned off the
resulting document is placed directly in the attribute <doc>. When the archive is turned on the resulting
document is placed in the cell under the cursor, the attribute <aCur>, as well as in <doc> if the value of the
archive cursor <aCur> and the cursor of visualized document <vCur> match. Attributes of the archival
cursors provide several command of values:

• aCur<0 - Moves the archiver cursor for the following position, thereby leaving the previous
document in the archive and clearing the document under the cursor.
• vCur==-1 - Select of the next document to be displayed. The selected document is copied to the
attribute <doc>.
• vCur==-2 - Select of the previous document to be displayed. The selected document is copied to
the attribute <doc>.

As it was stated above dynamics of the document's template is defined by the inserts of executable
instructions of the form <?dp <procedure> ?>. The procedures may use the same attributes of the widget
and functions of the user programming interface of OpenSCADA. In addition to the attributes of the widget
special attributes (Table 3.8.7.a) are reserved.

In addition to special attributes in XHTML template tags and tags' attributes of special assignment are
reserved (Table 3.8.7.a).

Table 3.8.7.a. Special and reserved elements of the template.
Name Assignment
Attributes

rez Attribute of the results of the procedure execution, the contents of which is
placed to the document tree.

lTime
Last formation time. If the document is formed for the first time, <lTime> is
equal to the <bTime>.

rTime Contains the time for the selected values in seconds. It is defined inside the tags
with the attribute "docRept".

rTimeU
Contains the time for the selected values in microseconds. It is defined inside the
tags with the attribute "docRept".

rPer Contains the periodicity of the selection of values (the attribute "docRept").

mTime, mTimeU,
mLev, mCat, mVal

It is defined inside the tags with an attribute "docAMess" when parsing messages
of the messages' archive:
mTime - message time; mTimeU - message time, microseconds; mLev -
message level; mCat - message category; mVal - message value.

Special tags
Special attributes of the standard tags

body.docProcLang Language of executable procedures of the document. By defaults it is
JavaLikeCalc.JavaScript.

*.docRept="1s"
Tag with the specified attribute, while the formation it multiplies through the
time offset in the attribute "rTime" to the value, specified in this attribute.

.docAMess="1:PLC"

Indicates the necessity of the tag multiplication with an attribute of message
from the archive of messages for the specified interval of time and in accordance
with the level of (1) and template of request (PLC*). For this tag in the process
of multiplication the following attributes: mTime, mTimeU, mLev, mCat and
mVal are defined.

*.docRevers="1" Points to invert of the order of multiplication, the last from the top.

*.docAppend="1"
The sign of the necessity of addition of the procedure execution result in the tag
of the procedure. Otherwise, the result of execution replaces the contents of the
tag.

body.docTime
Time of formation of the document. It is used to set the attribute <lTime> in the
time of the next formation of the document. It is not set by the user!

The module <VCAEngine> of subsystems "User Interfaces" 385

 3.8.8. Container (Box)

Primitive container is used to build composite widgets and/or the pages the user interface. A list of
additional properties/attributes of the primitive is given in Table 3.8.8.

Table 3.8.8. A list of additional properties/attributes of the primitive Box
Id Name № Value

pgOpenSrc Page:open source 3 Full address of the page, which is included inside of the container.
pgGrp Page:group 4 The group of container of pages.
backColor Background:color 20 Background color.
backImg Background:image 21 Background image.
bordWidth Border:width 22 Border width.
bordColor Border:color 23 Border color.

bordStyle Border:style 24
Border style
(None;Dotted;Dashed;Solid;Double;Groove;Ridge;Inset;Outset).

The module <VCAEngine> of subsystems "User Interfaces" 386

 3.9. Using the database to store the library of widgets and projects

Storage of widgets and widget libraries is implemented in the databases accessible in the OpenSCADA
system. DB is organized on the data belonging to the library. Ie a separate library is stored in a separate
group of tables of one or of the different databases. The list of libraries of widgets is stored in the index
table of the libraries with the name "VCALibs" and with the structure “Libs”. A copy of this table is created
in each database, which stores data of the module with the list of libraries which are hold in a given
database. To the composition of the tables belonging to the library of widgets, are included:

• {DB_TBL} — Table of widgets belonging to the library (structure "LibWigets").
• {DB_TBL}_io — Table with the working properties of the widget in this library and of the
embedded widgets of the container ones (structure "LibWidgetIO").
• {DB_TBL}_uio — Table with the user properties of the widgets of this library and the embedded
widgets of container ones (structure "LibWidgetUserIO", раздела БД).
• {DB_TBL}_incl — Table of embedded widgets in the widgets-containers of the Library
(structure "LibWidgetIncl").
• {DB_TBL}_mime — Table with the resources of the library and its widgets (structure
"LibWidgetMime").
• {DB_TBL}_ses — Table for store data of project's run mode, session (structure "PrjSesIO").

Projections (structures) of basic tables are as follows:
• Libs(ID, NAME, DSCR, DB_TBL, ICO) - Libraries of widgets <ID>.

ID - identifier;
NAME - name;
DSCR - description;
DB_TBL - DB with widgets;
ICO - coded (Base64) image of the icon of the library.

• LibWigets(ID, ICO, PARENT, PROC, PROC_PER, USER, GRP, PERMIT, ATTRS, DBV) -
Widgets <ID> of the library.

ID - identifier;
ICO - coded (Base64) image of the icon of the widget.
PARENT - address of the basic widget /wlb_originals/wdg_Box;
PROC - internal script and script language of the widget;
PROC_PER - frequency of the computation of the script of the widget;
ATTRS - list of attributes of the widget, modified by the user;
DBV - DB version.

• LibWidgetIO(IDW, IDC, ID, IO_VAL, SELF_FLG, CFG_TMPL, CFG_VAL) - Work
attributes <ID> of the widget <IDW>.

IDW - identifier of the widget;
IDC - child widget identifier;
ID - identifier of the IO;
IO_VAL - value of the attribute;
SELF_FLG - internal flags of the IO;
CFG_TMPL - template of the configuration element based on this attribute;
CFG_VAL - value of the configuration element (link, constant ...).

• LibWidgetUserIO(IDW, IDC, ID, NAME, IO_TP, IO_VAL, SELF_FLG, CFG_TMPL,
CFG_VAL) - User attributes <ID> of the widget <IDW>.

IDW - identifier of the widget;
IDC - child widget identifier;
ID - identifier of the IO;
NAME - name of the IO;
IO_TP - type and main flags of the IO;
IO_VAL - value of the IO;
SELF_FLG - internal flags of the IO;
CFG_TMPL - template of the configuration element based on this attribute;
CFG_VAL - value of the configuration element (link, constant ...).

• LibWidgetIncl(IDW, ID, PARENT, ATTRS, USER, GRP, PERMIT, DBV) - Included into the

The module <VCAEngine> of subsystems "User Interfaces" 387

container <IDW> widgets <ID>.
IDW - identifier of the widget;
ID - Identifier of the copy of the embedded widget;
PARENT - address of the basic widget /wlb_originals/wdg_Box;
ATTRS - list of attributes of the widget, modified by the user;
DBV - DB version.

• LibWidgetMime(ID, MIME, DATA) - Audio, video, media and other resources of widgets of
the library.

ID - identifier of the resource.
MIME - Mime data type of the resource (in the format - <mimeType;Size>).
DATA - Resource data coded with Base64.

• Project(ID, NAME, DSCR, DB_TBL, ICO, USER, GRP, PERMIT, PER, FLGS, DBV) -
Projects of visualization interfaces <ID>.

ID - identifier of the project;
NAME - name of the project;
DSCR - description of the project;
DB_TBL - Database with project pages.
ICO - coded (Base64) image of the icon of the project;
USER - owner of the project;
GRP - users group of the project;
PERMIT - rights of access to the project;
PER - frequency of the computation of the project;
FLGS - flags of the project;
DBV - DB version.

• ProjPage(OWNER, ID, ICO, PARENT, PROC, PROC_PER, USER, GRP, PERMIT, FLGS,
ATTRS) - The pages <ID> which are hold in the project/page OWNER>.

OWNER - project/page - owner of the page (in the format - "/AGLKS/so/1/gcadr")
ID - identifier of the page;
ICO - coded (Base64) image of the icon of the page;
PARENT - address of the basic widget of the page in the format: /wlb_originals/wdg_Box;
PROC - internal script and script language of the page;
PROC_PER - frequency of the computation of the script of the widget;
FLGS - flags of the page;
ATTRS - list of attributes of the widget, modified by the user.

• ProjSess(IDW, ID, IO_VAL) - Project table <IDW> for data storage of the sessions, performing
project.

IDW - the full path of the element of the project;
ID - attribute of the element;
IO_VAL - value of the element.

• ProjPageIO(IDW, ID, IO_VAL, SELF_FLG, CFG_TMPL, CFG_VAL) - Working attributes of
the pages. The structure actually corresponds to the table LibWidgetIO.
• ProjPageUserIO(IDW, ID, NAME, IO_TP, IO_VAL, SELF_FLG, CFG_TMPL, CFG_VAL) -
User attributes of the pages. The structure actually corresponds to the table LibWidgetUserIO.
• ProjPageWIncl(IDW, ID, PARENT, ATTRS, USER, GRP, PERMIT) - Enabled widgets on the
page. The structure actually corresponds to the table LibWidgetIncl.
• PrjSesIO(IDW, ID, IO_VAL) - Attributes <ID> of the session's element <IDW>.

IDW - identifier of the session's element;
ID - identifier of the IO; IO_VAL - value of the attribute.

The module <VCAEngine> of subsystems "User Interfaces" 388

 3.10 API of the user programming and service interfaces of the OpenSCADA

 3.10.1. API of the user programming

API of the user programming of API of the visualization engine are represented by OpenSCADA objects
directly, which build user interface, and same "Session" and "Widget/page". These objects provide the set
of control functions for the user:

Object "Session" (this.ownerSess())
• string user() - The session user.
• string alrmSndPlay() - The widget's path for that on this time played the alarm message.
• int alrmQuittance(int quit_tmpl, string wpath = "") - alarm quittance <wpath> with template

<quit_tmpl>. If <wpath> is empty string then make global quittance.
Object "Widget" (this)

• TCntrNodeObj ownerSess() - the object-session is getting for current widget.
• TCntrNodeObj ownerPage() - the parent object-page is getting for current widget.
• TCntrNodeObj ownerWdg(bool base = false) - the parent object-widget is getting for current
widget. If set <base> then will include return the parent object-page.
• TCntrNodeObj wdgAdd(string wid, string wname, string parent) - add new widget <wid> with
name <wname> and based at library widget <parent>.

//New widget add, which based at text primitive
nw = this.wdgAdd("nw", "New widget", "/wlb_originals/wdg_Text");
nw.attrSet("geomX", 50).attrSet("geomY", 50);

• bool wdgDel(string wid) - delete widget <wid>.
• bool attrPresent(string attr) - the attribute <attr> of widget checking to allow fact.
• ElTp attr(string attr) - the attribute <attr> of widget value getting. For disallow attributes will
return empty string.
• TCntrNodeObj attrSet(string attr, ElTp vl) - the attribute <attr> of widget value setting to <vl>.
The object is returned for the function concatenation.
• string link(string attr, bool prm = false) - link return for widget's attribute <attr>. At set <prm>
requested link for attributes block (parameter), represented by the attribute.
• string linkSet(string attr, string vl, bool prm) - set link for widget's attribute <attr>. At set
<prm> made set link for attributes block (parameter), represented by the attribute.

//Set link for eight trend to parameter
this.linkSet("el8.name", "prm:/LogicLev/experiment/Pi", true);

Deprecated API of the user programming of the visualization engine are represented by the group of
functions directly in the engine module of the VCA. Calling of these functions from the scripts of widgets
can be performed directly by the ID of the function, since their area of names is indicated for the context of
the scripts of widgets.

Widget list (WdgList)

Description: Returns a list of widgets in the container of widgets or a list of child widgets. If <pg> is set
it returns a list of pages for projects and sessions.

Parameters:
ID Name Type Mode By default
list List String Return
addr Address String Input
pg Pages Bool Input 0

The module <VCAEngine> of subsystems "User Interfaces" 389

Presence of the node (NodePresent)

Description: Check for the presence of the node, including widgets, attributes and others.

Parameters:
ID Name Type Mode By default
rez Result Bool Return
addr Address String Input

Attributes list (AttrList)

Description: Returns list of attributes of the widget. If <noUser> is set then only not user attributes are
returned.

Parameters:
ID Name Type Mode By default
list List String Return
addr Address String Input
noUser Without user Bool Input 1

Request of the attribute (AttrGet)

Description: Request of the value of the attribute of the widget. The request can be done as by indicating
the full address of the attribute in <addr>, and by indicating separately the address of the widget in <addr>,
and the ID of the attribute in the <attr>.

Parameters:
ID Name Type Mode By default
val Value String Return
addr Address String Input
attr Attribute Bool Input

Setting of the attribute (AttrSet)

Description: Setting of the value of the attribute of the widget. Setting can be done as by the indicating
the full address of the attribute in <addr>, and by indicating separately the address of the widget in <addr>,
and the ID of the attribute in <attr>.

Parameters:
ID Name Type Mode By default
addr Address String Input
val Value String Input
attr Attribute Bool Input

Session user (SesUser)

Description: Return session user by session's widget path.

Parameters:
ID Name Type Mode By default
user User String Return
addr Address String Input

The module <VCAEngine> of subsystems "User Interfaces" 390

 3.10.2. Service interfaces of the OpenSCADA

Service interfaces are interfaces of access to the OpenSCADA system by means of OpenSCADA control
interface from external systems. This mechanism - is the basis of all the mechanisms for sharing within
OpenSCADA, implemented through weak ties, and standard exchange protocol of OpenSCADA.

Access to the values of attributes of the visualization elements (widgets)

In order to provide uniform, group, and relatively fast access to the values of attributes of the visual
elements the service function of the visual element "/serv/attr" and get/set command of the attributes' values
are provided: <get path="/UI/VCAEngine/{wdg_addr}/%2fserv%2fattr"/> and <set
path="/UI/VCAEngine/{wdg_addr}/%2fserv%2fattr"/>. Attributes of these commands, which provide the
various mechanisms of the request, are presented in the Table 3.10.2.a.

Table 3.10.2.a. Attributes of commands of get/set of the the attributes of visual elements
Id Name Value
Request command of the visual attributes of the widget: <get path="/UI/VCAEngine/{wdg_addr}/
%2fserv%2fattr"/>

tm Time/counter of changes Time/counter of changes set up for the query of the
only changed attributes.

<el id="{attr}"
p="{a_id}">{val}</el>

The formation of the child
elements with the results of
the attributes

In the child element are specified: string ID {attr}
of the attribute, index {a_id} of the attribute and its
value {val}.

The set command of the visual attributes of the widget: <set path="/UI/VCAEngine/{wdg_addr}/%2fserv
%2fattr"/>
<el
id="{attr}">{val}</el> Set of the ettributes

In the child elements the ID of the attribute {attr}
and its value {val} are specified.

Group access to the values of attributes of the visualization elements (widgets)

In order to optimize network traffic by eliminating small queries, but use one, but a large the group
query of the attributes' values of visual elements is made. Grouping of this query involves a request of
attributes of the entire branch of the widget, including embedded elements. For this request the service
command "/serv/attrBr". Request of this service command is equivalent to the service command "/serv/attr"
and looks as follows: <get path="/UI/VCAEngine/{wdg_addr}/%2fserv%2fattrBr"/>

tm - Time/counter of changes. Time/counter of changes set up for the query of the only changed
attributes.

Result:
<el id="{attr}" p="{a_id}">{val}</el> - Elements with the results of the attributes. In the element

are specified: string ID {attr} of the attribute, index {a_id} f the attribute and its value {val}.

<w id="{wid}" lnkPath="{lnk_path}">{childs+attrs}</w> - Elements with child widgets and
their attributes. The identifier of the child widget {wid} and the path to the widget on which the
current widget links to, if its is the link {lnk_path}, are specified in the element.

Access to the pages of the session

In order to unify and optimize the access to the pages the service function of the session "/serv/pg" and
commands of the query of the list of open pages (<openlist path="/UI/VCAEngine/ses_{Session}/%2fserv
%2fpg"/>); of opening the pages (<open path="/UI/VCAEngine/ses_{Session}/%2fserv%2fpg"/>); and
closing of the pages <close path="/UI/VCAEngine/ses_{Session}/%2fserv%2fpg"/>) are provided.

The result of the query of the list of open pages are child elements <el>{OpPage}</el> which contain
the full path of the open page. In addition to the list of open pages, the query returns the value of the current
counter for calculating the session in the attribute <tm>. If this attribute is set during the query, then for
each open page it is returned the list of changed, since the moment of the specified value of the counter,
widgets of the open page.

The module <VCAEngine> of subsystems "User Interfaces" 391

http://wiki.oscada.org/HomePageEn/Doc/API?v=49b#h154-1
http://wiki.oscada.org/HomePageEn/Doc/API?v=49b#h154-1

Signaling (alarm) management

To provide a mechanism for global control of the signaling of the session the service function of the
session "/serv/alarm" and commands of the query of the signals status (<get
path="/UI/VCAEngine/ses_{Session}/%2fserv%2falarm"/>); and of the quittance (<quittance
path="/UI/VCAEngine/ses_{Session}/%2fserv%2falarm"/>) are provided.

Request for the status of signals returns generalized condition of the signals, as well as additional
information for the sound signaling. Additional information by sound signal is provided by the current
resource, a sound file, for playback and it provides monitoring of the sequence of signaling and quittance of
individual files of sound messages.

Request for the quittance performs quittance of the specified widget, attribute <wdg>, in accordance
with the template, attribute <tmpl>.

Manipulation with the sessions of the projects

To provide a uniform mechanism for manipulation of the sessions by the visualizers of VCA in the
module of the VCA engine (VCAEngin) are provided: the service function "/serv/sess" and query
commands of the list of open sessions, connection/creation of the new session and disconnection/deleting of
the session:<list path="/UI/VCAEngine/%2fserv%2fsess"/>, <connect path="/UI/VCAEngine/%2fserv
%2fsess"/> and <disconnect path="/UI/VCAEngine/%2fserv%2fsess"/> accordingly. Attributes of these
commands, which provide the various mechanisms of the request, are presented in Table 3.10.2.b.

Table 3.10.2.b. Attributes of commands of the mechanism of manipulation with sessions
Id Name Value
Command of request of the list of open sessions for the project: <list path="/UI/VCAEngine/%2fserv
%2fsess"/>

prj Indication of the
project

Specifies the project for which to return the list of open sessions.

<el>{Session}<
/el>

Control of the
sessions' list

In the child element the open for the requested project sessions are
specified.

The command of the connection/opening of the session: <connect path="/UI/VCAEngine/%2fserv
%2fsess"/>

sess
Installation and
control of the
session name

If the attribute is defined, then connecting to an existing session is to
be made, else - creation of the new session is to be made. In the case
of opening of the new session in this attribute its name is is placed.

prj Setting the name
of the project

It is used to open a new session for indicated project and when the
attribute {sess} is not specified.

The command of disconnection/closing of the session: <disconnect path="/UI/VCAEngine/%2fserv
%2fsess"/>

sess
Setting the name
of the session

Specify the name of the session from that it is made the
disconnection or closing. Sessions, not the background, and to which
none of the visualizers is not connected, are automatically closed.

The group request of the tree of widget libraries

In order to optimize the performance of local and especially network interaction the service function
"/serv/wlbBr" and command of the query of the tree of widget libraries: <get path="/UI/VCAEngine/
%2fserv%2fwlbBr"/> are provided. The result of the query is the tree with the elements of the libraries of
widgets, tags <wlb>. Inside the tags of libraries of widgets are included: icon tag <ico> and widgets library
tags <w>. Widgets tags, in their turn, contain the icon tag and tags of the child widgets <cw>.

The module <VCAEngine> of subsystems "User Interfaces" 392

 4. Configuring the module via the control interface of
OpenSCADA

Through the management interface of OpenSCADA, components that use it, can be configured from any
system configurator OpenSCADA. This module provides an interface to access all of the data object of the
VCA. Main inset of configuration page of the module provides access to widgets libraries and projects (Fig.
4.1). The inset "Sessions" provides access to opened sessions of projects (Fig. 4.2). To adjustment of the
speech synthesis engine it is provided the relevant page (Fig. 4.3).

Fig.4.1 Main configuration page of the module.

The module <VCAEngine> of subsystems "User Interfaces" 393

Fig.4.2 The inset "Sessions" of configuration page of the module.

In addition to the list of open sessions tab in Figure 4.2 contains a table with a list of sessions that must
be created and run at boot time OpenSCADA. Creation of sessions through this tool can be useful for Web-
based interface. In this case, when connecting Web-user data is ready and ensures the continuity of the
formation of archival documents.

The module <VCAEngine> of subsystems "User Interfaces" 394

Fig.4.3 The inset for speech synthesis engine configuration.

The module <VCAEngine> of subsystems "User Interfaces" 395

The configuration of container widgets in the face of libraries and widget projects is done through pages
in Fig. 4.4 (a project) and Fig.4.5 (a library of widgets). Widget library contains widgets, and the draft -
page. Both types contain a tab container configuration Mime-data used widgets (Fig.4.6).

Fig.4.4 The configuration page of the projects.

From this page you can set:
• The state of the container, namely: «Enabled», the name of the database containing the
configuration, the owner and group of the container.
• Id, name, description and icon of the container.
• Access rights to the container.
• The period for computing of the sessions based on the given project.
• Method for opening the main window of execution (original size, maximization and the full
screen).

The module <VCAEngine> of subsystems "User Interfaces" 396

Fig.4.5 The configuration page of the widgets libraries.

From this page you can set:
• The state of the container, namely: «Enabled», the name of the database containing the
configuration.
• Id, name, description and icon of the container.

The module <VCAEngine> of subsystems "User Interfaces" 397

Fig.4.6 The configuration tab of the Mime-data of the container.

The module <VCAEngine> of subsystems "User Interfaces" 398

Configuration of the project session differs significantly from the configuration of the project (Fig. 4.7),
but also contains pages of the project.

Fig.4.7 The configuration page of the sessions of the projects.

From this page you can set:
• The state of the session, namely: "Enabled", "Started", the user, owner, user group, access, source
project, mode of execution in the background, the counter of client connections and execution time
of the session.
• Period of calculation of the session.
• The list of opened pages.

The module <VCAEngine> of subsystems "User Interfaces" 399

The configuration pages of visual elements, placed in different containers, may be very different, but this
difference is the presence or absence of individual tabs. The main tab of visual elements in fact is the same
everywhere, differing in one configuration field (Fig. 4.8). The pages contains the tabs of the child pages
and embedded widget. Container widgets contains the tab of the embedded widgets. All visual elements
contain attributes tab (Figure 4.9), except the logical containers of the projects. Elements, at the level of
which it is possible to build the user procedure and to determine the links, contain the tabs "Process" (Fig.
4.10) and "Links" (Fig.4.11).

Fig.4.8 Main tab of the configuration of visual elements.

From this page you can set:
• The state of element, namely: «Enabled», parent element and jump to it. For the page in the state
it is indicate the type of the page.
• Id, type, root, path, name, description and icon of the element.
• The owner, a group of users and access rights to the element.

The module <VCAEngine> of subsystems "User Interfaces" 400

Fig.4.9 Tab of the attributes of visual elements.

Fig.4.10 Tab of the processing of visual elements.

The module <VCAEngine> of subsystems "User Interfaces" 401

Fig.4.11 Tab of the links of the visual elements.

The module <VCAEngine> of subsystems "User Interfaces" 402

The module <Vision> of subsystems "User
Interfaces"

Module: Vision
Name: Operation user interface (QT)
Type: User interfaces
Source: ui_Vision.so
Version: 1.0.0
Author: Roman Savochenko
Developers: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Translated: Maxim Lysenko
Description: Visual operation user interface.
License: GPL

Vision module provides a mechanism of the final visualization control area (VCA) into the
OpenSCADA. The module is based on the multi-platform library of graphical user interface (GUI)
of firm TrollTech - QT (http://www.trolltech.com/qt/). In its work, the module uses the data of the
VCA engine (module VCAEngine).

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client
stations with a view to providing accessible information about the object and to for the the issuance
of the control actions to the object. In various practical situations and conditions the VCA, based on
different principles of visualization may by applied. For example, this may be the library of widgets
QT, GTK+, ~ wxWidgets or hypertext mechanisms based technologies HTML, XHTML, XML,
CSS, and JavaScript, or third-party applications of visualization, realized in various programming
languages Java, Python, etc. Any of these principles has its advantages and disadvantages, the
combination of which could become an insurmountable obstacle to the use of VCA in a practical
case. For example, technologies like the QT library can create highly-reactive VCA, which will
undoubtedly important for the operator station for control of technological processes (TP).
However, the need for installation of that client software in some cases may make using of it
impossible. On the other hand, Web-technology does not require installation on client systems and
is extremely multi-platform (it is enough to create a link to the Web-server at any Web-browser)
that is most important for various engineering and administrative stations, but the responsiveness
and reliability of such interfaces is lower that actually eliminates the using of them at the operator
of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external
interfaces, including user and in any manner and for any taste. For example, the system
configuration OpenSCADA as now available as by means of the QT library, and also the Web-
based.

At the same time creation of an independent implementation of the VCA in different basis may
cause the inability to use the configuration of one VCA into another one. That is inconvenient and
limited from the user side, as well as costly in terms of implementation and follow-up support. In
order to avoid these problems, as well as to create as soon as possible the full spectrum of different
types of VCA проект создания концепции СВУ is established. The result of this project - the
direct visualization module (based on the library QT), direct visualization module WebVision and
VCA engine VCAEngine.

http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=yxs
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g3
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=fcd
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=yxs
http://www.trolltech.com/qt/)

 1. Purpose
This module of the direct visualization of the VCA is designed for the formation and execution of VCA

interfaces among the graphic library QT.

The final version of the VCA module, built on the basis of this module, will provide:
• three levels of complexity in the formation of visualization interface which let organically to develop

and apply the tools of the methodology from simple to complex:
• formation from the template frames through the appointment of the dynamics (without the graphical

configuration);
• graphical formation of new frames through the use of already made visualization elements from the

library (mimic panel);
• formation of new frames, template frames of the visualization elements in the libraries.

• building of the visualization interfaces of various complexity, ranging from simple flat interfaces of
the monitoring and finishing with the full-fledged hierarchical interface used in SCADA systems;

• providing of the different ways of formation and configuration of the user interface, based on different
graphical interfaces (QT, Web, Java ...) and also through the standard management interface of
OpenSCADA system;

• change of dynamics in the process of execution;
• building of the new template frames on the user level and the formation of the frames libraries,

specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and accumulation;

• building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;

• description of the logic of new template frames and user visualization elements as with the simple
links, and also with the laconic, a full-fledged programming language;

• the possibility of the inclusion of the functions(or frames of computing of the functions) of the object
model of OpenSCADA to the user elements of the visualization, actually linking the presentation of
the algorithm of computing (for example, by visualizing the library of models of devices of TP for
following visual modeling TP);

• separation of user interfaces and interfaces of visualization of data provides building the user interface
in a single environment, and performance of it in many others (QT, Web, Java ...);

• the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);

• Visual building of various schemes with the superposition of the logical links and the subsequent
centralized execution in the background (visual construction and performance of mathematical
models, logic circuits, relay circuits and other proceedings);

• providing of the the functions of the object API to the OpenSCADA system, it can be used to control
the properties of the visualization interface from the user procedures;

• building of the servers of frames, of elements of the visualization and of the project of the interfaces of
the visualization with the possibility to serve the great number of the client connections;

• simple organization of client stations in different basis (QT, Web, Java ...) with the connection to the
central server;

• full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;

• adaptive formation of alarms and notifications, with the support of different ways of notification;
• support of the user formation of the palettes and font preferences for the visualization of the interface;
• support of the user formation of maps of the events under the various items of equipment management

and user preferences;
• support for user profiles, allowing to define various properties of the visualization interface (colors,

font characteristics, the preferred maps of events);
• flexible storage and distribution of libraries of widgets, frames, and projects of the visualization

interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

The module <Vision> of subsystems "User Interfaces" 404

 2. Tool of the graphical formation of the VCA interface
Development of the VCA interface is performed in a single window, realizing many documents interface

(MDI) interface (Fig. 1). This approach allows you to simultaneously edit multiple frames of various sizes.
The following mechanisms for managing the development are used: toolbars, menus and context menus.
Most actions are duplicated by different mechanisms, that allows you to quickly find the tool by the
preferred method. Navigational interfaces are implemented by the attached windows. Configuration if the
toolbars and attached windows is saved on exit and restored at startup that lets you to customize the
interface for yourself.

Fig.1. The window of the VCA interface development.

Access to major components of the VCA is made by attached windows, in the Figure 1 these windows
are shown on the left side. These windows contain:

• Tree of the widget libraries. Using the navigator you can quickly find the needed widget or
library and to do with them necessary operations. The following operations are implemented: add,
delete, copy, settings of the widgets and libraries, as well as cleaning and visual editing of the
widget. For adaptive management the context menu is supported with the following items:

• "New library" - creation of the new library.
• "Add visual item" - adding of the visual element to the library.
• "Delete visual item" - deleting of the visual element from the library.
• "Visual item changes clear" - cleaning of the visual element with inheritance of modified
properties or setting them by default.
• "Visual item properties" - configuration of the visual element.
• "Visual item edit" - visual editing of the element.
• "Visual item cut" - cut/move of the visual element at the time of paste.
• "Visual item copy" - copy of the visual element at the time of paste.
• "Visual item paste" - paste of the visual element.

The module <Vision> of subsystems "User Interfaces" 405

• "Load from DB" - uploading the data of the visual element from the database.
• "Save to DB" - saving data of visual element to the database.
• "Refresh libraries" - performs rereading of the configuration and composition of the
libraries of the data model.

• The tree of pages of the project. Provides the mechanism for "Drag and drop" for creation of the
user frames based on the elements of libraries. In order to provide the adaptive management the
context menu is supported with the following items:

• "Run project execution" - starting of the execution of the chosen project.
• "New project" - creation of the new project.
• "Add visual item" - adding of the visual element to the project/page.
• "Delete visual item" - deleting of the visual element from the project/page.
• "Visual item changes clear" - cleaning of the visual element with inheritance of modified
properties or setting them by default.
• "Visual item properties" - configuration of the visual element.
• "Visual item edit" - visual editing of the element.
• "Visual item cut" - cut/move of the visual element at the time of paste.
• "Visual item copy" - copy of the visual element at the time of paste.
• "Visual item paste" - paste of the visual element.
• "Load from DB" - uploading the data of the visual element from the database.
• "Save to DB" - saving data of visual element to the database.
• "Refresh libraries" - performs rereading of the configuration and composition of the
libraries of the data model.

• attributes of widgets;
• external links of widgets.

In the main space of the working window the pages of projects, frames of the widgets' libraries, user
elements and elements of primitives at the time of their visual editing are placed.

At the top of the working window there is the menu. All the tools needed for development the VCA
interfaces are placed in the menu. Menu has the following structure:

• "File" - General operations.
• "Load from DB" - uploading the data of the visual element from the database.
• "Save to DB" - saving data of visual element to the database.
• "Close" - close the editor's window
• "Quit" - quit from the OpenSCADA system.

• "Edit" - Editing operations of the visual elements.
• "Visual item cut" - cut/move of the visual element at the time of paste.
• "Visual item copy" - copy of the visual element at the time of paste.
• "Visual item paste" - paste of the visual element.

• "Project" - Operations over the projects.
• "Run project execution" - starting of the execution of the chosen project.
• "New project" - creation of the new project.
• "Add visual item" - adding of the visual element to the project.
• "Delete visual item" - deleting of the visual element from the project.
• "Visual item changes clear" - cleaning of the visual element with inheritance of modified
properties or setting them by default.
• "Visual item properties" - configuration of the visual element.
• "Visual item edit" - visual editing of the element.

• "Widget" - Operations over the widgets and the libraries of widgets.
• "New library" - creation of the new library.
• "Add visual item" - adding of the visual element to the library.
• "Delete visual item" - deleting of the visual element from the library.
• "Visual item changes clear" - cleaning of the visual element with inheritance of modified
properties or setting them by default.
• "Visual item properties" - configuration of the visual element.
• "Visual item edit" - visual editing of the element.
• "View" - Management of the arrangement of visual elements on the frame.

The module <Vision> of subsystems "User Interfaces" 406

• "Rise widget" - rising the widget to the top.
• "Lower widget" - lowering the widget to the very bottom.
• "Up widget" - to rise the widget above.
• "Down widget" - to lower the widget below.
• "Align to left" - alignment of the widget to the left.
• "Align to vertical center" - alignment of the widget vertically to the center.
• "Align to right" - alignment of the widget to the right.
• "Align to top" - alignment of the widget to the top.
• "Align to horizontal center" - horizontal alignment of the widget in the center.
• "Align to bottom" - alignment of the widget to the bottom.

• "Library: {Name of the library}" - menu items to access the frames/widgets in the library.
• "Window" - Management of the windows of MDI-interface.

• "Close" - to close the active window.
• "Close all" - to close all the windows.
• "Tile" - to tile all the windows for visibility at the same time.
• "Cascade" - to cascade all the windows.
• "Next" - to activate the next window.
• "Previous" - to activate the previous window.
• "Widget: {Name of the widget}" - items of activation of the specific window.

• "View" - Management of the visibility of the working window and the toolbars on it.
• "Visual items toolbar" - visual element toolbar.
• "Widgets view functions" - the toolbar for management of the visibility and arrangement
of widgets on the panels.
• "Elementary figures tools" - Additional toolbar for the editing the primitive of elementary
figures ("ElFigure").
• "Projects" - attached window of management of projects' tree.
• "Widgets" - attached window of management of widgets' libraries tree.
• "Attributes" - attached window of the attributes' manager.
• "Links" - attached window of the links' manager.
• "Library: {Name of the library}" - management of the visibility of widgets' libraries
toolbars.

• "Help" - Help for OpenSCADA and fro Vision module.
• "About" - information about this module.
• "About QT" - Information about the QT library, used by this module.
• "What's this" - query of the description of the elements of the window's interface.

Above, under menu, or on the sides, there are the toolbars. Toolbars can be hidden or located, which is
controlled in the menu item "View". The following toolbars are present:

• "Visual items toolbar" - Management toolbar of the visual items:
• "Run project execution for selected item" - runs the project for execution and activates the
selected page of the project.
• "Load item data from DB" - uploading the data of the chosen elements from the database.
• "Save item data to DB" - saving data of chosen elements to the database.
• "New project" - creation of the new project.
• "New library" - creation of the new library.
• "Add visual item" - adding of the visual element to the project.
• "Delete visual item" - deleting of the visual element from the project.
• "Visual item's properties" - configuration of the visual element.
• "Visual item edit" - visual editing of the element.
• "Visual item cut" - cut/move of the visual element at the time of paste.
• "Visual item copy" - copy of the visual element at the time of paste.
• "Visual item paste" - paste of the visual element.

• "Widgets view functions" - The toolbar of visibility and arrangement management of widgets on
the panels:

• "Rise widget" - rising the widget to the top.
• "Lower widget" - lowering the widget to the very bottom.

The module <Vision> of subsystems "User Interfaces" 407

• "Up widget" - to rise the widget above.
• "Down widget" - to lower the widget below.
• "Align to left" - alignment of the widget to the left.
• "Align to vertical center" - alignment of the widget vertically to the center.
• "Align to right" - alignment of the widget to the right.
• "Align to top" - alignment of the widget to the top.
• "Align to horizontal center" - horizontal alignment of the widget in the center.
• "Align to bottom" - alignment of the widget to the bottom.

• "Elementary figure tools" - Additional toolbar of the editing of the elementary figures primitive
("ElFig").

• "Cursor" - return to the cursor for the action over the figures on the widget.
• "Add line" - adding the line to the elementary figure.
• "Add arc" - adding the arc to the elementary figure.
• "Add besier curve" - adding the Bézier curve to the elementary figure.
• "Connections" - the enabling of the of connections at the elementary figure.

• "Library: {Name of the library}" - Management of the visibility of toolbars of the widget
libraries. The contents of the panel depends on the contents of the library and includes call buttons
of the library items.
• "QTStarter toolbar" - The toolbar, created by the module of the module of starting the QT library
modules. It contains buttons to start the UI modules of OpenSCADA, based on the QT Library.
With this toolbar you can open multiple copies of the windows of the module or other modules.

At the bottom of the development window of the VCA there is the status line. On the right side of the
status line there are indicators of the visual scale of the edited frame, of the mode of changing of the size of
the elements, of the mode of the current page of the of the VCA engine station and the user on whose behalf
the development of the VCA interface is done. By double-clicking on the indicator of the user it can be
changed the current user, enter the new username and password. In the main field of the status line it is
displayed various information and assistance messages.

To edit the properties of the visual elements there are two dialogues. The first dialogue allows you to edit
the properties of containers of visual elements (widget libraries and projects), figure 2. The second dialogue
serves to edit the properties of the visual elements, Fig. 3. Changes, made in the dialogues, at once, get to
the VCA engine. To save these changes to the database or restore from the database it is necessary to use
the appropriate tools of the main development window.

The module <Vision> of subsystems "User Interfaces" 408

Fig.2. Dialogue of the editing the properties of the containers of visual elements.

With the help of the main tab of that dialog you can set:
• The state of the elements' container, namely: "Enabled", the database container.
• Id, name and description of the container.
• For project: user, group of users and user access, users' group and all the rest.
• For the project: the period for calculating of the project and the mode of opening the windows in
the execution.

The module <Vision> of subsystems "User Interfaces" 409

Fig.3. Dialogue of editing the properties of visual elements.

With the help of the main tab of that dialog you can set:
• The state of element, namely: "Enabled", the parent widget.
• Id, root, path, name and description of the element.
• User, group of users of the element and user access, user groups and all the rest.

The module <Vision> of subsystems "User Interfaces" 410

Dialogue of editing the properties of the containers of visual elements contains two tabs: configuration
tab of the the main parameters (Fig.2) and the configuration tab of the mime-data of containers (Fig. 4).

Fig.4. Editing tab of the mime-data of the container of visual elements.

The module <Vision> of subsystems "User Interfaces" 411

Dialogue of the editing the properties of the visual elements contains four tabs: configuration tab of the
main parameters (Fig.2), the tab of attributes of the element (Fig. 5), the tab of the processing of the
element (Fig. 6) and the tab of links of the elements (Fig.7). At different levels of the hierarchy of visual
elements any tabs can be available, but some are not.

Fig.5. Attributes of the editing dialogue of the properties of the visual element tab.

The module <Vision> of subsystems "User Interfaces" 412

Fig.6. Processing tab of the dialogue of the editing the properties of the visual element.

Fig.7. Tab of links of the editing dialog of the properties of visual element.

The module <Vision> of subsystems "User Interfaces" 413

 2.1. Styles

It is known that people can have individual characteristics in the perception of graphical information. If
these features are not taken into account it is possible to get the rejection and exclusion of the user to the
VC interface. Such rejection and exclusion can lead to fatal errors in the management of TP, as well as
traumatize the human by the permanent working with the such interface. In SCADA systems it is accepted
the agreement, which regulate the requirements for establishing a unified VC interface which is normally
perceived by most of people. The people with some deviations are not taken into account.

To take this into account, and provide the ability to centrally and easily change the visual properties of
the interface, the project provides the implementation of visualization interface styles manager.

User can create many styles, each of which will hold the color, font and other properties of the elements
of the frame. A simple change of style will quickly transform the VC interface, and the possibility of
appointing an individual style to the user will take into account his individual characteristics.

To realize this opportunity, when you create a frame, it is necessary for the properties of color, font and
others set the «Config» (of the table if the «process» tab) in the value of «From style» (Fig. 6). And in the
parameter «Config template» to specify the identifier of the style field. Further, this field will automatically
appear in the Style Manager and will be there to change. Style Manager is available on the project
configuration page in the tab «Styles» (Fig. 8). On this tab you can create new styles, delete old ones,
change the field of the style and delete unnecessary.

Fig. 8 Styles tab of the configuration page of the project.

In general the styles are available from the project level. At the level of libraries of widgets you can only
define styles fields of widgets. At the project level, at the choice of style it is started the work with styles,

The module <Vision> of subsystems "User Interfaces" 414

which includes access to the fields of styles instead of direct attribute values. In fact, this means that when
reading or writing a widget attribute these operations will be carried out with the corresponding field of the
chosen style.

When you run the project execution it will be used the set in the project style. Subsequently, the user can
select a style from the list of available ones. The user's style will be saved and used next time you run the
project.

 2.2. Linkage with the dynamics

To provide relevant data in the visualization interface the data of subsystems "Data acquisition (DAQ)"
must be used. The nature of these data as follows:

1. parameters that contain some number of attributes;
2. attributes of the parameter can provide information of four types: Boolean, Integer, Real and
String;

3. attributes of the parameter can have their history (archive);
4. attributes of the parameter can be set to read, write, and with full access.

Considering the first paragraph it is necessary to allow the possibility of the group of destination links.
To do this we use the conception of of the logic level.

In accordance with paragraph 2, links provide transparent conversion of connection types and do not
require special configuration.

To satisfy the opportunities for access to archives, in accordance with paragraph 3, links make check of
the type of the attribute, and in the case of connection to the "Address", the address of linkage is put into the
value.

In terms of the VCA, the dynamic links and configuration of the dynamics are the one process, to
describe a configuration of which the tab "Processing" of the widgets is provided (Fig.6). The tab contains a
table of configuration of the properties of the attributes of the widget and the text of calculation procedure
of the widget.

In addition to configuration fields of the attributes the column "Processing" in the table is provided, for
selective using of the attributes of the widgets in the computational procedure of the widget, and the
columns "Configuration" and "Configuration template", to describe the configuration of links.

Column "Configuration" allows you to specify the linkage type for the attribute of the widget:
• Constant - in the tab of widget links the field for indication of a constant appears, for example of
the special color or header for the template frames;
• Input link - linkage with the dynamics for a read-only;
• Output link - linkage with the dynamics just for the record;
• Full link - complete linkage with dynamic (read/write).

Column "Configuration template" makes it possible to describe the groups of dynamic attributes. For
example it may be different types of parameters of subsystem "DAQ". Furthermore, in the case of correct
formation of this field, the mechanism of automatically assign of the attributes with the only indication of
the parameter of subsystem "DAQ" is working, which simplifies and accelerates the configuration process.
The value of this column has the following format: <Parameter>|<identifier>, where:

• <Parameter> - the group of the attribute;
• <Identifier> - identifier of the attribute, this value is compared with the attributes of the DAQ
parameters with automatic linkage, after the group link indication.

Installation of the links may be of several types, which are determined by the prefix:
• val: - Direct download of the value through the links mechanism. For example, link: "val:100"
loads in the attribute of the widget the value of the 100. It is often used in the case of absence of end
point of the link, in order to direct value indicating.
• prm: - Link to the attribute of the parameter or parameter, in general, for a group of attributes, of
subsystem "Data acquisition". For example, the link "prm:/LogicLev/experiment/Pi/var" implements
the access of the attribute of the widget to the attribute of the parameter of subsystem "Data
acquisition".

The module <Vision> of subsystems "User Interfaces" 415

http://wiki.oscada.org/Doc/DAQ?v=v4n

• wdg: - Link to an attribute of another widget or a widget, in general, for a group of attributes. For
example, the link "wdg:/ses_AGLKS/pg_so/pg_1/pg_ggraph/pg_1/a_bordColor" implements the
access of the attribute of one widget to the attribute of another one. At that moment this type of link
is not intended for installation by the user manually, and is installed automatically in the mode of
dynamic linkage!

Processing of the links occurs at a frequency of calculating the widget in the following order:
• Receiving of the data from input links.
• The implementation of calculating of the script.
• Transmission of the values by the output links.

Fig. 7 presents the tab with the possibility of group and individual assignment of attributes.

When the widget that contains the configuration of links is placed to the container of widgets, all links of
the source widget is added to the list of resulting links of the widgets' container.

The aforesaid shows that the links are set by the user in the configuration interface. However, for the
possibility of creation of the frames for general use, with the function of providing detailed data of various
sources of the same type, a dynamic linkage mechanism is necessary. Such an mechanism is provided
through a reserved key identifier "<page>" of the group of attributes of links in the frames of general
purpose and dynamic linkage with the identifier "<page>" in the process of opening of the frame of general
purpose by means of the signal from another widget.

Lets examine the example when we have the frame of general-purpose "Control panel of graph" and a lot
of "Graphs" in different tabs. "Control panel of graph" has links with the templates:

• tSek -> "<page>|tSek"
• tSize -> "<page>|tSize"
• trcPer -> "<page>|trcPer"
• valArch -> "<page>|valArch"

At the same time, each widget "Graph" has the attributes tSek, tSize, trcPer and valArch. In the case of a
calling of the opening signal of "Control panel of graph" from any widget "Graph" it is happening the
linkage of the attributes of the "Control panel of graph" in accordance with the attribute specified in the
template with the attribute of the widget "Graph". As a result, all changes in the "Control panel of graph"
will be displayed on the graph by means of the link.

In the case of presence of external links to the parameters of subsystem "Data acquisition" in the widget
"Graph", the links of "Control panel of graph" will be installed on an external source. In addition, if in the
"Control panel of graph" will be declared the links to the missing attributes directly in the widget "Graph",
it will be made the search for the availability of such attributes from an external source, the first to which
the link is directed, performing, thus, the addition of missing links.

To visualize this mechanism the table 2.1 is cited.

Table 2.1. The mechanism of the dynamic linkage.
Attributes of the "Control panel of
graph" (the template of dynamic

linkage)

"Graph"
attributes

Attributes of an
external "Parameter"

The resulting link or an value
of the linking attribute

tSek (<page>|tSek) tSek - "Graph".tSek
tSize (<page>|tSize) tSize - "Graph".tSize
trcPer (<page>|trcPer) trcPer - "Graph".trcPer
valArch (<page>|valArch) valArch - "Graph".valArch
var (<page>|var) var var "Parameter".var
ed (<page>|ed) - ed "Parameter".ed
max (<page>|max) - - EVAL
min (<page>|min) - - EVAL

The module <Vision> of subsystems "User Interfaces" 416

 3. Execution of the VCA interfaces
Execution of the VCA interface is to run a new project session or connect to the existing one on the level

of VCA engine. Then the module of direct visualization represents and manages the data of the session. The
main window mode of execution mode of this module has the form presented at Fig.8.

Update of the contents of the open pages of the visualization interface with the frequency of the project
session execution. In the updating process it is performed:

• request a list of opened pages, with a sign of page modification, at the model and consistency
checking of the actually opened pages to that list;
• request of the branch of the modified pages;
• update of the contents of the modified pages and their widgets, in accordance with the received
modified data.

At the closure of "RunTime" window closing of the session of the project is done in the VCA engine.

The mechanism of the request of the only modified data is based on an absolute counter of the session
execution. If you want to make real changes in the attributes of widgets the memorizing of the value of this
counter is done, which allows the identification of modified attributes. This approach can increase
productivity and reduce the load on network sharing in the case of access to the VCA engine via network.

Hierarchically the module provides an opportunity to accommodate the project pages in the main
execution window (Fig.8), as well as putting them inside of the container widgets, as well as by the opening
of additional windows over the main.

When you expand the main execution window, or when moving to the full-screen mode the scaling of
the page content of the VCA interface is done, filling the entire space of the window and allowing to
execute the projects, developed on one screen resolution, at different resolutions.

The main window consists of menu (top) status line (bottom), and the executable contents of the session
between them. Menu in the execution mode is positioned as the OpenSCADA administrator tool,
containing the self-system functions and it is available only to privileged users, occupying the group "root".
Menu has the following structure:

• "File" - General operations.
• "Print" - Print:

• "Page" - page of the user interface;
• "Diagram" - diagram on the user interface;
• "Document" - document on the user interface.

• "Export" - Export:
• "Page" - page of the user interface;
• "Diagram" - diagram on the user interface;
• "Document" - document on the user interface.

• "Close" - Close the editor window.
• "Quit" - Quit from the OpenSCADA system.

• "Alarm" - Alarm quittance:
• "Alarm level" - all alarms;
• "Light alarm" - lighting notification;
• "Speaker alarm" - notification with the whistle;
• "Sound/speech alarm" - sound/speech notivication.

• "View" - Display options of the project session.
• "Full screen" - Switcher of the full screen execution mode.

• "Help" - Help through the OpenSCADA and Vision module.
• "About" - Information about this module.
• "About QT" - Information about the QT library, used by the module.

On the right side of the status line the indicators of the time, the current VCA engine station and users on
whose behalf the VCA interface is executed, as well as the panel with the alarm quittance buttons, print and
export. By double-clicking on the indicator of the user it can be changed by the typing of the new username
and password, and by clicking on the quittance button - to quit alarms completely or only the desired

The module <Vision> of subsystems "User Interfaces" 417

notification. In the main field of the status line various messages and assistance messages are displayed.

Fig.8. The main window if the execution mode.

The module <Vision> of subsystems "User Interfaces" 418

 4. Conception of basic elements (primitives)
In this version of that module not all the primitives' images of this project are implemented. In general

the project provides the following primitives:

Id Name Purpose

ElFigure
Elementary graphic
figures

Primitive is the basis for drawing basic graphic shapes with their
possible combinations in the single object.The support of the
following elementary figures is provided:

• Line.
• Arc.
• Bézier curve.
• Fill of the enclosed space.

For all figures contained in the widget common properties of
thickness, color, etc. are set, but this does not exclude the possibility
of indicating of aforenamed attributes specific to each figure
separately.

FormEl Form elements.

Includes support of standard form components:
• Line edit.
• Text edit.
• Check box.
• Button.
• Combo box.
• List.
• Slider.
• Scroll bar.

Text Text Text element(labels). It is characterized by the type of font, color,
orientation and alignment.

Media Media

Element of representation of raster and vector images of various
formats, playback of the animated images, playback of audio
segments and view of video segments. Perhaps it will be useful to
include the OpenGL support for it!

Diagram Diagram
Element of the diagram with the support of the possibility of
displaying multiple streams of trends and different modes of display,
from minimalist to full, two-, three-dimensional, circular, etc.

Protocol Protocol
Element of the protocol, visualizer of the system messages, with
support for multiple operating modes with the different sizes and
settings

Document Document The element of generating the reports, journals and other
documentation on the basis of specified data.

Function
Function of API of the
object model of
OpenSCADA

Not visual, on the side of execution, widget which allows to include a
computing function of the object model of OpenSCADA in the VCA.

Box Box
Contains the mechanism fro other widgets placement with the
purpose of creation of new, more complex widgets and pages of final
visualization.

Lets examine the implementation of each primitive.

The module <Vision> of subsystems "User Interfaces" 419

 4.1. Elementary figure primitive (ElFigure)

Support of the following elementary figures is provided: lines, elliptical arcs, Bézier curves and fill of
the enclosed space with the color and/or image. For the elementary figures the following operations are
provided:

• creation/deleting of the figures;
• copying of the figure(s);
• moving and resizing of the figures by mouse and keyboard;
• possibility to connect the elementary figures to each other, getting more complex figures, for
which all the properties of the source elementary figures are available;
• possibility of simultaneous movement of several figures;
• fill of the enclosed space with the color and/or image;
• generation of mouse key events at the time of the mouse-click on the filled spaces;
• scaling;
• rotation.

Fig. 9 shows a part of the screen with a frame containing the elementary figures.

Fig.9 Realization of elementary figures in the Vision.

The figures underlying this widget, containing the points (the start and end ones) that can be connected
with the according points of other figures; and the points with the help of which the geometry of the figure
can be changed.

It is possible to add the figure using the mouse:
1. Select the desired figure from the context menu.
2. Set with the left mouse-button start and end points (for line with the SHIFT key hold its
orthogonal drawing is made).

The deleting of the figure(s) it is possible by pressing "Del", having selected figure(s).

The copying of the figure(s) it is possible by pressing keys "Ctrl"+"C", having selected figure(s).

Moving/resizing of the figure it is possible by using the mouse or keyboard:
1. Select the figure, by clicking on it with the left mouse button.
2. Drag (with the help of mouse or control keys) the figure or one of its control points in the desired
location and release the mouse button (key).

It is possible to move several figures, selected by means of holding "Ctrl" and clicking on the desired
figures (this option works when the button Connections (Connections) is disabled) or by mouse selection.

The connection of the figures with each other it is possible by the following way:

The module <Vision> of subsystems "User Interfaces" 420

1. Press the Connections button.
2. Select one of the figures and move its start or end point to the desired start or end point of the
other figure so that it will get to the appeared circle, release the left mouse button. Connected figures
are moving as well as the individual, the general point is moved for all connected figures, to which
it refers(priority is given to the arc, two arcs can't be connected directly with each other).

To fill the enclosed space from the figures it is possible with the following way:
1. Press the Connections button.
2. Create the enclosed space.
3. Make the double-click of the left mouse button inside of it.

To delete the fill of the enclosed space it is possible from the context menu of the widget; by braking the
enclosed space or by double-click of the left mouse button on the already existing filled space.

Rotation of the figure is made around the center of the widget.

 4.2. Text primitive (Text)

Support of the text element with the following properties is provided:
• Font with the properties: type/class of the font, size, bold, italic, strikeout and underline.
• Text color.
• Text orientation.
• Automatic word wrap.
• Alignment of the text horizontally and vertically with all options..
• Displaying the background as the color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the text from the attributes of different types and properties.

Fig. 10 represents a part of the screen with the frame containing the text examples using various
parameters.

Fig.10. Realization of the basic text element in the Vision.

The module <Vision> of subsystems "User Interfaces" 421

 4.3. Primitive of the form element (FormEl)

Support of the form elements on the VCA frames is provided. The following form elements are included:
Line edit - It is represented by the following types: "Text", "Combo", "Integer", "Real", "Time",

"Date", "Date and time". All kinds of line editor support the confirmation of entry.
Text edit - It is the flat-text editor with the confirmation or denial of entry.
Check box - Provides a field of binary flag.
Button - Provides the button with the support of: the color of the button, the image of the button,

and mode of fixation.
Combo box - Provides the selection field of the element from the list of the items.
List - Provides the list box with the control of the current element.
Slider - Slider element.
Scroll bar - Strip of the scroll bar.

The following modes are realized: «Enable» and «Active», as well as transfer of changes and events to
the data model of the VCA (engine).

Fig. 11 represents a part of the screen with the frame containing the above-listed elements of the form.

Fig.11. Realization of the form elements in the Vision.

The module <Vision> of subsystems "User Interfaces" 422

 4.4. Primitive of the displaying the media materials (Media)

Support of the element of the displaying of media materials with the following properties is provided:
• The indication of the source of media data (images or video material).
• View of the images of most well-known formats with the possibility of inscribing of it in the size
of the widget.
• Playback of the simple animated images and video formats with the possibility to control the
playback speed.
• Displaying of the the background as a color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the active areas and generating the events when they are activated.

Fig. 12 represents a part of the screen with the frame containing examples of viewing/playback of media
data.

Fig.12. Realization of the basic element of the displaying of media materials in the Vision.

The module <Vision> of subsystems "User Interfaces" 423

 4.5. Primitive of the construction of diagrams/graphs (Diagram)

Support of the element of the construction of diagrams/graphs with the following properties is provided:
• Construction of graphs/trends:

• Construction graph for: archive data, current data and the formation of an intermediate
buffer for the display of the parameters without archive.
• Construction of a single graphs with the value of the parameter on the ordinate axis, and
the combined graphs of up to 10 parameters, with the percentage scale.
• Ability to adapt the parameter's graph to the value, the regrowth of scale.
• Wide range of scalability and adaptation of the horizontal scale, with automatic averaging
at the server level and the primitive itself.
• Ability to display the size grid and markers on the horizontal and vertical, with adaptation
to the displaying range.
• Support of the active mode, with the cursor and getting values under the cursor.

Fig. 13 represents a part of the screen with the frame containing examples of the trend-diagrams.

Fig.13. Realization of the basic element of a diagram-trend displaying in the Vision.

 4.6. Primitive of the protocol formation (Protocol)

Support of the element of the formation of the protocol with the following properties is provided:
• Formation of the protocol from the archive of messages for the specified time and depth.
• Request of the data from the messages archivers.
• Selection of data from the archives by the level of importance and the category of messages
template.
• Support the tracking mode for the appearance of messages in the archive of messages.

Fig. 14 represents a part of the screen with the frame containing an example of the protocol.

Fig.14. Realization of the basic element of a protocol displaying in the Vision.

The module <Vision> of subsystems "User Interfaces" 424

 4.7. Primitive of the report formation (Document)

Support element of the report formation with the following properties is provided:
• Adaptive formation of a document structure based on Hypertext Markup Language. This provides
support for the broad features of formatting of the documents.
• Formation of the documents on command or on schedule. It is necessary for creation of reports
into the archive and then view the archive.
• Formation of a document in real time mode. It is necessary to form documents completely
dynamically, and based on the archives for the specified time.
• Using of the the attributes of the widget for transmission of values and addresses to the archives
in the report. It allows you to use the widget of the document as a template when generating reports
with other input data.

The basis of any document is XHTML-template. XHTML-template is the tag “body” 'of the WEB-page
which contains the document's static in the standard XHTML 1.0 and elements of the executable
instructions in one of the languages of the user programming of OpenSCADA in the form of <?dp
[procedure] ?>. The resulting document is formed by the execution of procedures and insert of their result
into the document.

The source for values of the executable instructions are the attributes of the widget of the primitive, as
well as all the mechanisms of the user programming language. Attributes may be added by the user and
they can be linked to the actual attributes or parameters or they can be autonomous, values of which will be
formed in the script of the widget. In the case of linked attributes the values can be extracted from the
history, archive.

Fig. 15 shows the frame containing a sample of the document.

Fig.15 Implementation of the basic visualization element of the report documentation in the Vision.

The module <Vision> of subsystems "User Interfaces" 425

 4.8. Primitive of the box container (Box)

Support of the primitive of the container concurrently serves as the project pages is provided. This
primitive is the only element-container, which may include links to frames from the library, thereby
creating the user elements of desired configuration. Primitive implements the provided by the project
properties. The properties of this primitive are:

Container -- Allows you to form the desired objects by grouping in the limits of the primitive.
Page -- Elements constructed on the basis of the primitive may serve as a page of user interface.
Container of pages -- Property of substitution of its own contents by another page in the

execution process. Used to create frames on the pages of user interface. For example, the main page
of traditional SCADA system with alarm objects is constructed in this way.

Background -- Supports ability to specify the background as color or image.
Border -- Supports the displaying of the border, with the specified color, width and style.

Example of editing of the frame, based on the primitive, is shown in Fig. 1, and Fig. 8 shows a page
containing the container of the pages, built on the basis of the primitive.

 5. The overall configuration of the module
To adjust your own behavior in not obvious situations the module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 16). These settings are:
• Initial user of the configurator - points on behalf of what user to open configurator without
requiring the password.
• The list of projects for their automatic execution with the launch of the module. To provide the
possibility to indicate the opening of the window of the project execution on the desired display of
many display systems the recording format of the project "PrjName-1" is provided, where 1 - the
number of the target display.
• The name of the remote OpenSCADA station with visualization engine VCA.
• The link to the configuration page of the external OpenSCADA stations.

Fig.16. The configuration page of the module.

The module <Vision> of subsystems "User Interfaces" 426

The module <WebVision> of subsystems “User
Interfaces”

Module: WebVision
Name: Operation user interface (WEB)
Type: User interfaces
Source: ui_WebVision.so
Version: 0.9.0
Author: Roman Savochenko
Developers: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Translated: Maxim Lysenko

Description: Web visual user interface for the project execution of visual control area
(VCA).

License: GPL

WebVision module provides a mechanism of the final visualization of the visual control area
(VCA) in the OpenSCADA system. The module is based on WEB technologies (XHTML,
JavaScript, CSS, AJAX). In its work, the module uses the data from the VCA engine (module
VCAEngine).

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client
stations with a view to providing accessible information about the object and to for the the issuance
of the control actions to the object. In various practical situations and conditions the VCA, based on
different principles of visualization may by applied. For example, this may be the library of widgets
QT, GTK+, ~ wxWidgets or hypertext mechanisms based technologies HTML, XHTML, XML,
CSS, and JavaScript, or third-party applications of visualization, realized in various programming
languages Java, Python, etc. Any of these principles has its advantages and disadvantages, the
combination of which could become an insurmountable obstacle to the use of VCA in a practical
case. For example, technologies like the QT library can create highly-reactive VCA, which will
undoubtedly important for the operator station for control of technological processes (TP).
However, the need for installation of that client software in some cases may make using of it
impossible. On the other hand, Web-technology does not require installation on client systems and
is extremely multi-platform (it is enough to create a link to the Web-server at any Web-browser)
that is most important for various engineering and administrative stations, but the responsiveness
and reliability of such interfaces is lower that actually eliminates the using of them at the operator
of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external
interfaces, including user and in any manner and for any taste. For example, the system
configuration OpenSCADA as now available as by means of the QT library, and also the Web-
based.

At the same time creation of an independent implementation of the VCA in different basis may
cause the inability to use the configuration of one VCA into another one. That is inconvenient and
limited from the user side, as well as costly in terms of implementation and follow-up support. In
order to avoid these problems, as well as to create as soon as possible the full spectrum of different
types of VCA проект создания концепции СВУ is established. The result of this project - the
direct visualization module based on the WEB technologies, the direct visualization module Vision
and VCA engine VCAEngine.

http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1djh
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=fld
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=fcd
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1djh

 1. Purpose
This module of the direct visualization of the VCA serves only for the execution of interfaces of the

VCA in the area of WEB-technologies.

The user interface is formed in the WEB-browser, by reference to the WEB-server and receiving from it
XHTML-document over HTTP. In this case, the WEB-server - OpenSCADA system, which supports
standard communication mechanisms of the TCP-networks (module Transport.Sockets), hypertext transfer
protocol (module Protocol.HTTP), as well as encryption of traffic between the browser and the server
(Transport.SSL). On this basis, to gain access to the user interface provided by this module, you need to
configure the transport in the OpenSCADA (Transport.Sockets or Transport.SSL) in conjunction with the
protocol HTTP (Protocol.HTTP). In the delivery of the OpenSCADA system there are configuration files
containing settings of the Transport.Sockets for ports 10002 and 10004. Consequently, the interface of the
module in the default configuration of the OpenSCADA will be available at URL: http://localhost:10002 or
http://localhost:10004.

The final version of the VCA module, built on the basis of this module, will provide:
• three levels of complexity in the formation of visualization interface which let organically to
develop and apply the tools of the methodology from simple to complex:

• formation from the template frames through the appointment of the dynamics (without the
graphical configuration);
• graphical formation of new frames through the use of already made visualization elements
from the library (mimic panel);
• formation of new frames, template frames of the visualization elements in the libraries.

• building of the visualization interfaces of various complexity, ranging from simple flat interfaces
of the monitoring and finishing with the full-fledged hierarchical interface used in SCADA systems;
• providing of the different ways of formation and configuration of the user interface, based on
different graphical interfaces (QT, Web, Java ...) and also through the standard management
interface of OpenSCADA system;
• change of dynamics in the process of execution;
• building of the new template frames on the user level and the formation of the frames libraries,
specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and
accumulation;
• building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;
• description of the logic of new template frames and user visualization elements as with the simple
links, and also with the laconic, a full-fledged programming language;
• the possibility of the inclusion of the functions(or frames of computing of the functions) of the
object model of OpenSCADA to the user elements of the visualization, actually linking the
presentation of the algorithm of computing (for example, by visualizing the library of models of
devices of TP for following visual modeling TP);
• separation of user interfaces and interfaces of visualization of data provides building the user
interface in a single environment, and performance of it in many others (QT, Web, Java ...);
• the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);
• Visual building of various schemes with the superposition of the logical links and the subsequent
centralized execution in the background (visual construction and performance of mathematical
models, logic circuits, relay circuits and other proceedings);
• providing of the the functions of the object API to the OpenSCADA system, it can be used to
control the properties of the visualization interface from the user procedures;
• building of the servers of frames, of elements of the visualization and of the project of the
interfaces of the visualization with the possibility to serve the great number of the client
connections;
• simple organization of client stations in different basis (QT, Web, Java ...) with the connection to
the central server;

The module <WebVision> of subsystems “User Interfaces” 428

http://localhost:10004/
http://localhost:10002/

• full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;
• adaptive formation of alarms and notifications, with the support of different ways of notification;
• support of the user formation of the palettes and font preferences for the visualization of the
interface;
• support of the user formation of maps of the events under the various items of equipment
management and user preferences;
• support for user profiles, allowing to define various properties of the visualization interface
(colors, font characteristics, the preferred maps of events);
• flexible storage and distribution of libraries of widgets, frames, and projects of the visualization
interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

 2. Execution of the VCA interfaces
Execution of the VCA interface is to run a new project session or connect to the existing one on the level

of VCA engine (Fig.2). Before the connection request to the session the authentication of the user request is
done . Then the module of direct visualization represents and manages the data of the session. The main
window of the execution mode of this module has the form presented at Fig.3.

The interface of the execution window is fully dynamically built by the JavaScript script on the basis of
the contents of the session of the project through direct XML requests to the server.

Update of the contents of the open pages of the visualization interface with the frequency of 1 second. In
the updating process it is performed:

• request a list of opened pages, with a sign of page modification, at the model and consistency
checking of the actually opened pages to that list;
• request of the branch of the modified pages;
• update of the contents of the modified pages and their widgets, in accordance with the received
modified data.

The mechanism of the request of the only modified data is based on an absolute counter of the session
execution. If you want to make real changes in the attributes of widgets the memorizing of the value of this
counter is done, which allows the identification of modified attributes. This approach can increase
productivity and reduce the load on network sharing in the case of access to the VCA engine via network.

Hierarchically the module provides an opportunity to accommodate the project pages in the main
execution window of the WEB-browser (Fig.3), as well as putting them inside of the container widgets.

Fig.1.Authentication page.

The module <WebVision> of subsystems “User Interfaces” 429

Fig.2. Connection or the creation of a new session of the project's execution of the VCA.

Fig.3. The main execution window.

The module <WebVision> of subsystems “User Interfaces” 430

 3. Conception of basic elements (primitives)
In this version of that module not all the primitives' images of this project are implemented. In general

the project provides the following primitives:

Id Name Purpose

ElFigure
Elementary graphic
figures

Primitive is the basis for drawing basic graphic shapes with their
possible combinations in the single object.The support of the
following elementary figures is provided:

• Line.
• Arc.
• Bézier curve.
• Fill of the enclosed space.

For all figures contained in the widget common properties of
thickness, color, etc. are set, but this does not exclude the possibility
of indicating of aforenamed attributes specific to each figure
separately.

FormEl Form elements.

Includes support of standard form components:
• Line edit.
• Text edit.
• Check box.
• Button.
• Combo box.
• List.
• Slider.
• Scroll bar.

Text Text Text element(labels). It is characterized by the type of font, color,
orientation and alignment.

Media Media

Element of representation of raster and vector images of various
formats, playback of the animated images, playback of audio
segments and view of video segments. Perhaps it will be useful to
include the OpenGL support for it!

Diagram Diagram
Element of the diagram with the support of the possibility of
displaying multiple streams of trends and different modes of display,
from minimalist to full, two-, three-dimensional, circular, etc.

Protocol Protocol
Element of the protocol, visualizer of the system messages, with
support for multiple operating modes with the different sizes and
settings

Document Document The element of generating the reports, journals and other
documentation on the basis of specified data.

Function
Function of API of the
object model of
OpenSCADA

Not visual, on the side of execution, widget which allows to include a
computing function of the object model of OpenSCADA in the VCA.

Box Box
Contains the mechanism fro other widgets placement with the
purpose of creation of new, more complex widgets and pages of final
visualization.

Lets examine the implementation of each primitive.

The module <WebVision> of subsystems “User Interfaces” 431

 3.1. Elementary figure primitive (ElFigure)

Support of the elementary figures is provided: lines, elliptical arcs, Bézier curves and fill of the enclosed
space with the color and/or image. For the elementary figures the following operations are provided:

• creation/deleting of the figures;
• copying of the figure;
• moving and resizing of the figures by mouse and keyboard;
• possibility to connect the elementary figures to each other, getting more complex figures, for
which all the properties of the source elementary figures are available;
• possibility of simultaneous movement of several figures;
• fill of the enclosed space with the color and/or image;
• generation of mouse key events at the time of the mouse-click on the filled spaces;
• scaling;
• rotation.

Fig. 4 shows a part of the screen with a frame containing the elementary figures.

Fig.4 Realization of elementary figures in the WebVision.

 3.2. Text primitive (Text)

Support of the text element with the following properties is provided:
• Font with the properties: type/class of the font, size, bold, italic, strikeout and underline.
• Text color.
• Text orientation.
• Automatic word wrap.
• Alignment of the text horizontally and vertically with all options..
• Displaying the background as the color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the text from the attributes of different types and properties.

Fig. 5 represents a part of the screen with the frame containing the text examples using various
parameters.

Fig.5. Realization of the basic text element in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 432

 3.3. Primitive of the form element (FormEl)

Support of the form elements on the VCA frames is provided. The following form elements are included:
Line edit - It is represented by the following types: "Text", "Combo", "Integer", "Real", "Time",

"Date", "Date and time". All kinds of line editor support the confirmation of entry.
Text edit - It is the flat-text editor with the confirmation or denial of entry.
Check box - Provides a field of binary flag.
Button - Provides the button with the support of: the color of the button, the image of the button,

and mode of fixation.
Combo box - Provides the selection field of the element from the list of the items.
List - Provides the list box with the control of the current element.
Slider - Slider element(Not done).
Scroll bar - Strip of the scroll bar(Not done).

The following modes are realized: «Enabled» and «Active», as well as transfer of changes and events to
the data model of the VCA (engine). For all realized representations the active mode is supported, ie
elements can be used to create the forms of user input.

Fig. 6 represents a part of the screen with the frame containing the above-listed elements of the form.

Fig.6. Realization of the form elements in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 433

 3.4. Primitive of the displaying the media materials (Media)

Support of the element of the displaying of media materials with the following properties is provided:
• The indication of the source of media data (images or video material).
• View of the images of most well-known formats with the possibility of inscribing of it in the size
of the widget.
• Playback of the simple animated images and video formats with the possibility to control the
playback speed.
• Displaying of the the background as a color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the active areas and generating the events when they are activated.

Fig. 7 represents a part of the screen with the frame containing examples of viewing/playback of media
data.

Fig.7. Realization of the basic element of the displaying of media materials in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 434

 3.5. Primitive of the construction of diagrams/graphs (Diagram)

Support of the element of the construction of diagrams/graphs with the following properties is provided:
• Construction of graphs/trends:

• Construction graph for: archive data, current data and the formation of an intermediate
buffer for the display of the parameters without archive.
• Construction of a single graphs with the value of the parameter on the ordinate axis, and
the combined graphs of up to 10 parameters, with the percentage scale.
• Ability to adapt the parameter's graph to the value, the regrowth of scale.
• Wide range of scalability and adaptation of the horizontal scale, with automatic averaging
at the server level and the primitive itself.
• Ability to display the size grid and markers on the horizontal and vertical, with adaptation
to the displaying range.
• Ability to set the cursor in the trend by mousea.

Fig. 8 represents a part of the screen with the frame containing examples of the trend-diagrams.

Fig.8. Realization of the basic element of a diagram-trend displaying in the WebVision.

 3.6. Primitive of the protocol formation (Protocol)

Support of the element of the formation of the protocol with the following properties is provided:
• Formation of the protocol from the archive of messages for the specified time and depth.
• Request of the data from the messages archivers.
• Selection of data from the archives by the level of importance and the category of messages
template.
• Support the tracking mode for the appearance of messages in the archive of messages.

Fig. 9 represents a part of the screen with the frame containing an example of the protocol.

Fig.9. Realization of the basic element of a protocol displaying in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 435

 3.7. Primitive of the report formation(Document)

Support element of the report formation with the following properties is provided:
• Adaptive formation of a document structure based on Hypertext Markup Language. This provides
support for the broad features of formatting of the documents.
• Formation of the documents on command or on schedule. It is necessary for creation of reports
into the archive and then view the archive.
• Formation of a document in real time mode. It is necessary to form documents completely
dynamically, and based on the archives for the specified time.
• Using of the the attributes of the widget for transmission of values and addresses to the archives
in the report. It allows you to use the widget of the document as a template when generating reports
with other input data.

The basis of any document is XHTML-template. XHTML-template is the tag “body” of the WEB-page
which contains the document's static in the standard XHTML 1.0 and elements of the executable
instructions in one of the languages of the user programming of OpenSCADA in the form of <?dp
<procedure> ?>. The resulting document is formed by the execution of procedures and insert of their result
into the document.

The source for values of the executable instructions are the attributes of the widget of the primitive, as
well as all the mechanisms of the user programming language. Attributes may be added by the user and
they can be linked to the actual attributes or parameters or they can be autonomous, values of which will be
formed in the script of the widget. In the case of linked attributes the values can be extracted from the
history, archive.

Fig. 10 shows the frame containing a sample of the document.

Fig.10 Implementation of the basic visualization element of the report documentation in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 436

 3.8. Primitive of the box container (Box)

Support of the primitive of the container concurrently serves as the project pages is provided. This
primitive is the only element-container, which may include links to frames from the library, thereby
creating the user elements of desired configuration. Primitive implements the provided by the project
properties. The properties of this primitive are:

Container - Allows you to form the desired objects by grouping in the limits of the primitive.
Page - Elements constructed on the basis of the primitive may serve as a page of user interface.
Container of pages - Property of substitution of its own contents by another page in the execution

process. Used to create frames on the pages of user interface. For example, the main page of
traditional SCADA system with alarm objects is constructed in this way.

Background - Supports ability to specify the background as color or image.
Border - Supports the displaying of the border, with the specified color, width and style.

 4. The overall configuration of the module
To adjust your own behavior in not obvious situations the module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 11). These settings are:
• The lifetime of the authentication session.

Fig.11. The configuration page of the module.

Conclusion
At this stage, the module may be used to build a real user interfaces that support core functions.

However, some problems may arise due to the differences between browsers. For now it is guaranteed
stable work on browsers: FireFox, Konqueror, Opera and Google Chromium.

The module <WebVision> of subsystems “User Interfaces” 437

The module <WebUser> of subsystems "User
Interfaces"

Module: WebUser
Name: Web-interface from the user
Type: User Interfaces
Source: ui_WebUser.so
Version: 0.6.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Allows you to create your own user web-interfaces in any language of
OpenSCADA.

License: GPL

WebUser module provides the user with a mechanism to create Web-pages, and can process other Web-
requests with the help of the internal language of OpenSCADA, usually JavaLikeCalc, without necessity of
low-level programming of OpenSCADA.

Except of the module's belonging to the system OpenSCADA it also belongs and is the module of the
<HTTP> transport protocol module. Actually, the WebUser call is made from Protocol.HTTP. The call is
made through enhanced communication mechanism through the exported to the WebUser module
functions: HttpGet() and HttpSet().

Addressing of the pages begins with the second element of the URI. It is connected with the fact that the
first element of the URI is used to identify the module of user Web-interface. For example URL:
http://localhost.localdomain:10002/WebUser/UserPage can be deciphered as a call of the user page
"UserPage" of the Web module WebUser on the host localhost.localdomain on port 10002. In the case of
absence of the second element of URI and instruction to display an index of user pages in the configuration
the index of the page is generated (Figure 1).

Fig.1. Index of user pages.

The module <WebUser> of subsystems "User Interfaces" 438

The main tab of the module configuration (Fig. 2) contains the state of the module, provides the ability
to select the default page and allows you to make the list of user pages.

Fig.2. Main tab of the module's configuration.

The module <WebUser> of subsystems "User Interfaces" 439

 1. WEB - pages
The module provides the ability to create multiple implementations of Web-pages in the object "User

page" (Fig. 3).

Fig.3. The main configuration page of the user page.

The main tab contains the basic settings of the user protocol:
• Section "Status" - contains properties that characterize the status of the user page:

• Enable - the page status "Enabled".
• DB - DB that stores configuration.

• Section "Config" - directly contains the configuration fields:
• ID - information on the page's identifier.
• Name - specifies the name of the page.
• Description - brief description of the page and its purpose.
• To enable - indicates the status "Enable", in which to transfer the page at startup.

All requests to the user pages are sent to the procedure of the processing of the requests of the user page,
which is represented on the "Program" tab of the user page object (Figure 4).

The module <WebUser> of subsystems "User Interfaces" 440

Fig.4. "Program" tab of the user page object.

Tab procedure's tab for processing the requests to the user's page contains the field for selecting the
internal programming language of OpenSCADA and the text entry field for the processing procedure
typing.

For the processing procedure the following exchange variables are predetermined:
• rez - processing result (by defaults - "200 OK");
• HTTPreq - the HTTP request method (GET,POST);
• url - URI of the request;
• page - contents of the Get/Post page for the request and respond as well;
• sender - request sender;
• user - authenticated user;
• HTTPvars - HTTP variables in the Object;
• URLprms - URL parameters in the Object;
• cnts - content items for POST in the Array<XMLNodeObj>.

The overall scenario of the user's page request:
• External network station generates an HTTP request with the following form of URI
"/WebUser/<UserPage>" which falls on transport of OpenSCADA with the value of the
configuration field "Protocol" equal to the "HTTP".
• Transport sends a request to the module of transport protocol Protocol.HTTP.
• Module of the transport protocol, in accordance with the first element of the URI, sends a request
to this module.
• This module selects the object of the user's page which is specified in the second element of the
URI.
• Initialization of the variables of HTTP-protocol for the procedure of the page is made:

• HTTPreq - the value of the string "GET" or "POST", depending on the type of request, is
set;

The module <WebUser> of subsystems "User Interfaces" 441

• url - address of the requested resource (URI);
• page - the content of sending page for method "POST";
• sender - address of the request sender;
• user - address of an authenticated user, if the authentication has occurred;
• HTTPvars - the parsed list of variables of the HTTP protocol in the form of object's
properties;
• URLprms - the parsed list of URL parameters in the form of object's properties;
• cnts - parsed contents items for POST in Array <XMLNodeObj>, with the contents of
elements in the text and properties in the attributes XMLNodeObj.

• Calling the procedure for execution, which, having processed the request, forms the contents of
the page in the "page" and the result of the request in the "rez".
• At the end the answer is formed with the return code of the HTTP from "rez" and with the
contents from the "page".

The module <WebUser> of subsystems "User Interfaces" 442

	Introduction
	Project targets
	Policy of development. License.
	Scopes
	Architecture

	Functional characteristics and demands of OpenSCADA system
	 1. The employment area of system OpenSCADA
	 1.1. SCADA system's server:
	 1.2. Station of the operator of technological process, the board of the dispatcher, the panel of monitoring, etc.:
	 1.3. The environment of execution of controllers (PLC):

	 2. Requirements for OpenSCADA
	 2.1. Execution
	 2.2. Building

	OpenSCADA program description
	 1. Functions of the system.
	 1.1. Modularity.
	 1.2. Subsystems.
	 1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition".
	 1.4. Databases. A subsystem of "Database"
	 1.5. Archives. A subsystem "Archives".
	 1.6. Communications. Subsystems "Transports" and "Transport protocols".
	 1.7. Interfaces of the user. A subsystem "Interfaces of the user".
	 1.8. Security of system. A subsystem "Security".
	 1.9. Management of libraries of modules and modules. A subsystem "Management of modules".
	 1.10. Unforeseen opportunities. A subsystem "Special".
	 1.11. The user functions. Objective model and the environment of programming of system.

	 2. SCADA systems and their structure.
	 3. Ways of configuration and using of OpenSCADA system.
	 3.1. Simple server connection.
	 3.2. The duplicated server connection.
	 3.3. The duplicated server connection on one server.
	 4.4. Client access by means of the Web-interface. A place of the manager.
	 3.5. The automated workplace (place of the manager/operator).
	 3.6. Automated workplace with a server of acquisition and archiving on the single machine (a place of the operator, model...).
	 3.7. The elementary mixed connection (model, demonstration, configurator...).
	 3.8. The steady, allocated configuration.

	 4. Configuration and adjustment of the system.
	 4.1. "DB" subsystem
	 4.2. Subsystem "Security"
	 4.3. Subsystem "Transports"
	 4.4. Subsystem "Transport protocols"
	 4.5. Subsystem "Data acquisition"
	 4.6. Subsystem "Archives"
	 4.7. Subsystem "User interfaces"
	 4.8. Subsystem "Specials"
	 4.9. Subsystem "Modules sheduler"
	 4.10. Configuration file of the OpenSCADA and parameters of command-line OpenSCADA execution.

	 5. System-wide API of user programming.
	 5.1. System-wide user objects.
	Array object
	XMLNodeObj object

	 5.2. System (SYS)
	 5.3. Any object of OpenSCADA objects tree (SYS.*)
	 5.4. "DB" subsystem (SYS.BD)
	 5.5. Subsystem "DAQ" (SYS.DAQ)
	 5.6. "Archives" subsystem (SYS.Archive)
	 5.7. "Transports" subsystem (SYS.Transport)

	Data acquisition in OpenSCADA
	 1. Data acquisition methods
	 1.1. Simple synchronous acquisition mechanism
	 1.2. Simple asynchronous acquisition mechanism
	 1.3. Package acquisition mechanism
	 1.4. Passive acquisition mechanism

	 2. Virtual data sources
	 3. Logic level of data processing
	 4. Redundancy of the data sources

	Quick start OpenSCADA
	 1. Terms, definitions and abbreviations
	 2. Installation and start
	 2.1. Installing OpenSCADA from packages
	 2.2. Installation from sources

	 3. Initial configuration and start
	 4. Working with Data Sources
	 4.1. Data inquiry of the TP device
	 4.2. TP data processing
	 4.3. Enabling the TP data archiving

	 5. The formation of visual presentation
	 5.1. Adding the template page in the project and linkage of the dynamics
	 5.2. The creation of the new frame, the mnemonic scheme
	 5.3. Creation of the new complex element
	 5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
	 5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements box"
	 5.3.3. Adding the complex element to the mnemonic scheme

	 6. Recipes
	Conclusion

	Module of subsystem “Archives”<FSArch>
	 1. Message Archiver
	 1.1. File format of archive messages
	 1.2. Example of the archive of messages file

	 2. Values Archiver
	 2.1. File format of archive values

	 3. Efficiency

	Module of subsystem “Archives” <DBArch>
	 1. Message Archiver
	 2. Values Archiver
	 3. Informational table of the archival tables

	Module of the subsystem “DB” <DBF>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Productivity of DB

	Module of the subsystem “DB” <MySQL>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Access rights
	 5. Productivity of DB

	Module of the subsystem “DB” <SQLite>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Access rights
	 5. Productivity of DB

	Module of the subsystem “DB” <FireBird>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Access rights
	 5. Productivity of DB

	Module of the subsystem “DB” <PostgreSQL>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Access rights
	 5. Productivity of DB

	The module of subsystem “Data acquisition” <DiamondBoards>
	 1. Data controller of Diamond boards
	 2. Parameters of the Diamond controller
	Links

	The module of subsystem “Data acquisition” <System>
	 1. The controller of data
	 2. Parameters

	The module of subsystem “Data acquisition” <BlockCalc>
	 1. The controller of the module
	 2.The block scheme of the controller
	 3. Parameters of the controller
	 4. Copying of the block schemes

	The module of subsystem “Data acquisition” <JavaLikeCalc>
	 1. Java-like language
	 1.1. Elements of language
	 1.2. Operations of language
	 1.3. Embedded functions of language
	 1.4. Operators of the language
	 1.4.1. Conditional operators
	 1.4.2. Loops
	 1.4.3. Special characters of string variables

	 1.5. Object
	 1.6. Examples of programs on the language

	 2. Controller and its configuration
	 3. The parameter of the controller and its configuration
	 4. Libraries of functions of module
	 5. User functions of the module

	The module of subsystem “Data acquisition” <LogicLev>
	 1. Data controller
	 2. Parameters

	The module of subsystem “Data acquisition” <SNMP>
	 1. SNMP
	 1.1. MIB
	 1.2. Addressing
	 1.3. Interaction
	 1.4. Authorization

	 2. Module
	 2.1. Controller of data
	 2.2. Parameters

	The module of subsystem “Data acquisition” <Siemens>
	 1. Communication controllers CIF
	 2. The controller of the data source
	 3. The parameters of the data source
	 4. Asynchronous recording mode
	 5. Comments
	Links

	The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols”
	 1. General description of the ModBus protocol
	 1.1. Addressing
	 1.2. Standard codes of functions

	 2. Module of the implementation of the protocol
	 2.1. API functions of outgoing requests
	 2.2. Servicing of the requests for ModBus protocol
	The mode of the node of the protocol “Data”
	The mode of the node of the protocol “Gateway of the node”
	The mode of the node of the protocol “Gateway of the network”

	 2.3 Report of the ModBus requests

	 3. Data acquisition module
	 3.1. Controller of data
	 3.2. Parameters

	The module of subsystem “Data acquisition”<DCON>
	 1. General description of the protocol DCON
	 2. Module
	 2.1. Data controller
	 2.2. Parameters

	 3. Compatibility table of input/output modules of different manufacturers

	The module of subsystem “Data acquisition” <ICP_DAS>
	 1. Data controller
	 2. Parameters
	 2.1 Module I-8017
	 2.2 Module I-8042
	 2.3 Module I-87019
	 2.4 Module I-87024
	 2.5 Module I-87057

	 3. LP-8x81 series controllers configuration
	Links

	The module of subsystem “Data acquisition” <DAQGate>
	 1. Controller of data
	 2. Parameters

	The module of subsystem “Data acquisition”<SoundCard>
	 1. Controller of the data
	 2. Parameters

	The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems
	 1. OPC UA protocol
	 2. The module of the protocol implementation
	 2.1. Service the requests on the OPC UA protocol

	 3. Data acquisition module
	 3.1. Data controller
	 3.2. Parameters

	 4. Notes

	Module <Sockets> of subsystem “Transports”
	 1. Incoming transports
	 2. Outgoing transports

	Module <SSL> of subsystem “Transports”
	 1. Incoming transports
	 2. Outgoing transports
	 3. Certificates and keys

	Module <Serial> of subsystem “Transports”
	 1. Incoming transports
	 2. Outgoing transports

	Module <HTTP> of subsystem “Protocols”
	 1. Authentication
	 2. The modules of user WEB-interface
	 3. Outgoing requests function's API

	Module <SelfSystem> of subsystem “Protocols”
	 1. The syntax of the protocol
	 2.The internal structure of an outgoing protocol

	Module <UserProtocol> of subsystem “Protocols”
	 1. Part of the protocol for incoming requests
	 2. Part of the protocol for outgoing requests

	The module <FLibComplex1> of the subsystem “Specials”
	 1. Alarm (alarm) <111>
	 2. Condition '<' (cond_lt) <239>
	 3. Condition '>' (cond_gt) <240>
	 4. Full condition (cond_full) <513>
	 5. Digital block (digitBlock) <252>
	 6. Division (div) <526>
	 7. Exponent (exp) <476>
	 8. Flow (flow) <235>
	 9. Iterator (increment) <181>
	 10. Lag (lag) <121>
	 11. Simple multiplication(mult) <259>
	 12. Multiplication + Division(multDiv) <468>
	 13. PID regulator (pid) <745>
	 14. Power (pow) <564>
	 15. Selection (select) <156>
	 16. Simple integrator (sum) <404>
	 17. Sum with the division (sum_div) <518>
	 18. Sum with the multiplication. (sum_mult) <483>

	The module <FLibMath> of the subsystem “Specials” <FLibMath>
	 1. Functions

	The module <FLibSYS> of the subsystem “Specials”
	 1. System-wide functions
	 1.1. Calling the console commands and operating system utilities (sysCall)
	 1.2. SQL query (dbReqSQL)
	 1.3. XML node (xmlNode)
	 1.4. Request of the management interface (xmlCntrReq)
	 1.5. Values archive (vArh)
	VArchObj object

	 1.6. Buffer of the values archive (vArhBuf)

	 2. Functions for the astronomical time processing
	 2.1. Time string (tmFStr) <3047>
	 2.2. Full Date (tmDate) <973>
	 2.3. Absolute time (tmTime) <220>
	 2.4. Conversion the time from the symbolic representation to the time in seconds from the epoch of 1/1/1970 (tmStrPTime) <2600>
	 2.5. Planning of the time in the Cron format (tmCron)

	 3. Functions of the messages processing
	 3.1. Messages request (messGet)
	 3.2. Generation of the message (messPut)

	 4. Functions of the strings processing
	 4.1. Getting the size of the string (strSize) <114>
	 4.2. Getting the part of the string (strSubstr) <413>
	 4.3. Insert of the on string to the another (strInsert) <1200>
	 4.4. Change the part of the string with the another one (strReplace) <531>
	 4.5. Parsing the string on separator (strParse) <537>
	 4.6. Path parsing (strParsePath) <300>
	 4.7. Path to the string with the separator (strPath2Sep)
	 4.8. Coding of the string to HTML (strEnc2HTML)
	 4.9. Encode text to bin (strEnc2Bin)
	 4.10. Decode text from bin (strDec4Bin)
	 4.11. Convert real to string (real2str)
	 4.12. Convert integer to string (int2str)
	 4.13. Convert the string to real (str2real)
	 4.14. Convert the to integer (str2int)

	 5. Functions for the real processing
	 5.1. Splitting the float to the words (floatSplitWord) <56>
	 5.2. Merging the float from words (floatMergeWord) <70>

	The module <SystemTests> of the subsystem "Specials"
	 1. Parameter (Param)
	 2. XML parsing (XML)
	 3. Messages (Mess)
	 4. SO attaching (SOAttach)
	 5. Attribute of the parameter (Val)
	 6. DB test (DB)
	 7. Transport (TrOut)
	 8. Control system language (SysContrLang)
	 9. Values buffer (ValBuf)
	 10. Values archive (Archive)
	 11. Base64 code (Base64Code)

	The module of subsystems “User Interfaces” <QTStarter>
	The module <QTCfg> of subsystems “User Interfaces”
	 1. Configuration
	 2. Basic elements
	 3. Commands
	 4. Lists
	 5. Tables
	 6. Images

	The module <WebCfg> of subsystems “User Interfaces”
	 1. Basic elements
	 2. Commands
	 3. Lists
	 4. Tables
	 5. Images

	The module <WebCfgD> of subsystems “User Interfaces”
	 1. Configuration
	 2. Basic elements
	 3. Commands
	 4. Lists
	 5. Tables
	 6. Images
	 7. Errors

	The module <VCAEngine> of subsystems "User Interfaces"
	Introduction
	 1. Purpose
	 2. The configuration and the formation of interfaces of the VCA
	 3. Architecture
	 3.1. Frames and elements of visualization (widgets)
	 3.2. Project
	 3.3. Styles
	 3.4. Events, their processing and the events' maps
	 3.5. Signaling
	 3.6. Rights management
	 3.7. Linkage with the dynamics
	 3.8. The primitives of the widget
	 3.8.1. Elementary graphic figures (ElFigure)
	 3.8.2. Element of the form (FormEl)
	 3.8.3. Text element (Text)
	 3.8.4. Element of visualization of media materials (Media)
	 3.8.5. Element of constructing diagrams/trends (Diagram)
	 3.8.6. The element of building the protocols based on the archives of messages (Protocol)
	 3.8.7. Element of formation of documentation(Document)
	 3.8.8. Container (Box)

	 3.9. Using the database to store the library of widgets and projects
	 3.10 API of the user programming and service interfaces of the OpenSCADA
	 3.10.1. API of the user programming
	Widget list (WdgList)
	Presence of the node (NodePresent)
	Attributes list (AttrList)
	Request of the attribute (AttrGet)
	Setting of the attribute (AttrSet)
	Session user (SesUser)

	 3.10.2. Service interfaces of the OpenSCADA
	Access to the values of attributes of the visualization elements (widgets)
	Group access to the values of attributes of the visualization elements (widgets)
	Access to the pages of the session
	Signaling (alarm) management
	Manipulation with the sessions of the projects
	The group request of the tree of widget libraries

	 4. Configuring the module via the control interface of OpenSCADA

	The module <Vision> of subsystems "User Interfaces"
	 1. Purpose
	 2. Tool of the graphical formation of the VCA interface
	 2.1. Styles
	 2.2. Linkage with the dynamics

	 3. Execution of the VCA interfaces
	 4. Conception of basic elements (primitives)
	 4.1. Elementary figure primitive (ElFigure)
	 4.2. Text primitive (Text)
	 4.3. Primitive of the form element (FormEl)
	 4.4. Primitive of the displaying the media materials (Media)
	 4.5. Primitive of the construction of diagrams/graphs (Diagram)
	 4.6. Primitive of the protocol formation (Protocol)
	 4.7. Primitive of the report formation (Document)
	 4.8. Primitive of the box container (Box)

	 5. The overall configuration of the module

	The module <WebVision> of subsystems “User Interfaces”
	 1. Purpose
	 2. Execution of the VCA interfaces
	 3. Conception of basic elements (primitives)
	 3.1. Elementary figure primitive (ElFigure)
	 3.2. Text primitive (Text)
	 3.3. Primitive of the form element (FormEl)
	 3.4. Primitive of the displaying the media materials (Media)
	 3.5. Primitive of the construction of diagrams/graphs (Diagram)
	 3.6. Primitive of the protocol formation (Protocol)
	 3.7. Primitive of the report formation(Document)
	 3.8. Primitive of the box container (Box)

	 4. The overall configuration of the module
	Conclusion

	The module <WebUser> of subsystems "User Interfaces"
	 1. WEB - pages

