OpenSCADA v. 0.7.0

(http://oscada.org)

November 22, 2010

http://oscada.org.ua/

Contents table

(0o [0 To3 1[0) o F PR 10
d Ko [<Yo1 B =T (o (<1 (=TT 10
Policy Of dEVEIOPDMENE. LICENSE.ce e e e 10
SCOPES. ...ttt e e e e e e e e e e e e e e e e e e aaaaaas 10
YN o] A 11 (=T o1 (0 [= YT 11

Functional characteristics and demands of OpenSCADA SYSteM........ccccceeiiiiiiiiiiiiiiieieecceee e 12

1. The employment area of system OPENSCADA oo 12
1. S C A D A SYS BIM S SO VI . e eeee e et e e e et e e e 12
1.2. Station of the operator of technological process, the board of the dispatcher, the panel

(o) il naTe]aTh o) a1 aTo =) (o uuTT TR 14
1.3. The environment of execution of controllers (PLC):........ooieeieeeeeeeeee e 14

2. Requirements for OPENSCADA oo e e e et e e e e e e et s e e e e eaaeens 16
A I = (=Yl U 1 {[0) a PR 16
A = U o 110 Yo PP UPURUORRRRR 17

OpenSCADA Program AESCIIDION e ce et et e e e e e e e eaeens 19

1. FUNCHONS Of the SYSIEM oottt e e e e e e enaeenn 20
o I Y o Yo [0 =T 1 A Y2 TR 20
RSN | oY1 (< 0 1T 21
1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition".................... 21
1.4. Databases. A subsystem of "Database”..........cooev oo 22
1.5. Archives. A SUDSYSIEM AICNIVES"o 22
1.6. Communications. Subsystems "Transports" and "Transport protocols"........................ 23
1.7. Interfaces of the user. A subsystem "Interfaces of the user".............cooveveeieeiiieiiieieennnn. 24
1.8. Security of system. A sUDSYStEM "SECUIItY".........ooeueiieee e 25
1.9. Management of libraries of modules and modules. A subsystem "Management of

01070 U1 1= 25
1.10. Unforeseen opportunities. A subsystem "Special”........ccoov oo, 25
1.11. The user functions. Objective model and the environment of programming of system.

.. 25

2. SCADA systems and their StTUCIUIE.oeeeiieeeee e e e en 27

3. Ways of configuration and using of OpenSCADA SYSIEM. ... coouveeniieee e, 29
3.1, SIiMPIE SEIVEE CONNMEBCIION.t ettt e e 29
3.2. The duplicated SEIVEr CONMNECIION. eee et 30
3.3. The duplicated server coONNECION ON ONE SEIVELoeueee e 30
4.4. Client access by means of the Web-interface. A place of the manager........................ 31
3.5. The automated workplace (place of the manager/operator)..........ccccoeveveeeiivirieciinneinnnen. 31
3.6. Automated workplace with a server of acquisition and archiving on the single machine

(a place of the 0pPerator, MOAEL...). ...t 32
3.7. The elementary mixed connection (model, demonstration, configurator...)................... 33
3.8. The steady, allocated CONfIQUIALION.cooveeeeee et 34

4. Configuration and adjustment of the SYStEM........c..evvieeeieeeee e 36
O I B] = =10 | o 12T £] (=) PR 41
4 2. SUDSYSIEIMN SO U ... oot e e 46
LR IS T0] o 1-1YA] (=) 0 Bl W = 10 1< Lo 1 £ XU 49
4.4. Subsystem "Transport ProtOCOIS".......con et 53
4.5. Subsystem "Data @aCQUISITION".........coouoieeeee et 54
4.6. SUDSYSIEIM "ATCNIVES"o et e et e e et e e e e e e e e e e e 66
4.7. SUDSYStEM "USEI INTEITACES".......ccoeeeeee et e e e e e e e e anees 77
4.8, SUDSYSIEM "SPECIAIS"o 78
4.9. Subsystem "Modules SNEAUIET"o.o et 79

4.10. Configuration file of the OpenSCADA and parameters of command-line OpenSCADA

[=Y o1 0 1 (o] o FET TP PTPPRTRRN 80

5. System-wide APl Of USEr DrOGramMIMUiNG. . .. oce e e e e e e e e e e e e nenaenn 90
5.1, SYStEM-WIAE USEI ODJEOES. .. .ot 90
1= VAo L= o SR 90
XMLNOAEOD] ODJECL. ... 91
LIRS 1 21 (=Y AT S0 A) PP T 91
5.3. Any object of OpenSCADA 0DbJeCtS tre€ (SYS.*) ..o 92
5.4, DB SUDSYSIEM (SY S B). it 92
5.5. Subsystem "DAQ" (SYS.DAQ) ...t 93
5.6. "Archives" subSYSIEM (SYS.AICNIVE).....oouo et aees 93
5.7. "Transports" subsystem (SYS.TranSPOI).......ccovuuuiiiiieiieiee e e e e e eeeaaees 93
Data acquisition in OpenSCADA..........co oo, 94
1. Data acquISItioON MEINOAS. oo e et 96
1.1. Simple synchronous acquisition MECNANISM.......ceueen e 96
1.2. Simple asynchronous acquisition MECRANISMccen v e 97
1.3. Package acquiSition MECNANISIM.een e e 98
1.4. Passive acqQuiSition MECHANISIM.ciuiiee e e et e e e e e e e eaenaas 99
YA [(=] Mo P21 = T Y0 10| (o= T 100
3. Logic leVvel Of data PrOCESSING. .. ccuu e et e e e e e 102
4. Redundancy Of the dat@ SOUICES.coeneeeeeeee e 106
QUICK STArt OPENSCADAttt e e e e 110
1. Terms, definitions and @bbreViatioNsS.ccou e et e e 110
2. INStAllation @NA STAIT.cu e ettt e e et e e 111
2.1. Installing OpenSCADA from PACKAGES..........ovieeeeeeee et e e e e e eeas 111
2.2. InStallation frOM SOUICES.cce e et e e 112
3. Initial configuration aNd SEAT.oeeee e 113
4. Working With Data SOUICES. i et e e eaenn 117
4.1. Data inQUIry Of the TP AEVICE.......coueeeeeee et 117
4.2. TP At DrOCESSINGecenieenieeee e et e e e e et e e e e e e et et e e e e e e e e e e e e e e eneenns 125
4.3. Enabling the TP data arChiVIiNgoooiieiiieeeeee et e s 132
5. The formation of visual PreSeNtatioN.........c.ooce oot 135
5.1. Adding the template page in the project and linkage of the dynamics......................... 135
5.2. The creation of the new frame, the mnemonic SCheME........ccoueveeeee i, 140
5.3. Creation of the new compleX EIEMENT...........oeeeeeeeee e 146
5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
.. 146
5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements
00} TP 152
5.3.3. Adding the complex element to the mnemonic scheme.........ccovevveeeeiciiceieeiiannn. 171
ST =T o] oY= 173
[OFa] aTo [V E] o) o FUTTE TR PR 173
Module of subsystem “ArChiVES SESAICNS....... oot e e e e e e e e e een 174
Y (YT Lo [AN Ko 1LY <) PO 174
1.1. File format of arcChiVe MESSAUES.c..cieeeeee e 177
1.2. Example of the archive of MeSSagES fil€.......ovee v 178
Y= | (8T AN (el A1 AYL=) TR 179
2.1. File format of @arChiVe VAIUES............oooeeeeeeeeeeeee e 181
B EffICIEINCY a e e e nnaaan s 183
Module of subsystem “Archives” KDBAICRSo 184
Y (YT To [AN Ko 1LY L<) PR 184
Y= | (8T AN (el A1 AYL=) TR 185
3. Informational table of the archival tabIles............oveeeeeieeeeeeee e 186
Module of the subsystem “DB” KDBE>...... oo e e e e e e e e e e e 187
1. Operations oVer the database...........cooveiieeiieeeee et e e e 187
2. 0pErations OVEI the tADIE. oo e 187

3. Operations over the contents Of the taDIE.......c.ooeniie e 187

L d e e [8Te3 11Y/1 AV o il B] = PR 188
Module of the sSubSYStEmM “DB” KIMYS QL >o e eenn 189
1. Operations oVer the database.cooeeoieeeee ettt 189

2. Operations over the table................uuiiiiii s 189

3. Operations over the contents of the table..........coouveieeieieee e 190

L AN ol ol YTl o | a1 £ TP 190

Lo TN md 1010 [11V 1 AV o)] = TR 191
Module of the sUDSYSIEM “DB” <SG QLTo iee et 192
1. Operations oVer the database..........ooeeoieeeeeee ettt 192

2. Operations over the table...............uuuiieiii s 192

3. Operations over the contents of the table...........o.uvieeeieiee e 192

L AN ol ol YTl o | a1 F= TP 193

Lo T md 1010 [& 11V 1 AV o) 5] = TR 193
Module of the subsystem “DB” <FIr€BIIA>.coon e e 194
1. Operations oVer the database..........coooeoieeeeee ettt 194

2. Operations over the table...............uueiieiiii s 194

3. Operations over the contents of the table..........coouvieeeieieee e 194

L AN ol ol YTl o | a1 £ TP 195

Lo T md 1010 [& 11V 1 AV o) 5] = TR 195
Module of the subsystem “DB” <P OStArES QL >o 196
1. Operations oVer the database.cooeeoieeeee ettt 196

2. Operations over the table................uuiieiii s 196

3. Operations over the contents of the table...........o.uvveeeieiee e 197

L AN ol ol YTl o | a1 £ TP 197

Lo T md 1010 [& 11V 1 AV o) 5] = TR 197
The module of subsystem “Data acquisition” <DiamondBoards>...........cccovieoeeeeeeeeieeeeeeeeeeanen, 198
1. Data controller of DIiamoNnd DOAIAS........c.uieeeeee ettt e e e e e e e 199

2. Parameters of the DIiamond CONIOIET............oeeeeeeeeeeeeee e e e 201
LIS . ettt ettt e e e e e e e ee e —eeaeeea—reea—eeraeeearaea e e e raaeaanns 202
The module of subsystem “Data acquisition” KSYStEM>........coovuiiiiiiiie e 203
I N aT=N oo)l o) | o) o = | = TR 204

o = | =11 A1=) (=) £ TP TR 205
The module of subsystem “Data acquisition” <BIOCKCAIC>.........ccouueieeeeeeeeeeee e 207
1. The controller Of the MOAUIE.coeeeeeeeeeee e e 209
2.The block scheme Of the CONTIOIET..........ooeeeeeeeeeeeeee e e e e ees 210

3. Parameters Of the CONIIOIETcce et 213

4. CopVing Of the BIOCK SCREIMIES. ... e 214
The module of subsystem “Data acquisition” <davaLikeCalC>..........covvieieeeeee e 215
1. JAaVA-TIKE JANQUAGE. ... eeeeeeee e e ettt e 217
1.1. Elements of [aNQUAGE...........coooiiiiiiie e 217

1.2. Operations of [aNQUAGE..........ccoooiieeiiiee e 217

1.3. Embedded functions of [aNQUAGE.ouneeeeeeee e 218

1.4. Operators of the laNQUAGEc..veee e et e e 219

I 0 I 7o a o [iTe]a F=1 o) 01=) =\ (o] 4= TP 219

R o Yo] o 1< U 219

1.4.3. Special characters of string variables...........coooueiieeei e 220

1.5, ODJECL. ... e 220

1.6. Examples of programs on the [anQUage.eeueeeoeeee e 222

2. Controller and itS CONfIGQUIATIONcee e 223

3. The parameter of the controller and its configuration...........oouoveeee oo 224

4. Libraries of funCtioNS Of MOAUIE.........coueeieeeeeee et e e e e eaees 225

5. User functions Of the MOAUIE.........coveieeeeeeeee e e e e nenas 225
The module of subsystem “Data acquisition” <LOQICLEV>..........ooieeeiiieeeeeeeeeeee e 226
(D F= [v=Wee] a1 (n o] | 1Y TP 227

The module of subsystem “Data acquisition” KSNMP >o 231

IS AN 1Y | PR RRRT 231

I Y = TP 231

oIV X (o [(=111 Lo PR OO 232

(IR T 101 (=Y =T 1o o PR 232

o AUTNOMIZAtION. ... e e e e e 232

B2 |V, o Yo 11| [T RRP 233

P2 IR O7 o011 (0] | =Y o) o = = VPR 233

2.2 PaAlAmMEBIOLS. ... oo e 234

The module of subsystem “Data acquisition” <SIEMENS>...........ooveeieeeee e 236

1. Communication CONIOIEIS CIE ... e e e e e e e e e e e e e e e e e e eenns 237

2. The controller of the data SOUICE.........ooeee et 239

3. The parameters Of the data SOUICE.c.vee et 240

4. AsynchronoUS reCOIrAING MOAE. eenee e e e e e e eeens 244

oI 0] 110 01=1 01 =T UTTT TP 244

LIS . ettt e e e e e e e —ee e re—a———et e eea——e————— . 244
The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols”

... 245

1. General description of the ModBUS ProtOCOL.......c...eee e 245

o I N [[(=Y=T=T 1 T TP 245

1.2. Standard codes Of FUNCLIONS.coueeeeeeee e e e en 246

2. Module of the implementation of the ProtoCOl................eeviiiiiiiiiiiiiiiieeeeeeeeeeee e 246

2.1. API functions of oUtQOING FEAUESES.........eeeeieeeeee e e e e aeas 246

2.2. Servicing of the requests for ModBUS ProtoCOl...........ooveveiiiieiiie e 247

The mode of the node of the protocol “Data’”.........c.coeeeee e, 248

The mode of the node of the protocol “Gateway of the Node”........ccouvenveeeeiiiieeieiinne. 251

The mode of the node of the protocol “Gateway of the network”............cccoooveeeeriiinnrennns. 252

2.3 Report of the ModBUS reqQUESTES.........cooviiiiiiiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 253

3. Data acquisition MOAUIE.............uuiiiiieiei e e e e e e e e e e e eana s 254

1 IR O7e] 01 1) | 1=T o] ille =) 7= VR 254

B2, PaAlAMBIEIS oo 256

The module of subsystem “Data acquisition”<DCON-> 258

1. General description of the ProtoCOl DCON vieeeeee e e e 258

2 Y (Yo [11T 259

2 IR D = v= oo a1 o) |1 T 259

2.2 P aAlaMIB S . .. et 260

3. Compatibility table of input/output modules of different manufacturers............ccccceeevveennnee. 261

The module of subsystem “Data acquisition” <ICP_DAS>..........oooiiiiiiiiiiiiieeeieeeeeeeeie e 262

(D F | =W ee] a1 (o] | 1) TP 263

o = =1 1 A1=) =) £ TP TP 264

D2 Y, o Yo U1 = L0 2 265

2.2 MOAUIE -804 2. et 266

PR N1V, oo V] [0 S Al TR 266

V.o Yo [V [B S A0 TR 266

N\ oo (V] [B S A S Y TR 266

3. LP-8x81 series controllers ConfiQuration.............oeeeeeeieeeeeeeeee et 266

LIS . ettt ettt — e e e e et —e—a e eeaaeeea—reea—eetaeeeereeaaar e rar e a—ana 266

The module of subsystem “Data acquisition” <DAQGAE>.........oeoeieeeiiee e 267

I O0] 01 (o) [=Ya o) i =1 = PR 269

B = | =1 A1=) (=) £ TR 270

The module of subsystem “Data acquisition”<SoundCard>.............cooeuuiiiiiiiiiiiiieeeeee e, 271

1. CoNtroller Of the Aata........covneeeeeeeeeeee et e et e e e e e e e e e e e ees 272

D = =1 A A1=) =) 6= TP 273

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems................ 275

1. OPC A DEOOCOL. .. et e e et e e e et e e e e e e e e e e e e e eens 276

2. The module of the protocol iIMPIEMENEAtION........c.veee e 277
2.1. Service the requests on the OPC UA ProtOCOI........cuuuiieuiiieeiieeeeeeeee e 277

3. Data acquUISItION MOAUIE. ... e et e e 279

I R B =1 = W eT0) a1 (o) 1 1= TP 279

B I = 1= 11011 (=) T 281

L A () (Y= TR 282
Module <Sockets> of SUDSYStEM “TranSPOIS” oot e e 283
(I TaTeTo) a alTa o =T a =] o Yo) u (=TT 284

2L O V] (o o)1 o I {r=101<] 0 10) (- FHNuuEET PRSP 286
Module <SSL> of sUbSYSIEM “TranSPOITS”.........oiieeeeeeeee et e e e e e e eens 288
I TaTedo) a T a Lo T Ur=T =T o Yo] (=TT 289

A O 81 (o o)1 o I w=1a1<] 0 Y0] u (=T NPTUTT OO 290

3. CertifiCates AN KEYS. . e e ettt 291
Module <Serial> of SUDSYSTEM “TranSDOIMS” eeeeeeee e 292
(I TaTelo) aalTa o M ur=Ta =] o Yo) u (=TT 293

2. 0utgoing tranSPOIS.coooiiie e 295
Module <HTTP> of subSYSteM “ProtOCOIS”........coeeiieeeee e e e 297
N T 11 a[=Ya 1 1 Te7= 11 [0) a VTR 298

2. The modules of USEr WEB-INTEITACE.... ... oot 299

3. 0utgoing requests fFUNCHION'S AP e e 299
Module <SelfSystem> of SUDSYStEM “ProtOCOIS.......ccoueieeeeeeee e 301
1. The syntax Of the ProtOCOL.coee e et e e e e e e e e e e 301
2.The internal structure of an outgoing ProtoCOL.............eevviiiiiiiiiiiiiiiieeeeeeeeee e 302
Module <UserProtocol> of SUDSYStEM “ProtOCOIS”eee et 303
1. Part of the protocol for INCOMING FEAUESTS ... cee e e 304

2. Part of the protocol for OUtQOING FEAUESTES ... cvueie e et 305
The module <FLibComplex1> of the subsystem “SpecialS”.........coeeueeeeeeeeeee e, 307
AN = T = 1= Tt I TP 307

2. Condition '<' (CONA_I) K233 ... a e e e e e 307

3. Condition ">' (CONA_gt) 240> e e e e e e e enaaanas 307

4. Full condition (CONd_fUll) KETB>......uuuuiiiiiiiiiiiiiiiiiii e eeaeeeeeaeeeaneeannsenssnnnneeeeees 308

5. Digital bloCK (AIQItBIOCK) K252ttt e et e e e e e e e enaees 308

B. DIVISION (V) SO 26> ... oot e et e et e e e e e e e e e e e e e e e eenns 308

7. EXDONENE (EXD) SAT B> ... oo et e e e et e e e e et e e e e et e e e e e e e e e e e e enneeeeeennaaaeees 308

Lo Tl (0N LV 1 0 0 T2 1o TR 308

9. Herator (INCIEMENE) KA B e e e 308
O = Yo I (= T D IRt 2 TP 309
11. Simple MUltiplicatioN(MUIL) K 250> ... et 309
12. Multiplication + DiviSion(MUItDIV) SAB8>........ccomiieeee et e e 309
13. PID requlator (DIA) STAD> ...t e e e et e e e e e e e e e e e eeaanaeas 309
T4, POWEE (DOW) SEBA> ... et e et e e et e e e e e e e e e e e e eaereeaeeanaesersennes 310
15. SEIECON (SEIECE) KABB> ... ettt e e e e e e 310
16. Simple integrator (SUM) SAD4>ot e e 310
17. Sum with the division (SUM_diV) SB18>o 310
18. Sum with the multiplication. (sum_mult) <483>...........oooiiiiiiiiiiiiee e 311
The module <FLibMath> of the subsystem “Specials” <FLibMath>.............ccccooveeeiiiiiiiiiieenn. 312
I ST o3 1 o =P 312
The module <FLibSYS> of the subsystem “SpecialS”..........coouiiieiiiieiiie e 314
1. SYStEM-WIAE fUNCLIONS. ..ottt e e e anaes 314
1.1. Calling the console commands and operating system utilities (sysCall)...................... 314

1.2. SQL query (AbREASQIL). .. oo 315

1.3. XML NOAE (XIMINOAE). ...ttt e e e e et e e e e e e e e e e e e e eenns 315

1.4. Request of the management interface (XmMICNIrREQ).......cceveevieeieeeeiieee e, 315

1.5. ValUES @rCRIVE (VATN). ..ot 316

(V7N 1ol 110 o] o) o] =Y ol PR 316

1.6. Buffer of the values archive (VATNBUT)co.ooo e, 316
2. Functions for the astronomical time ProCESSINGcuueeeneee e 317
2.1. Time StriNG (EMESE) SO 7> ..ot eeenennennnnan 317
2.2. Full Date (fMDate) O7 3> oot e e e e e e e 317
2.3. Absolute time (IMTIME) K220coeeieiee e e et e et e e e e e e e e e eaeeeaeens 317
2.4. Conversion the time from the symbolic representation to the time in seconds from the
epoch of 1/1/1970 (fMSHrPTImMeE) <2800cu et 318
2.5. Planning of the time in the Cron format (tMCron)...........cooiveiiiiiiiiiie e 318
3. Functions of the MeSSages PrOCESSING veeneeeeee e et e e e e e e e e e e e 318
3.1. Messages request (MESSGEL)......ccovviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 318
3.2. Generation of the MessSage (MESSPUL)........veeeeeiiee e e 319
4. Functions of the StriNgS PrOCESSING. . .ccuueee et 319
4.1. Getting the size of the String (SIrSIZE) <A T4> .. .ovmieeeeeee et 319
4.2. Getting the part of the string (StrSubstr) <413>. ..., 319
4.3. Insert of the on string to the another (strinsert) <1200>.......ccooomeoee e, 319
4.4. Change the part of the string with the another one (strReplace) <531>...........c.......... 320
4.5. Parsing the string on separator (StrParse) <537 >.......o e 320
4.6. Path parsing (StrParsePath) <300coo it 320
4.7. Path to the string with the separator (StrPath2Sep).......coveuveeieeiee e, 320
4.8. Coding of the string to HTML (StrENCZ2HTML).....ceneeeee e, 321
4.9. Encode text to bin (SITENCZ2BIN).......ccunieeee et aens 321
4.10. Decode text from bin (StrDECABIN)......ccuuoeeeeeee e enns 321
4.11. Convert real to StriNG (FEAI2SII)........coveieeee e e e 321
4.12. Convert integer 10 StriNG (INE2SH)oon e 321
4.13. Convert the string t0 real (Str2r€al).......c.u e eeeeeeeee et 322
4.14. Convert the to INtEQEI (STr2INt).c.n e 322
5. Functions for the real PrOCESSING.c.u o eeeeeeeee et e e e e e e e e e e 322
5.1. Splitting the float to the words (floatSplitWord) <56>..........ooeeeeiieieeeeeeeee e 322
5.2. Merging the float from words (floatMergeWord) <70>.........cooeeeeiiieeeieeeeeeeeeeee e, 322
The module <SystemTests> of the subsystem "Specials"”..........cooouuiiieiiiiiiiie e 323
1. Par@meter (Paraim)coouoeoeeeeee e 324
2. XIML DAISING (XML ettt e e et e et et e e e e e e e e e e e e e e e e eaes 324
3. MESSAAES (IMESS) ..ottt e e e e e et e e 324
4. SO attaching (SOAIACK) ... ccenieeeeeeee et e e e e e e e eenas 325
5. Attribute of the PAramMEtEr (VaAl)oooeeeiieeeeeee et e e e e e e e e e e e e 325
B. DB EST (DB) ..ottt 325
7 TrANSPOM (TEOUL) oottt ettt e e e e et e e e e e e e e e eaes 326
8. Control system language (SYSCONrLANG)ooeevueiiiiiie e e e 326
9. ValUES DUFFEE (VAIBUL) ... eeeeeeeee ettt et et e e e e e e e e e e e e enaeee 326
10. ValuES A@rChiVe (AFCRIVE) ...t e e e e e e e e e e e e e e e e renees 326
11. Base64 cOde (BASEBACOUE)cuurieeeieiee ettt e e e e et e e et e e e e e e eaeeeaeenns 326
The module of subsystems “User Interfaces” <QTStarter>........coouuvvveeiiiieiiieie e 327
The module <QTCfg> of subsystems “User INterfaces”.couoveeiie e 329
I O0] 01 ilo 18] =1 1To] o VPR 331
2. BASIC BIEIMENTS . .. cee e et 332
T 0] 10.07=1 010 F-TUUTTTUR TP 333
A LiSES .o — e et e e e e e —eeee e eet . ——— i —————— 334
Lo 1= o] <= 335
LT 0 0= o 1= 336
The module <WebCfg> of subsystems “User INterfaces”........ooo e oo 337
) = F= T (ol = 1Y 0 A 1<) 01 PR 339
2. COMIMEANAS. ... ettt e e e e e e e e e e e e et e e e e e e e e e e e e e e ea e e e e e e e eaereneeneeeneannae 340
T I3 TR 340
R =1 o (=Y 341

The module <WebCfgD> of subsystems “User INterfaCes”........ovvee oo 343
I OTe] a1 To] =11 [0] o FUTT T RERRTRRRRPT 345
2. BASIC BIEIMENTS . .. cee e et 346
T 0] 10.07=1 010 F-TUUTTTUR TP 347
L 1= (TR 348
Lo 1= o] <= 349
T 0 0= o 1= 350
A =1 o) =TT 351

The module <VCAENgine> of subsystems "User INterfaces".........ooeeeeeeeee e 353
10 0]0 [UTo1T0] o F TR 353
R o U 00 PP 354
2. The configuration and the formation of interfaces of the VCA.........o oo, 355
I AN o] o111 (U] (=R 355

3.1. Frames and elements of visualization (WidgetS).......ccoueemiieoeeeee e 357
G T o () =Y S PSP 360
R TS 1 L (U UUUURPPURPRRR 363
3.4. Events, their processing and the events' MapsS........c..vveviieiiiieeiee e 365
TR 1o 11 11 Te P RSRPR 367
3.6. RIightS MaANaQEMENL.cee et e et et e e e e 368
3.7. Linkage With the AYNAMUCS......c..vieieee e 369
3.8. The primitives Of the WIAQELcou oot e e 374
3.8.1. Elementary graphic figures (EIFIiQure).........cccooieiiiiiiiiiiiecccee e 377
3.8.2. Element of the form (FOrMED........coeuieeeeeeeeeeeeee et 378
3.8.3. TeXt IEMENE (TEXE)....neeeeeeeee et 380
3.8.4. Element of visualization of media materials (Media)...........cc.evveeeeiiieiiiiieieiin. 381
3.8.5. Element of constructing diagrams/trends (Diagram)...........cooeeeeeeeeeeeeeneereeeennnnn. 381
3.8.6. The element of building the protocols based on the archives of messages
[(o) (oY oTo)) T PRSPPI 383
3.8.7. Element of formation of documentation(Document)............cceeevveeeiieiiiiiieiieeennnn. 383
KRR T OFe] 01 7= 1101<Y i { =10) 4 FRUTTTEUUURR RPN 386
3.9. Using the database to store the library of widgets and projects.........cccccoevvevvvvneeeennneen. 387
3.10 API of the user programming and service interfaces of the OpenSCADA.................. 389
3.10.1. API of the USEr ProgramMMUuNg........c..eeeeeeeeeeeee et e et e e e e e e e e ee e eenaees 389
3.10.2. Service interfaces of the OPENSCADA........ oo 391
4. Configuring the module via the control interface of OpenSCADA........ccooeeeeeeeeeeeeeeeeeeeeenn. 393

The module <Vision> of subsystems "User INterfaces"o 403
F PUIPOSE. ...ttt ettt ettt e e e e e e e e e e e e et e e e eeeeeeeeea s e e e eera e eeaaaaas 404
2. Tool of the graphical formation of the VCA INteIrfacCe......c.oveeeeeeieee e 405

2.0 SIS et e e e e e e e e ———aaaeaaaeaeeeeeeaea——————————— 414
2.2. Linkage With the dYNamICS............uiiiiiiiicieeee e e e 415
3. Execution of the VCA INTEITACES........coeeieeeeeeeeeeeeeee e e 417
4. Conception of basic elements (DrMULIVES)......ceu e 419
4 1. Elementary figure primitive (EIFIQUIE).........o oo 420
4.2, TeXt PrMUEIVE (TOXE) ... oe et e e eannn 421
4.3. Primitive of the form element (FOMMEND.......ccoouiiienoeeeeee e 422
4.4. Primitive of the displaying the media materials (Media)............eeeeeeeeeeeeieieeeieeeeeeen 423
4.5. Primitive of the construction of diagrams/graphs (Diagram).........c.ccccuuveeeeeiieeeeeeennnen. 424
4.6. Primitive of the protocol formation (ProtoCol)...........oeveeeiiiieiiie e 424
4.7. Primitive of the report formation (DOCUMENT).......ceeniie e 425
4.8. Primitive of the boX CONtAINET (BOX) ... ceeueeeeeeeee e 426
5. The overall configuration of the MOAUIE.ccounieeee e 426

The module <WebVision> of subsystems “User INterfaces”..........coouueeeeeee oo 427
R o U 00 PP 428
2. Execution Of the VO A INTEITACES. e 429

3. Conception of basic elements (DHAMULIVES).......oeee et e e e 431

3.1. Elementary figure primitive (EIFIQUIE)........cou e 432
3.2, T Xt PIMIEIVE (T XE) . . eeee e ettt e e e e e e e e e enaeen 432
3.3. Primitive of the form element (FOIMEN........ooeeoieeeeee e 433
3.4. Primitive of the displaying the media materials (Media)............ccveeeeeeeueeeeeeiieeeeeenn. 434
3.5. Primitive of the construction of diagrams/araphs (Diagram)..........ccceeeuveeeiiiiiieeinnennnns 435
3.6. Primitive of the protocol formation (ProtoCol).........ccuueiiieeiiiieieee e 435
3.7. Primitive of the report formation(DOCUMENt).......cceeeneeeeeeeeee e 436
3.8. Primitive of the boX coNtaiNer (BOX).......ceueeeeee et 437

4. The overall configuration of the MOAUIE...........eeeeeneeeee e 437
[OFa] aTo [V E] o) o FUTTE TR TP 437
The module <WebUser> of subsystems "User Interfaces" ..o 438
A = T o= 1o 1= RPN 440

Introduction

OpenSCADA represents opened SCADA system constructed on principles of modules, multiplatform
and scalability. (Supervisory Control And Data Acquisition) is the term which it is often used in sphere of
automation of technological processes. The system OpenSCADA is intended for: acquisition, archiving,
visualization of the information, delivery of operating influences, and also for other related operations,
which are characteristic for full-function SCADA systems.

Project targets

The basic purposes which are pursued with the project, are:
- openness;
reliability;
flexibility;
scalability;
security;
financial availability;
giving of the convenient interface of management

Policy of development. License.

As policy of software realization of the given project principles of development are chosen. This policy
will allow to involve in development, testing, distribution and using of the product the significant amount of
developers, enthusiasts and other interested persons with the minimal financial expenses at the same time.
The program is accessible on conditions of the GPL v2 license.

Scopes

The system OpenSCADA is intended for performance as SCADA systems of usual functions, and for
use in adjacent areas of information technologies.

The system OpenSCADA can be used:
on industrial targets as full-function SCADA system;
in built in systems, as the execution environment (including PLC);
for construction of various models (technological, chemical, physical, electric processes);
on personal computers, servers and clusters for acquisition, processing, representation and
archiving of the information about system and its environment.

As base (host) operational systems (OS) for the development and uses it is chosen the OS Linux which is
POSIX compatible OS. Besides OS Linux is the optimum compromise in questions:
safety;
flexibility/scalability;
availability;
popularity and prevalence.

As the system OpenSCADA is developed on standard of POSIX OS, by principles of mutiplatform its
adaptation on other OS will not make a problem.

Introduction 10

Architecture

Heart of system is the modular kernel.

Depending on what modules are connected, the system can carry out both functions of various servers,
and functions of clients of client-server architecture. Actually, the architecture of system allows to realize
the distributed client-server systems of any complexity.

For achievement of high speed due to reduction of communications time, the architecture allows to unite
functions of the distributed systems in one program.

Architecturally, the system OpenSCADA consists of subsystems:
« The security subsystem. Contains lists of users and groups of users, provides check of the rights
of access to system elements, etc.
« The modules DB subsystem. Provides access to databases.
« The modules transport subsystem. Provides the communications with an environment by means
of various communication interfaces.
« The modules transport's protocol subsystem. It is closely connected with a subsystem of
transports and provides support of various reports of an exchange with external systems.
« The modules DAQ subsystem. Provides data acquisition from external sources: controllers,
sensors, gauges, etc. Except for it the subsystem can give environment for a writing of generators of
data (model, regulators...).
« The modules archive subsystem. Contains archives of two types: archives of messages and
archives of values. An archivation way is defined by algorithm which is incorporated in the
archivator's module.
« The modules user interfaces subsystem. Contains functions of the user interfaces.
« The control modules subsystem. Provides the control over modules.
« The modules special subsystem. Contains functions not entered in other subsystems.

Proceeding from a modules principle, the modular subsystems, which are specified above, can expand
the functionality by connection of corresponding type of the modules.

The modular kernel of system OpenSCADA is designed in the form of static and shared libraries. It
allows to build in functions of system existing programs, and also to create new programs on the basis of a
modular kernel of OpenSCADA system.

However, the modular kernel is self-sufficient and can be used by means of the simple starting program.

Modules of system OpenSCADA are stored in dynamic libraries. Each dynamic library can contain set
of modules of various type. Filling of dynamic libraries by modules is defined by functional connectivity of
modules. Dynamic libraries suppose hot replacement that allows to make updating of modules during work.
The method of storage of a code of modules in dynamic libraries is the core for system OpenSCADA as it
is supported practically by all modern OS. It does not exclude an opportunity of development of other
storage modules code methods.

Introduction 11

Functional characteristics and demands of
OpenSCADA system

1. The employment area of system OpenSCADA

[Chief station

Operator's station 5 ﬁ
Vision {Web browser)

[Transpo n‘erI VCAE ng.l'ne]
[SelfSystem] Pc
[MySQL I Soclets

4,¢Pc

SCADA system's server

[Transpo n‘er[VCAEngine [WebVa’sa’onIWebC il’g]
& dB _ S gﬁ ii stem | SelfSystem | HTTP)
amondBoa SI o ets [G ;;:] Sockets [.I'I.-'I S0 q FSA m.h]

| PC w &0 | Archive|
¥ " ’
Diamaond L J *
ATH400-128 Siemens
S7-400

Fig. 1. OpenSCADA system's roles

PLC performance area

1.1. SCADA system's server:

* The visual control and management by means of the interfaces:
* Remote visualization server grounded on visualization and control area (VCA) engine VCAEngine.
The module Ul.Vision local starting and connecting to the visualization server.
* Remote WEB interface. By means of a Web-browser, the visualization module WebVision and the
module of a kernel of visual control area VCAEngine.
» Simple remote Web-interfaces of user. By mean Web-browser and Ul-module WebUser.
* Data acquisition (DAQ) from sources:
* Information about a platform (hardware-software) on which the server works. By means of the DAQ-
module System.
* Data acquisition from sources which support protocol SNMP (Simple Network Management Protocol).
By means of the DAQ-module SNMP.
* Data acquisition from controllers of firm Siemens of S7 series. By means of the DAQ-module
Siemens.
* Data acquisition of industrial controllers under the protocol ModBus. By means of the DAQ-module
ModBus.

Functional characteristics and demands of OpenSCADA system 12

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=16h6
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=10ka
http://wiki.oscada.org/HomePageEn/Doc/System?v=o1b
http://wiki.oscada.org/HomePageEn/Doc/WebUser?v=jyt
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g6w
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v

* Data acquisition of industrial controllers under the protocol DCON. By means of the DAQ-module
DCON.

* Formation of derivative structures of parameters on the basis of templates of parameters and data from
other sources. By means of the DAQ-module Logiclev.

* Data acquisition from other servers and PLC, based on OpenSCADA, possibly for duplication. By
means of the DAQ-module DAQGate.

* Data acquisition from sound controller's input channels. By means of the DAQ-module SoundCard.

* Data acquisition from hardware of firm ICP DAS. By means of the DAQ-module ICP_DAS.

* Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-module OPC
UA (RU).

* Data acquisition from different sources, which have utilities for access to it data or it accessibly
through simple special network protocols. Made by getting procedure writing on language of user
programming by DAQ-module JavaLikeCalc, and also transport-protocol-module User Protocol.

Providing data to upper-level systems:

* By means of interfaces:

* Serial interface (RS232, RS485, Modem, ...), by helps of transport module Serial.

* [P-networks sockets and network levels protocols TCP, UDP and Unix, by helps of transport module
Sockets.

* Security sockets layer (SSL), by helps of transport module SSL.

* By means of protocols:

* Self OpenSCADA protocol, by helps of transport's protocol module SelfSystem.

* ModBUS family protocol (TCP, RTU and ASCII), by helps of transport's protocol module
ModBUS.

* "OPC UA" protocol, by helps of transport's protocol module OPC UA (RU).

* Simple special protocols, developed by users by helps of transport's protocol module User Protocol.

Implementation of user calculations in languages:

* Language of block schemes. By means of the DAQ-module BlockCalc.

* With the help of Java-like language of a high level. By means of the DAQ-module JavaLikeCalc.

Archiving messages, conducting reports on various categories and levels by means of mechanisms:

* Files in a XML-format or the flat text with packing the out-of-date archives. By means of the archiving
module FSArch.

* In tables of archival DB. By means of the archiving module DBArch.

* In plans. On other server, it is possible to the allocated archiving server, based on OpenSCADA.

Archiving values of the collected data by means of mechanisms:

* Files with double packing: consecutive and standard archiver gzip. By means of the archiving module
ESArch.

* In tables of archival DB. By means of the archiving module DBArch.

Configuration and management of a server through:

* The WEB-interface. By means of a Web-browser and the Ul-module WebCfgD and WebCfg.

* From the remote configuration station. By means of the Ul-module at configuration station QTCfg and
the interface of management OpenSCADA reflected in the protocol SelfSystem.

Data storage of a server in a DB of types:

* MySQL. By means of the DB-module MySQL.

* SQLite. By means of the DB-module SQLite.

* PostgreSQL. By means of the DB-module PostgreSQL.

* DBF. By means of the DB-module DBF.

* FireBird. By means of the DB-module FireBird.

* In plans. DB accessible on other server based on OpenSCADA.

* In plans. LDAP.

Functional characteristics and demands of OpenSCADA system 13

http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=a29
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=14l4
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=10ip
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=v7w
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=c4s
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=w15
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=1a4t
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=dws
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/SSL?v=88e
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1nz
http://wiki.oscada.org/HomePageEn/Doc/Serial?v=ymb
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ICPDAS?v=ce3
http://www.icpdas.com/
http://wiki.oscada.org/HomePageEn/Doc/SoundCard?v=kn8
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=vpz
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=5a2
http://wiki.oscada.org/HomePageEn/Doc/DCON?v=a7d

1.2. Station of the operator of technological process, the board of the dispatcher, the
panel of monitoring, etc.:

* The visual control and management by means of the interfaces:

* The local (fast) interface based on QT library. By means of the visualization module Vision and the
module of a kernel of the visual control area VCAEngine include ability of visualization from remote
engine of VCA, visualization server.

* Remote WEB interface. By means of a Web-browser, the visualization module WebVision and the
module of a kernel of visual control area VCAEngine.

» Simple remote Web-interfaces of user. By mean Web-browser and Ul-module WebUser.

* Data acquisition (DAQ) from sources:

* Data acquisition from other servers and PLC, based on OpenSCADA, for data transportation and for
duplication. By means of the DAQ-module DAQGate.

 Data acquisition from sources which support protocol SNMP (Simple Network Management Protocol).
By means of the DAQ-module SNMP.

* Data acquisition from sources which support protocol OPC _UA. By means of the DAQ-module OPC
UA (RU).

* Implementation of the user calculations in languages:

* Language of block schemes. By means of the DAQ-module BlockCalc.

» With the help of Java-like language of a high level. By means of the DAQ-module Javal.ikeCalc.
* Archiving messages, conducting reports on various categories and levels by means of mechanisms:

* Files in a XML-format or the flat text with packing the out-of-date archives. By means of the archiving
module FSArch.

* In tables of archival DB. By means of the archiving module DBArch.

* In plans. On other server, it is possible to the allocated archiving server, based on OpenSCADA.

* Configuration and management of station through:

* The WEB-interface. By means of a Web-browser and the Ul-module WebCfgD or WebCfg.

* The QT-interface. By means of the Ul-module QTCfg.

* From the remote configuration station. By means of the Ul-module at configuration station QTCfg and
the interface of management OpenSCADA reflected in the protocol SelfSystem.

» Data storage of station in a DB of types:

* MySQL. By means of the DB-module MySQL.

* SQLite. By means of the DB-module SQL.ite.

* PostgreSQL. By means of the DB-module PostgreSQL.

* DBF. By means of the DB-module DBF.

FireBird. By means of the DB-module FireBird.
In plans. DB accessible on other server based on OpenSCADA.
* In plans. LDAP.

1.3. The environment of execution of controllers (PLC):

* Data acquisition (DAQ) from sources:

* Cards of data acquisition of firm Diamond Systems. By means of the DAQ-module DiamondBoards.

* Information on a platform (hardware-software) on which the server works. By means of the DAQ-
module System.

* Data acquisition from sources which support protocol SNMP (Simple Network Management Protocol).
By means of the DAQ-module SNMP.

* Data acquisition of industrial controllers under the protocol ModBus. By means of the DAQ-module
ModBus.

* Data acquisition of industrial controllers under the protocol DCON. By means of the DAQ-module
DCON.

* Formation of derivative structures of parameters on the basis of templates of parameters and data from
other sources. By means of the DAQ-module Logicl ev.

Functional characteristics and demands of OpenSCADA system 14

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=5a2
http://wiki.oscada.org/HomePageEn/Doc/DCON?v=a7d
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=10ka
http://wiki.oscada.org/HomePageEn/Doc/System?v=o1b
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=32m
http://diamondsystems.com/
http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=a29
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=14l4
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=10ip
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=v7w
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=c4s
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=w15
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=1a4t
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=dws
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=10ka
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=vpz
http://wiki.oscada.org/HomePageEn/Doc/WebUser?v=jyt
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=g6w
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=m3v
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=rij

* Data acquisition from other servers and PLC, based on OpenSCADA, possibly for duplication. By
means of the DAQ-module DAQGate.

» Data acquisition from sound controller's input channels. By means of the DAQ-module SoundCard.

* Data acquisition from hardware of firm ICP DAS. By means of the DAQ-module ICP_DAS.

* Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-module OPC
UA (RU).

* Data acquisition from different sources, which have utilities for access to it data or it accessibly
through simple special network protocols. Made by getting procedure writing on language of user
programming by DAQ-module JavaLikeCalc, and also transport-protocol-module User Protocol.

Providing data to upper-level systems:

* By means of interfaces:

* Serial interface (RS232, RS485, Modem, ...), by helps of transport module Serial.

* [P-networks sockets and network levels protocols TCP, UDP and Unix, by helps of transport module
Sockets.

* Security sockets layer (SSL), by helps of transport module SSL.

* By means of protocols:

* Self OpenSCADA protocol, by helps of transport's protocol module SelfSystem.

* ModBUS family protocol (TCP, RTU and ASCII), by helps of transport's protocol module
ModBUS.

* "OPC UA" protocol, by helps of transport's protocol module OPC UA (RU).

» Simple special protocols, developed by users by helps of transport's protocol module User Protocol.

Management, regulation and performance of other user calculations in languages:

* Language of block schemes. By means of the DAQ-module BlockCalc.

* With the help of Java-like language of a high level. By means of the DAQ-module JavaLikeCalc.

Archiving messages, conducting reports on various categories and levels by means of mechanisms:

* Files in a XML-format or the flat text with packing the out-of-date archives. By means of the archiving
module FSArch.

* In tables of archival DB. By means of the archiving module DBArch.

* In plans. On other server, it is possible to the allocated archiving server, based on OpenSCADA.

Archiving of values of the collected data by means of mechanisms:

* Buffers in memory of the setting depth. By means of the built in archiving mechanism of the values of
kernel OpenSCADA.

* Files with double packing: consecutive and standard archiver gzip. By means of the archiving module
FSArch.

* In tables of archival DB. By means of the archiving module DBArch.

Configuration and management PLC through:

* The WEB-interface. By means of a Web-browser and the Ul-module WebCfgD or WebCfg.

* From the remote configuration station. By means of the Ul-module at configuration station QTCfg and
the interface of management OpenSCADA reflected in the protocol SelfSystem.

Data storage PLC in a DB of types:

* All data in a configuration file (fixed).

* MySQL. By means of the DB-module MySQL.

SQLite. By means of the DB-module SQLite.
PostgreSQL. By means of the DB-module PostgreSQL.
* DBF. By means of the DB-module DBF.
* FireBird. By means of the DB-module FireBird.
* In plans. DB accessible on other server based on OpenSCADA.
* In plans. LDAP.

Functional characteristics and demands of OpenSCADA system 15

http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=a29
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=14l4
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=10ip
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=v7w
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=c4s
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=w1q
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=w15
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=1a4t
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=hk
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=16dm
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=dws
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=jbt
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=14em
http://wiki.oscada.org/HomePageEn/Doc/SSL?v=88e
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1nz
http://wiki.oscada.org/HomePageEn/Doc/Serial?v=ymb
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=7tb
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=w8
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/Doc/OPCUA?v=8br
http://wiki.oscada.org/HomePageEn/Doc/ICPDAS?v=ce3
http://www.icpdas.com/
http://wiki.oscada.org/HomePageEn/Doc/SoundCard?v=kn8
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=vpz

2. Requirements for OpenSCADA

2.1. Execution

The demands to apparatus for OpenSCADA system execution at different roles viewed into table 1. The

demands to programs for OpenSCADA system execution and it modules allow into table 2.

Table 1. The demands to apparatus for OpenSCADA system and it modules.

Role Demands

SCADA system's server MEM: 128 MB

CPU: x86_32 (more than i586) or x86 64, with frequency more 500 MHz

HDD: 10 GB include OS and place for archives

Station of the operator of
technological process, the
board of the dispatcher, the
panel of monitoring, etc.

CPU: x86_32 (more than 1586) or x86_ 64, with frequency more 1 GHz
MEM: 512 MB
HDD: 4 GB include OS without archives place

The environment of execution
of controllers (PLC)

CPU: x86_32 (more than 1586) or x86 64, with frequency more 133 MHz
MEM: 32 MB
HDD: 32 MB include OS without archives place.

Table 2. Dependences of performance of OpenSCADA system and its modules.

Component ‘ Description

Dependences of OpenSCADA system's kernel

0S Linux The di‘stribution kit of operating system Linux (ALTLinux, SuSELinux, Mandriva,
ASPLinux, Fedora, Debian, Ubuntu ...)

"Standard Standard set of librariesz linux-gate, libs'tdc+.+, libgcc_§, li'bc, }ibdl, libr't, liberypt, libm,

libraries" 11bpthread. Certalnly this already allow into installed dlstrlbutlor}. S.peqal demand is
using native thread library NPTL, already used for all modern distributions of the Linux.

libed Graphic library GD version 2, it is de§irable that it will be without XPM support
(dependence on library of a X-server is excluded) and support of FontConfig.

libexpat Library of XML-parser.

DB.MySQOL module

libMySQL ‘Library for access to MySQL DBMS.

DB.SQLite module

libsqlite3 ‘Library for access to built in DB SQLite version 3.

DB.PostgreSQL module

libpq ‘Library for access to PostgreSQL DBMS version more 8.3.0.

DB.FireBird module

FirebirdSS Eir;Bjrd DBMS version 2. Ofter} is z}bsent in distribution. kits of Linux and demands
individual loading from an official site (http:/www.firebirdsql.org)!

Transport.SSL module

libssl ‘Library for codifying OpenSSL.

DAQ.SNMP module

libsnmp ‘Library for access to data of network devices under SNMP protocol.

DAQ.System module

libsensors ‘Hardware sensors' library versions 2 and 3.

DAQ.SoundCard module

libportaudio ‘Multiplatform library for access to sound controller version 19 and higher.

DAQ.OPC UA module

Functional characteristics and demands of OpenSCADA system 16

http://www.firebirdsql.org/

Component Description
libssl Library for codifying OpenSSL.
Modules: Ul Vision, UL WebVision, Special. FLibSYS
libfftw3 ‘Library for fast Fourie transfer of signals.
Modules: UL.QTStarter, UL.QTCfg, Ul Vision
1ibQT4(1ibQtCor
e,1ibQtGui)

Library for construction of user graphic interface QT version 4.3 and higher.

2.2. Building

Dependences of system OpenSCADA for building of the OpenSCADA kernel and its modules are
tabulated bellow.
Table 3. Dependences of building of OpenSCADA system and its modules.
Component ‘ Description
The general requirements for building OpenSCADA
The distribution kit of operating system Linux (ALTLinux, SuSELinux, Mandriva,

OS Linux ASPLinux, Fedora, Debian, Ubuntu ...)
iy The compiler of language C++ from a collection of compilers GCC, including
& library GLibC
autotools(automake, Tools for formation of building environment of OpenSCADA. They are necessary

only in the case of changing building environment of OpenSCADA, for example

autocont, libtool) for addition of the new module or change of the fixed parameters of building.

Group of utilities for preparation and compilations of translations of the interface
gettext of programs on various languages in conformity with internationalization standard
[18N.

Graphic library GD version 2, a package for development, it is desirable that it will
be without XPM support (dependence on library of a X-server is excluded) and

libgd(devel) support of FontConfig. It is used for construction of trends and other images in
PNG format.
Library of XML-parser, package for development. The interface of management of

libexpat(devel) OpenSCADA and other components are constructed on the basis of language
XML.

DB.MySQL module

libMySQL(devel) ‘Library for access to MySQL DBMS, a package for development on language C.
DB.SQLite module

libsqlite3(devel) ‘Library for access to built in DB SQLite version 3, a package for development.

DB.PostgreSQL module

libpq Library for access to PostgreSQL DBMS version more 8.3.0, a package for
development.

DB.FireBird module

FireBird DBMS version 2, a package for development. Often is absent in
FirebirdSS distribution kits of Linux and demands individual loading from an official site (
http://www.firebirdsqgl.org)!

Transport.SSL module

libssl(devel) ‘Library for codifying OpenSSL, a package for development.

DAQ.JavaLikeCalc module

bison ‘The program of generation of parsers on the basis of grammar of language.

DAQ.SNMP module

libsnmp(devel) Eibrary for access to data of network devices under SNMP protocol, a package for
evelopment.

Functional characteristics and demands of OpenSCADA system 17

http://www.firebirdsql.org/
http://www.firebirdsql.org/

Component ‘ Description

DAQ.System module

libsensors(devel) ‘Hardware sensors' library versions 2 and 3, a package for development.

DAQ.Siemens module

glibc-kernheaders ‘Linux-kernel headers by library GLibC.

DAQ.SoundCard module

Multiplatform library for access to sound controller, a package for development
version 19 and higher.

libportaudio(devel)

DAQ.OPC _UA module

libssl(devel) ‘Library for codifying OpenSSL, a package for development.

Modules: Ul Vision, UL WebVision, Special. FLibSYS

libfftw3(devel) ‘Library for fast Fourie transfer of signals, package for development.

Modules: UL QTStarter, UL.QTCfg, Ul Vision

. Library for construction of user graphic interface QT version 4.3 and higher,
libQT4(devel) package for development.

Functional characteristics and demands of OpenSCADA system 18

OpenSCADA program description

The given document is the description "open source" project of system called "OpenSCADA."
OpenSCADA corresponds an open SCADA system constructed on principles of modularity, multiplatform
and scalability.

As a policy of development of the given system the "open source" principles are chosen. The choice of
the given policy is determined by necessity of creation of open, reliable and public SCADA system. The
given policy allows to involve in development, testing, elaboration, distribution and use of a product the
significant amount of developers, enthusiasts and other interested persons with minimization and
distribution of financial expenses.

The OpenSCADA system is intended for acquisition, archiving, visualization of the information,
delivery of operating influences, and also for other related operations characteristic for full-function
SCADA systems. Owing to a high level of abstraction and modularity, the system can be used in many
adjacent areas.

The OpenSCADA system can be applied:
on industrial targets, as full-function SCADA system;
 in built in (embedded) systems, as an environment of performance, including inside PLC
(programmed logic controllers);
- for construction of various models (technological, chemical, physical, electric processes);
- on personal computers, servers and clusters for acquisition, processing, representation and
archiving of the information on system and its environment.

As basic (host) operational system, for development and use, the OS Linux is chosen, which is the
optimum compromise in questions:

- reliability (vast majority of servers and clusters works on GNU/Linux);
- flexibility/scalability (in view of the openness and modularity allows to build decisions under any
requirements);
- availability (owing to license GPL it is completely free system, and at high qualification of the
user and free-of-charge);
 popularity, development, support, prevalence (the system is actively developed by set of
enthusiasts, firms and official bodies from all over the world, it gets greater and greater support in
the user and corporate market, it is actively implemented into the state structures of the various
countries).

As far as the project is developed and realized by principles of multiplatformity, it does not make a
problem to port it on other OS, that is planned in the future.

Heart of system is the modular kernel. And depending on that, what modules are connected, system can
to act both in a role of various servers, and in a role of various clients, and also to combine these functions
in one program. It allows to work in practice client-server architecture of SCADA system on the basis of
the same components/modules, saving thus: machine memory, disk space, and also valuable time of
programmers.

Server configurations of system are intended for acquisition, processing, delivery of influences,
archiving, recording of the information from various sources, and also for granting of this information to
clients (UI, GUI, TUL...). The modular architecture allows to expand functionality of a server without its
restarting.

Client configurations can be built on the basis of various graphic libraries (GUI/TUI ToolKits), as using
a kernel of the program and its modules (by addition to it the module of Ul-user interface), and as the
independent application, connecting the kernel of OpenSCADA as library.

The opportunity of a flexible configuration of system allows to build decisions under concrete
requirements of reliability, functionality and the sizes of system.

OpenSCADA program description 19

1. Functions of the system.

p
e —
Modules of DBF, MySQL, SQLite, FireBird, PostgreSaL Jaavlal-tgﬂlalc
oc alc
OpenSCADA i LogicLev
S Y A SNMP
OCKELS ModBus
SSL Transports DE DAQ DAQGate
Serial (Data acquisition)| ™ System
HTTF DiamondBoards

ModBus Siemens

OPCUA & DCOM
SelfSystem Transport Management Archives ICP_DAS

UserProtocal protocols of modules SoundCard
—— OPC_UA
QT Cfg \
Vision FSArch

QT Starter U DBArch
VCAENRgine ser ety :

Weh Cfg +_.‘ interfaces] SELLITLY [Special]\ SystemTests
Web CfgD FLbComplex!
WebMWision FLbSYS

| WebUser | | OpenSCADA core | FLibMath
b A
Fig. 1. The block scheme of OpenSCADA system
1.1. Modularity.

For giving flexibility and a high degree of scalability the OpenSCADA system is constructed by a
modular principle. Close integration of modules with a kernel of system imposes the great responsibility on
process of a writing of modules and enters an element of instability into the system, however owing to an
opportunity of creation of the allocated configurations, this danger smooths out with preservation of a high

degree of flexibility.
Modules of OpenSCADA system are stored

in dynamic libraries. Each dynamic library can contain set

of modules of various type. Filling of dynamic libraries by modules is determined by functional
connectivity of modules. Dynamic libraries suppose hot replacement, that allows during functioning to
update separate parts of system. The method of storage of a code of modules in dynamic libraries is the
main for OpenSCADA as far as it is supported practically by all modern operational systems(OS). However
it does not exclude an opportunity of development of other methods of storage of a code of modules.

On the basis of modules the following functional parts of OpenSCADA system are realized:

- databases;
- archives (messages and values);

+ protocols of communication interfaces;

+ communication interfaces, transports;
« sources of data and data acquisition;

- interfaces of the user (GUI, TUIL, WebGUI, speech, signal...);

- the additional and special modules.

Management of modules is carried out by a subsystem "Management of modules". Functions of a
subsystem are: connection, switching-off, updating of modules, and also other operations connected with

modules and libraries of modules.

OpenSCADA program description 20

1.2. Subsystems.

Architecturally the OpenSCADA system shares on subsystems. Subsystems can be of two types: usual
and modular. Modular subsystems possess the property of expansion by means of modules. Each modular
subsystem can contain set of modular objects. For example the modular subsystem of "Database" contains
modular objects of types of databases. The modular object is a root inside of the module.

In total the OpenSCADA system contains 9 subsystems from them 7 subsystems are modular. 9
subsystems of the OpenSCADA system are basic and are present at any configuration. To the list of 9
subsystems new subsystems by means of modules can be added. Subsystems of the OpenSCADA system:

+ Archives (modular).

- Databases (modular).

- Safety.

« Interfaces of the user (modular).
Management of modules.

- Data acquisition (modular).

« Transport protocols (modular).

+ Special (modular).

« Transports (modular).

1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition''.

For support of sources of dynamic data, whether it be PLC-controllers, communication devices, virtual
sources, etc., the subsystem "Data acquisition" is intended. Functions of this subsystem include granting the
received data in the structured appearance and maintenance of management with these data, for example the
updating of data.

The subsystem "Data acquisition" is modular and, as consequence, contains modular objects of types of
sources of dynamic data. For example, for October 2007r, the OpenSCADA system supports following
types of sources of data:

- Cards of data acquisition from "Diamond systems".
Data acquisition from operational systems (OS).
- the Block calculator.
- the Calculator in Java-like language.
- the Transporter of data of a subsystem "Data acquisition” from one OpenSCADA station to
another.
Access to logic controllers by means of the protocol "ModBUS".
- Data acquisition from network devices by means of protocol SNMP.
The source of data of a logic level of OpenSCADA system.
« Access to highly intellectual logic controllers by means of MPI protocol and communication
processor CIF50PB of Hilscher GMBH firm.

Each type of a source is made in the form of the separate module which can be connected/disconnected.
Each type of a source can contain separate sources (controllers).

Separately taken controller can contain the parameters of certain by the module types. For example
parameters of analog type: the basic information which they gives the value of the integer or real type is.
Structurally, the parameter represents the list of attributes which are contained by data. Attributes can be of
four base types: symbolical string (text), integer, real and logic type.

Structures of controllers, parameters and their types are contained in the subsystem "Data acquisition",
and objects of modules carry out their filling according to own specificity.

The source of dynamic data can be remotes, i.e. connected on the remote OpenSCADA system. For
communication with such sources of data the transport type of controllers (Transporter) is used. Function of
the given type of a source of data is reflection of sources of data of remote OpenSCADA stations on local
station.

OpenSCADA program description 21

1.4. Databases. A subsystem of '""Database"

For a data storage of system databases (DB) are everywhere used. With a view of systematization of
access and management of databases in OpenSCADA system the subsystem "Database" is provided. For
support of various DB/DBMS the subsystem is modular.

In a role of the modular objects, containing in a subsystem, type DB/DBMS acts, i.e. the module of a
subsystem "Database", which practically contains realization of access to the certain type of a DB. For
example modules: DBF, MySQL, SQLite.

The object of type DB/DBMS, in its turn, contains the list of objects of separated DB of the given type.
And the object of a DB contains the list of objects of tables which are contained by data in the tabulated
form.

Practically all the data of OpenSCADA system are stored in this or that DB. The toolkit of system allows
to transfer easily the data from one type of a DB on another and as consequence provide an optimum
selection of DB type under the concrete area of OpenSCADA system. Transfer of the information from one
DB to another can be made by two ways. The first is a change of the address of a working DB and save of
all system on it, the second is a direct copying the information between DB. Except for copying the
function of direct editing of contents of tables of a DB is supported also.

For the organization of the centralized access of the allocated system to a uniform DB two ways are
provided. The first is using of network DBMS, for example MySQL. The second way is using of transport
type of a DB on local systems for access to one central DB (It is planned.). Function of a transport DB is
transfer of queries to a DB on remote OpenSCADA system.

Data can be stored also in a configuration file of system. The mechanism of full reflection of structure of
a DB on structure of a configuration file is realized. I.e. the standard configuration can be placed in a
configuration file. An essence of such mechanism that by default for example at start without a DB, it is
possible to describe the data of system in a configuration file. In the further, these data can be redefined in a
DB. Besides for cases of impossibility of start of any DB generally, it is possible to store all data in a
configuration file.

For access to databases the mechanism of registration of a DB is used. Registered DB in system are
accessible to all subsystems of OpenSCADA system and can be used in their work. Owing to this
mechanism it is possible to provide an allocation of data storage. For example, various libraries can be
stored and extend independently, and connection of library will consist in simple registration of the
necessary DB.

In the further, realization of duplication of a DB by linkage of the registered DB is planned. This
mechanism will allow to increase considerably reliability of OpenSCADA system as a whole by reservation
of the mechanism of a data storage. (It is planned.)

1.5. Archives. A subsystem " Archives''.

Any SCADA system gives an opportunity of archiving the acquisition data, i.e. formation of history of
change (dynamics) of processes. Archives, conditionally, it is possible to divide into two types: archives of
messages and archives of values.

Feature of archives of messages is that the subject of archiving are, so-called, events. A characteristic
attribute of event is time of occurrence of this event. Archives of messages, usually, are used for archiving
messages in system, i.e. conducting logs and reports. Depending on a source, messages can be classified by
various criteria. For example, it can be reports of emergencies, reports of actions of operators, reports of
failures of connection, etc.

Feature of archives of values is their periodicity defined by the time interval between two adjacent
values. Archives of values are applied for archiving of history of continuous processes. As far as process is
continuous and it's archiving is possible only by introduction of conception of quantization of interrogation
of values as differently we receive archives of the infinite sizes, in view of a continuity of the nature of
process. Besides, practically, we can receive values with the period limited by sources of data. For example,
qualitative enough sources of data, in the industry, data with frequency more 1kHz seldom allow to obtain.

OpenSCADA program description 22

And it without taking into account sensors having even less qualitative characteristics.

For the decision of tasks of archiving data flows in OpenSCADA system the subsystem "Archives" is
provided. The subsystem "Archives" allows to conduct both: archives of messages and archives of values.
The subsystem "Archives" is modular. The modular object containing in a subsystem "Archives" the type of
the archiver acts. The type of the archiver defines the way of a data storage, i.e. storechouse (file system,
DBMS, a network, etc.). Each module of a subsystem "Archives" can realize both: archiving of messages,
and archiving of values. The subsystem "Archives" can contain set of the archives served by various
modules of a subsystem.

The message in OpenSCADA system is characterized: by date, by level of importance, by category and
the text of the message. Date of the message specifies for the period of creation of the message. The level of
importance specifies a degree of importance of the message. The category determines the address or the
conditional identifier of a source of the message. Usually, the category contains a full way to a source of the
message in system. The text of the message, actually, also carries meaning content of the message.

During archiving messages are passed through the filter. The filter works on a level of importance and a
category of the message. The level of the message in the filter specifies that it is necessary to pass messages
with specified or higher level of importance. To filtering on a category templates are used, which define
what messages are applied to pass. Each archiver contains own options of the filter. Consequently it is
possible to create easily various specialized archivers for archive of messages. For example archivers of
messages it is possible to dedicate on:

- logs for storage of the debugging information and other working information of a server;
- various reports (the report of actions of clients, the report of infringements and exceptions, the
report of events...).

The archive of values in system OpenSCADA acts as an independent component which includes the
buffer processable by archivers. Key parameter of archive of value is the source of data. In a role of a
source of data attributes of parameters of OpenSCADA system and also other external sources of data (a
passive mode) can act. Other sources of data can be: network archivers from remote OpenSCADA systems,
the environment of programming of OpenSCADA system, etc.

Key component of archiving of values of continuous processes is the buffer of values. The buffer of
values is intended for intermediate storage of a file of the values received with certain periodicity (quantum
of time). The buffer of values is used as for direct storage of big arrays of values in archives of values,
before direct "retire" on physical carriers, and for manipulations with the staff of values, i.e. in functions of
rame-accurate query of values and their placement in buffers of archives.

For the organization of the dedicated archivers, in the allocated systems it is possible to use transport
type of the archiver (It is planned.). Function of transport type of the archiver is reflection of the remote
central archiver on local system. As consequence, archivers of transport type carry out data transmission
between local system and the archiver of the remote system, hiding from subsystems of local system the
real nature of the archiver.

1.6. Communications. Subsystems "Transports' and "Transport protocols".

As far as the OpenSCADA system is pawned as is high-scaled system that support of communications
should be flexible enough. For satisfaction of a high degree of flexibility, communications in OpenSCADA
system are realized in subsystems "Transports" and "Transport protocols" which are modular.

The subsystem "Transports" is intended for an exchange of the not structured data between
OpenSCADA system and external systems. In a role of external systems can act even remote OpenSCADA
systems. Not structured data are understood as a file of symbols of the certain length. The modular object
containing in a subsystem "Transports", the type of transport acts. The type of transport defines the
mechanism of transfer of not structured data. For example it can be:

- sockets (TCP/UDP/UNIX);
+ channels;
shared memory.

The subsystem "Transports" includes support of input and output transports. Input transport is intended

OpenSCADA program description 23

for service of external queries and sending of answers. Output transport, on the contrary, is intended for
sending messages and expectation of the answer. Consequently, input transport contains a configuration of
the given station as server, and output transport contains a configuration of the remote server. The module
of a subsystem "Transports" realizes support both: input and output transports.

The subsystem "Transport protocols" is intended for structurization of data received from a subsystem
"Transports". As a matter of fact, the subsystem "Transport protocols" is continuation of a subsystem
"Transports" and carries out functions of check of structure and integrity of the received data. So, for the
indication of the protocol together with which transport should work, the special configuration field is
provided. The modular object containing in a subsystem "Protocols" is the protocol. For example, transport
protocols can be:

HTTP (Hyper Text Transfer Protocol);
+ SelfSystem (OpenSCADA the system protocol).

The full chain of connection can be written down as follows:
- the message is transferred in transport;
- transport transfers the message to the protocol, connected with it, by creation of new object of the
protocol;
- the protocol checks integrity of data;
if all data have come, transport must be informed about the termination of expectation of data and
to transfer it the answer, differently to inform, that it is necessary to expect still;
- transport, having received {confirmation, sends the answer and delete object of the protocol;
- if confirmations are not present, the transport continues expectation of data, and in the case of
their receipt transfers them to the saved object of the protocol.

Protocols for output transports are supported also. The output protocol incurs function of dialogue with
transport and realization of features of the protocol. The internal side of access to the protocol is realized by
data-flow way with own structure for each protocol module. Such mechanism allows to carry out
transparent access to external system, by means of transport, simply specifying a name of the protocol by
means of which to serve transfer.

Owing to standard API-access to transports of OpenSCADA system it is possible to change easily a way
of data exchange not touching exchanging systems. For example, in the case of a local exchange it is
possible to use faster transport on the basis of shared memory, and in the case of an exchange through the
Internet and a local network to use TCP or UDP sockets.

1.7. Interfaces of the user. A subsystem "Interfaces of the user".

SCADA-systems as a class, assume presence of user interfaces. In OpenSCADA, for granting the user
interfaces, the subsystem "The user interfaces" is provided. The user interface of OpenSCADA system is
understood not only as the environment of visualization from which the end user should work, but also as
everything, that concerns the user, for example:

environments of visualization;
- configurators;
- alarming and signalling devices.

The subsystem "The user interfaces" is modular. As modular object of a subsystem the concrete interface
of the user actually acts. Modilarity of subsystem allows to create various interfaces of users on various
GUI/TUI libraries and to use optimal of decisions in particularly taken case, for example, for environments
of performance of programmed logic controllers it is possible to use configurators and visualizers on the
basis of Web-technologies (WebCfg, WebUI), and in case of stationary workstations to use the same
configurators and visualizers, but on the basis of libraries QT, GTK.

OpenSCADA program description 24

1.8. Security of system. A subsystem "Security".

The OpenSCADA system is the branched out system which consists of ten subsystems and can include
set of modules. Consequently, granting of unlimited access by all to these resources is at least unsafe.
Therefore, for differentiation of access in OpenSCADA system, the subsystem of "Security" is provided.
The basic functions of a subsystem "Security" are:

storage of registration records of users and groups of users;
« authentication of users;
check of access rights of the user to this or that resource.

1.9. Management of libraries of modules and modules. A subsystem '""Management of
modules"'.

The OpenSCADA system is constructed by a modular principle that means presence of set of modules
with which it is necessary to operate. For performance of function of management by modules of
OpenSCADA system the subsystem "Management of modules" is provided. All modules, for the present
moment are delivered in system by means of shared libraries (containers). Each container can contain set of
modules of various type.

The subsystem "Management of modules" realizes the control over the status of containers and allows to
carry out hot addition, removal and updating of containers and modules containing in them.

1.10. Unforeseen opportunities. A subsystem '"Special''.

Certainly, to provide all probable functions it is impossible, therefore in OpenSCADA system the
subsystem "Special" is provided. The subsystem "Special" is modular and is intended for addition in
OpenSCADA system unforeseen functions by modular expansion. For example, by means of a subsystem
"Special" can be realized:

- tests of OpenSCADA system and its modules;
libraries of functions of the user programming.

1.11. The user functions. Objective model and the environment of programming of
system.

Any modern SCADA system should contain the mechanisms giving an opportunity to program at the
user level, i.e. to contain the environment of programming. The OpenSCADA system contains such
environment. By means of the environment of programming of OpenSCADA system it is possible to
realize:

- Algorithms of management of technological processes.

- Large dynamic models of real time of technological, chemical, physical and other processes.

- Adaptive mechanisms of management on models.

« The user procedures of management by internal functions of system, its subsystems and modules.
Flexible formations of structures of parameters at a level of the user, with the purpose of creation

of parameters of non-standard structure and its filling on algorithm of the user.

- Auxiliary calculations.

The environment of programming of OpenSCADA system represents a complex of assets organizing the
computing environment of the user. Into structure of a complex of assets are included:
objective model of OpenSCADA system;
« modules of libraries of functions;
computing controllers of a subsystem "Data acquisition" and other calculators.

Modules of libraries of functions give set of functions of the certain orientation expanding objective
model of system. Libraries can be realized both: by the set of functions of the fixed type, and functions
supposing free updating and addition.

Libraries of functions of the fixed type can be given by standard modules of system, organically

OpenSCADA program description 25

supplementing objective model. Functions of such libraries will represent the interface of access to assets of
the module at a level of the user. For example, "The environment of visual data presentation" can give
functions for delivery of various messages. Using these functions the user can realize interactive algorithms

of communication with system.

Libraries of functions of free type give the environment of a writing of the user functions on one of
programming languages. Within the limits of the module of libraries of functions mechanisms of creation of
libraries of functions can be given. So, it is possible to create libraries of devices of technological processes,
and in a consequence to use them by linkage. Various modules of libraries of functions can give realizations
of various programming languages.

On the basis of the functions given by objective model, computing controllers are under construction.
Computing controllers carry out linkage of functions with parameters of system and the mechanism of
calculation.

OpenSCADA program description 26

2. SCADA systems and their structure.

Global network
Intemet

r D
= Manager j = Technologist
workplace P workplace
.-.c_ *--.Eg_l-.g;,. c = .-_gr._uﬁ_-:.
~ Firawall LS o
p - L =
= Engineer = Technologist-
2 | workplace Sl | Prog rfpr;:mer
oo FETTYT d | workplace
. E—nferpnse E /
Enterprise network
@ ~
i H Y senver
. |
Cperator <
tati
il Server of
| ' | ’* protocols
- =
e h-...\i Archiving
Operator samver
station
Acquisition Acquisition
and control and control
server server
| Field bus
Unit of |
technological
process
. . ll‘l .= y
. /

Fig. 2. SCADA-system.

OpenSCADA program description 27

SCADA (Supervisory Control And Data Acquisition), in a general view, have the allocated architecture
like represented on fig. 2. Elements of SCADA systems, in sense of the software, carry out following
functions:

The acquisition server: represents a task or group of tasks engaged in data acquisition from sources of
data, or act in a role as a source of data. Into tasks of a server enters:
reception and-or formation of data;
- data processing;
- service of queries about access to data;
- service of queries about updating of data.

The server of archiving: represents a task or group of tasks engaged in archiving of data. Into tasks of
the server enters:
- archiving of data of SCADA-system;
- service of queries about access to contemporary records;
- import/export of archives.

The journaling server: represents a task or group of tasks engaged in archiving of messages. Into tasks
of the server enters:
- archiving of messages of units of SCADA-system,;
service of queries about access to archival messages;
- import/export of archives.

The alarm server: represents a task or group of tasks carrying out functions of the server of recording
concerning a narrow category of messages of the signal system.

The operator working place: represents constantly functioning GUI (Grafical User Interface)
application executed in an one-monitor, multimonitor or panel mode and carrying out functions:
- granting of the user interface for the control over a condition of technological process;
- granting of an opportunity of formation of operating influences;
- granting of an opportunity of studying and the analysis of history of technological process;
- granting of toolkit for generation of the reporting documentation.

The engineer working place: represents GUI application used for configuration of SCADA system.
Into tasks of the application enters:
granting of toolkit for manipulation with system functions of system;
- granting of toolkit of a workplace of the operator;
- granting of toolkit for manipulation with architecture of SCADA system as a whole (distribution
of functions between stations, creation, removal of stations...).

The chief working place: represents GUI application, as a rule, executed in an one-monitor mode and
carrying out functions:
- granting of the user interface for the control over a condition of technological process;
- granting of toolkit for studying and the analysis of history of technological process as is direct
from an active server, and on the basis of separate archives;
- granting of toolkit for generation of the reporting documentation.

The technologist working place: completely includes functions of a workplace of the operator plus
model of technological process (without direct communication with technological process).

The work planner working place: completely includes functions of a workplace of the technologist
plus toolkit for creation of models of technological processes.

OpenSCADA program description 28

3. Ways of configuration and using of OpenSCADA system.

3.1. Simple server connection.

In the elementary case the OpenSCADA system can be configured in a server mode (fig. 3.1) for
acquisition and archiving of data. The given configuration allows to carry out following functions:
interrogation of controllers;
archiving of values of parameters;
service of client queries about reception of various data of a server;
granting of the configuration WEB-interface;
the remote configuration from OpenSCADA system by means of the QT-interface or other local
interface.
secondary regulation (regulation in computing controllers);
modeling, adjusting and supplementing calculations in computing controllers.

[OpenSCADA: Server of acquisition and
archiving WebCig

(HTTP ISeIfS}fstem]
[GIFIBmcw::achsr::aueIFSAmhl Sockets

@ [08 |[Amm| EPC

Siemens
S7-400

Fig. 3.1. Simple server connection.

OpenSCADA program description 29

3.2. The duplicated server connection.

For increasing of reliability and productivity the OpenSCADA system supposes plural reservation (fig.
3.2) at which controllers of one copy are reflected in other. At use of a similar configuration distribution of
loading of interrogation/calculation at various stations is possible. The given configuration allows to carry
out functions:

« interrogation of controllers;

- archiving of values of parameters;

 service of client queries about reception of various data of a server;

- reservation of parameters;

« reservation of archives;

- distribution of loading of interrogation on servers;

- granting of the configuration WEB-interface;

-+ secondary regulation (regulation in computing controllers);

- modeling, adjusting and supplementing calculations in computing controllers with an opportunity
of distribution of loading on servers.

OpenSCADA: Server of acquisition and OpenSCADA: Server of acquisition and

archiving [We.bG fgITranspo n‘er] archiving [:WebegITranspo n‘er]

Logicl ev [HTTP lSeIfSystemJ [Logiclev | (HTTP [SelfSystem)

[c:Flsxocw:;axc[sr::aueIFSAmhI Sochets [GIFI.onc;ﬂaxclsaue[Fs,qmn[Sochets]
[0B |Lqmrm| Epc [o8 |[Amrm| Epc

Siemens
S7-400

Puc. 3.2. The duplicated server connection.

3.3. The duplicated server connection on one server.

Special case of the duplicated connection is the duplicated connection within the limits of one server
(fig. 3.3), that is start of several stations by one machine with a crossing of parameters. The purpose of the
given configuration is increase of reliability and fault tolerance of system by reservation of software.

OpenSCADA: Server of acquisition and OpenSCADA: Server of acquisition and

archiving [WebCfgITranspoﬁeﬂ archiving [WebCfgITranspo.rter]
LogicLev [HTTP ISeIfS}fstemJ [LogiclLev J [HTTP ISeIfS}fstemJ

(CIF|BlockC alc| SQLie |[FSArch| Sochets I ch[oncnc aIcISQL.%eIFSA rch| Soclets]
| | | |

¥ ¥
08 [Archie é o8 |[Amm| PC

Siemens
S7-400
Fig.

3.3. The duplicated server connection on one server.

OpenSCADA program description 30

4.4. Client access by means of the Web-interface. A place of the manager.

For visualization of data containing on a server, the good decision is to use the user WEB-interface (fig.
3.4). The given decision allows to use a standard WEB-browser at the client side and therefore is the most
flexible as it is not adhered to one platform, i.e. is multiplatform. However this decision has essential
imperfections: low productivity and reliability. In this connection it is recommended to use the given
method for visualization of noncritical data or data having a reserve highly reliable way of visualization.
For example, the good decision will be using of this method at the heads of plants where always exists
place(attendant position) with reliable way of visualization. The given configuration allows to carry out
following functions:

+ interrogation of a server for data acquisition of visualization and a configuration;

- visualization of data in a kind accessible to understanding;
- formation of protocols, reports;

- manipulation with parameters supposing change.

.

OpenSCADA: Server of acquisition [VCAEngme] i

and archiving Eﬂ/ebCfgiWebstn]
msmch:am]:saueIFSAmhl Sockets WEh browser

[na”mrm| éPC EPC

Siemens
S7-400

Fig. 3.4. Client access by means of the Web-interface. A place of the manager.

3.5. The automated workplace (place of the manager/operator).

For visualization of critical data, and also in case of if high quality and productivity is required, it is
possible to use visualization on the basis of OpenSCADA system configured with the GUI module (fig.
3.5). The given configuration allows to carry out following functions:

- interrogation of a server for updating current values;

- visualization of the interrogated data in a kind accessible to understanding;
+ formation of protocols and reports;

- manipulation with parameters supposing changes.

i u

OpenSCADA: Server of acquisition and
archiving

LogicLev SelfSystem ="
CIF IBIacHSaIcISQL.&eIFSAmhI Sockets ||| || OpenSCADA: Vision
[Transpo ﬁea’VCﬂ. Engine

AWP [
SelfSystem
[DB |[Amrm EPC (BlocikCalc] SQLte] Sockets

v
‘ Loe] ﬁ e
S7-400 ‘ | ‘

Fig. 3.5. The automated workplace (place of the manager/operator).

T S

OpenSCADA program description 31

3.6. Automated workplace with a server of acquisition and archiving on the single
machine (a place of the operator, model...).

The full-function client-server configuration on the single machine (fig. 3.6) can be used for increasing
of reliability of system as a whole by start of the client and a server in different processes. The given
configuration allows, without consequences for a server, to stop the client and to do with it various
preventive works. It is recommended for use at stations of the operator by installation of two machines
combining in itself the station of the operator and redundant server. The given configuration allows to carry
out following functions:

- interrogation of controllers;

+ service of client queries;

« visualization;

+ delivery of operating influences;

- generation of protocols and reports;

- secondary regulation;

- modeling, adjusting and additional calculations in computing controllers;

- acquisition and visualization of the information on a personal computer, a server....

OpenSCADA: Server of acquisition and
archiving

LogicLev SelfSystem

[CIF [BlockCalc[FSArch[MySQL] Sockets ||| OpenSCADA: [Vvision)
' ' ' AWP [Transpone{VGAEngme]

[SelfSystem J

[BI{:GHDEIGIMySDLl Sochets J

Slemens
ST-400

Fig. 3.6. Automated workplace with a server of acquisition and archiving on the single machine (a place of
the operator, model...).

OpenSCADA program description 32

3.7. The elementary mixed connection (model, demonstration, configurator...).

The mixed connection combines functions of a server and the client (fig. 3.7). It can be used for test,
demonstration functions, and also for granting models of technological processes as a unit. In this mode
following functions can be carried out:

- interrogation of controllers;

« service of client inquiries;

- visualization;

+ delivery of operating influences;

- generation of protocols and reports;

- secondary regulation;

- modeling, adjusting and supplementing calculations in computing controllers;

- acquisition and visualization of the current information on a personal computer, a server,
model...;

- a configuration of databases, connections, etc.

r' b
i"l

OpenSCADA: Tech-process model
BlochCalc Vision
[JavaL keCalc] SQL#e] FSArch[Socketd QT Cig[VCAEngine

¥ ¥

08 [Arne PC

Fig. 3.7. The elementary mixed connection (model, demonstration, configurator...).

OpenSCADA program description 33

3.8. The steady, allocated configuration.

The given configuration is one of variants of steady/reliable connection (fig. 3.8). Stability is reached by
distribution of functions on:
- to servers of interrogation;
- to the central server of archiving and service of client queries;
+ to clients: automated workplaces and WEB-clients.

-

OpenSCADA: AWP Vision

[Transpo .rte-IVCA Ei ngme]
[SefSystem]
[MySQL 1 Sochkets J Pc

PC

e Network -

penSCADA: Acquisition 1 OpenSCADA: Acquisition 2 OpenSCADA: Central server of archiving

and client’s queries service
SelfSystem SelfSystem

(CF[MySaL] sGA)|[PamondBoardMySQL] SGA)| |(Transporter[VCAEngine[WebCfg)
i k T (_ SeffSysem [HTTP)
|

SGA Socft‘efs IFs,a:.mn]w}rlsm]
PC

- »]
Siemens Diamond
ST-400 ATH400-128

_— - —'— -
s
Fig. 3.8. The steady, allocated configuration.

The server of interrogation is configured on the basis of OpenSCADA system and represents the task
(group of tasks) engaged with interrogation of the controller (group of controllers of the same type). The
received values are accessible to the central server through any transport which support is added by
connection of the corresponding module of transport. For decrease in frequency of interrogation and size of
the network traffic the server of interrogation can be equipped with small archive of values. The
configuration of a server of interrogation is stored in one of accessible DB.

The central server of archiving and service of client queries carries out function of the centralized
acquisition and processing of parameters of servers of interrogation and their values. Access to servers of
interrogation is carried out by means of one of accessible in OpenSCADA transports+protocols (for
example it is SGA). For granting the uniform interface of access to parameters and controllers the module
Transporter which reflects data of servers of interrogation on structure of local parameters is used.

For performance of internal calculations and the additional analysis of parameters computing controllers
are used.

For versatile and deep archiving various modules of archives are used.

For access of clients to a server are used accessible for OpenSCADA network transports, for example it
1s Sockets, and transport protocols, for an example it is the protocol OpenSCADA "SelfSystem".

The configuration of the central server is stored in one of accessible DB (for example it is network
DBMS MySQL).

For granting the user WEB-interface the module WebCfg by means of the transport protocol "HTTP" is
used.

OpenSCADA program description 34

Various clients, among them automated workplaces and WEB-clients, are carried out on the separated
machines in necessary quantity. The automated workplace is realized on the basis of OpenSCADA system.
Its functions include interrogation of values of parameters from the central server and their visualization on
the GUI interface(s). For reception of parameters in an automated workplace the module of reflection of the
remote parameters Transporter, also, is used. For granting access to archives the module of archive of
network type can be used. The configuration of an automated workplace can be stored in one of accessible
DB (for example it is network DBMS MySQL, located on the machine of the central archiving server).

OpenSCADA program description 35

4. Configuration and adjustment of the system.

As it can be seen in the section above, OpenSCADA allows configuration for execution in various roles.
Support of this possibility is provided by the developed mechanisms for configuration and storage of
configuration data. This section contains a description of these mechanisms, designed to demonstrate the
flexibility and diversity, thereby allowing to use OpenSCADA to 100%.

In describing the configuration mechanisms and methods of its storage in this section it will be focused
the description of system-wide mechanisms. Features of the configuration of modules of subsystems of
OpenSCADA are provided in their own module's documentation.

In OpenSCADA it is used the formalized approach to describing the configuration interfaces based on
XML. In fact, features of the component's configuration are provided by the component itself, thereby
running through the whole system, as the nervous system of the organism. In terms of OpenSCADA it is
called the interface of control of OpenSCADA (Control interface). On the basis of the control interface the
graphical interfaces of the user configuration are generated by means of modules of OpenSCADA. This
approach has the following important advantages:

Scalability. You can connect only the required configuration modules or use only the remote
mechanisms.

Excluding the need to update the configurators with the addition of new modules/functions, as
well as the exclusion of "swelling" of the configurator, providing the support for all of history of
now unnecessary and obsolete modules/functions.

Simplicity of the creation of the graphical interfaces of configuration on the different basis owing
to the clear formality.

The possibility of dynamic configuration is available, ie configuration can be performed directly
while the running of the system both locally and remotely, directly controlling the result.

The simple and special extensibility of the configuration interface by adding the configuration
fields on the control interface's description language only in the required components.

In OpenSCADA the three configuration modules on the different basis of visualization are provided.
Lets observe them and their configuration options:

Configuration module on the GUI library QT (http:/qt.nokia.com/products) - ULQTCfg.
Provides an advanced configuration interface, allowing to operate as a local station and the remote
ones in the local and global networks, including secure connection.

Configuration module based on the dynamic WEB-technologies (DHTML) - ULWebCfgD.
Provides an advanced configuration interface, allowing to operate as a local server's station, and the
remote stations in the local and global networks, including work on the secure connection. Client
connection is provided through the usual Web-browser.

Configuration module based on the static WEB-technologies (XHTML) - UL.WebCfg. Provides
an adequate configuration interface that allows to manage the local server's station via the usual
Web-browser.

Configuration values, changed in the configurators, as well as most of the data are stored in databases
(DB). Given the modularity of subsystems "DB", there can be different database. Moreover, there is the
possibility of storing different OpenSCADA parts in different databases of the same type and in the
database of different types as well.

In addition to the database configuration information may be contained in the OpenSCADA
configuration file, and passed through the command line parameter's when you call OpenSCADA.
However, the saving of configuration changes in the configurators is only available in the database.
Standard name of the OpenSCADA configuration file is /etc/oscada.xml. The format of the configuration
file and command line parameters we'll examine in the separate section.

Further examining of the OpenSCADA configuration will be based on the interface of the configurator
UL.QTCfg, but the principles of work will be fully consistent with the rest of the configurators owing to the
generality in the control interface of OpenSCADA.

We will start examining with the configuration of system parameters of OpenSCADA, which is located
in the three tabs at the root page of the station:

OpenSCADA program description 36

http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=8v0
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=3k3
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=sc0
http://qt.nokia.com/products

- Tab "Station" contains basic information and configuration field of the station, Fig.4a. Here are
the provided fields and comments on them:
 ID - contains information about the station's identifier. It is specified by the command line
parameter -Station. When loading it is sought the section in the configuration file appropriate
to the station identifier, and if not detected, it uses the first available one.

Station - indicates the localized station's name.

« Program - contains information on the program name. Usually it is OpenSCADA or name
of solution based on OpenSCADA.

« Version - contains the information on the current version of the programme.

« Host name - contains the information on the name of the machine that runs the station.

System user - contains the information about the user on whose behalf the program is
executed in the system (OS).

« Operation system - contains the information about the name and version of operation
system, operation system kernel on which the program is executed.

- Frequency (MHZ) - contains the information about the frequency of the CPU, which runs
the program. The value of frequency is checked every 10 seconds and allows you to monitor
its change, for example, by the power management mechanisms.

Realtime clock resolution (msec) - contains information about the possibility or resolution
of real-time clock of the operation system. It allows you to orient with the minimum interval
of time of periodic tasks, for example, for task of data acquisition.

« Internal charset - contains information about the charset in which text messages are stored
within the program.

Config file - contains information about the configuration file used by the program. Set by
the command-line parameter -Config.

« Work directory - indicates the working directory of the station. It is used in relative
addressing of the objects in the file system, for example, database files. It allows the user to
save the modified system data to another database. The value of this field is not stored in the
database, but can be changed only in the "WorkDB" section of the configuration file.

- Icons directory - indicates the directory containing the program icons. If the configuration
navigation tree have no icons, then you have incorrectly entered the value of this field.

« Modules directory - indicates the directory of modules for OpenSCADA. If the value of
this field is incorrect, then when at start you will not see any graphical interface, but the only
information in the console on the correct running of the OpenSCADA kernel.

- Work DB - indicates the working database (DB), namely, the database used to store basic
data of the program. Changing of this field notes all objects as modified that allows you to
save or to load station's data from the specified main database.

« Save system at exit - points to the need to save the changed data at finishing.

« Save system period - indicates the frequency in seconds with which to save the changed
station's data.

Language - indicates the language of program's messages. Changing of this field is
acceptable, but leads to a change of messages' language only for the interface and dynamic
messages!
 Text variable's base language - is used to activate the support of multilingual text
variables by specifying a non-empty basic language. The value of the basic language is
selected from the list of bi-character language code, usually only the current and the base
language is in the list. Further for the text variables in the non basic language in the tables of
the database it will be created the separate columns. Under the text variables the all text
fields of configurator, which can be translated into another language are meant. Numbers and
other symbolic values are not in their number and are not translated.

« Messages: - section of the parameters' group that are processing by the work and
messages of the stations:
« Least level: - indicates the level of messages beginning from which they are to be
processed. Messages below this level will be ignored. It is necessary, for example, to
exclude from processing the debug messages of level 0.
- To syslog - indicates the need of sending the message to the system logger, the
mechanism of operation system for work with system messages and software. When

OpenSCADA program description 37

this option is enabled the possibility appears to manage and control the OpenSCADA
messages by the mechanisms of OS.

« To stdout - indicates the using as a standard mechanism to display the message the
output to the console. Disabling of this feature will eliminate the entire output in the
console, unless you specify the following parameter.

« To stderr - indicated the using as a standard mechanism to display the message the
error output, it is also usually sent to the console.

« To archive - indicated the need for output of the messages in the messages' archive
of OpenSCADA. This option is usually enabled and its disabling leads to the actual
disabling of the archiving at the station.

« Tab "Subsystems" tab contains the list of subsystems (Fig. 4b) and allows you to jump directly to
them using the context menu.

« Tab "Tasks" contains the table with opened tasks by OpenSCADA components (Fig.4c). From
table you can get several information about the tasks, and also set CPUs for tasks of multi-
processors systems.

- Tab "Help" tab contains the brief help for that page, Fig. 4d. In this case, it is the available
command line parameters and fields of configuration file for this page.

To modify the fields of this page it may be required the super user's rights. Get these rights you can by
means of including your user into the superuser's group "root", or by entering the station from the superuser

"root".

We must mention another one important point: the fields of the identifiers of all OpenSCADA objects
are unacceptable for direct editing, because they are keys for storage of objects' data in the database.
However, to change the object's identifier you can by the command of cutting and the further pasting of the
object (Cut-> Paste) in the configurator.

s+ O OpenSCADA QTCfg: Deme statuion
File Edit VWiew Help QTStarer
|Name
5 @ Demo statuion e OpenSCADA station: "Demo statuion™
.ﬁ Data Bases
l'h*, Security Station l Subsystems | Tasks | Help]
/‘ Transports B
@ Transport protece I DemoStation
[El- -+ Data acquisition
E|J Mou'r.r.le:q Station: |Demo station
Data sources Frogram: ppenscapa
MadBus e
DCON client Esion: 0.6.4.1
SNMP client MoEr o ’
- reman.diya.or
ICP DAS hare ya.ord
Black based ¢ System user: roman
B systemr)
Cperation em: || _ -std-dei-
OPC UA P syst Linux-2.6.30-std-def-alt15
Seound card Frequency (MHZ): sn40 58
Logie level . .
Java-like base Realtime clock reselution (msec): q=ng
Siemens DAC Intemnal shaset: | Tr.g
Diamaond DA
Template library. Config file: fomefromaniromaniwor kiQ Scadabietc/oscada_demo xml
| Airchives .
G Specials Wark directory: [Imntl'home.rroman.rwork.l'OScadaDIshareIOpenScada]
|-? Userinterfaces leans directory: [.Iicons]
€ Modulesshedule . 8
Modules directory: [..I..Illb.fopenscada]
Loop
Loop SSL Wark DB: | MySQL.GenDBE - E
PLC
= Save system at exit: D
Language: [en_US.UTF-B]
[: I [Ilz] Text variable's base language: [en |v]
[] — Messages 4
Elrornan

Fig. 4a. "Station" tab of the main page of the configuration of the station.

OpenSCADA program description 38

OpenSCADA QTCEg: Demao statuion

File Edit Wiew Help QTStarter
880C0CO0O=+=x Lal 260 @ -~
Name ;
= @) Dema statuion e OpenSCADA station: "Demo statuion™
ﬁ Data Bases
% Security Station Subsystems Tasks Help
g Transpors
@i Transport protocols Subsystems:
=l J Data acquisition - Data Bases
=l Module: e Security
Data sources gate Transports
ModBus Transport protocols
DCOM elient Data acquisition
SNMP client Archives
ICP DAS hardwar Specials
Block based calc Userinterfaces
R System DA Modules sheduler
OPC UA
Sound card
Logic level
Java-like based ¢
Siemens DAQ
Diamond DA boal™
Template library: -
1 1 |>
R —

Fig 4b. "Subsystems" tab of the main page of the configuration of the station.

«+ 2 OpenSCADA QTCfg: Demo statuion
File Edit WView Help QTStarter

A3 000X L2600 0O

MName
- E\=me S e OpenSCADA station: "Demo statuion”

gy Data Bases
il security Station | Subsystems | Tasks | Help |
i Transports
wu Transport protoc Tasks:

.JJ gract;:ivaecsquisition Path | Thread | TID | Palicy |Prior.|CPU5et|‘

'@ Specials 1 [sub_Archive mod_FSArch.val_1h 12022380144 |10469 |Standard O
M User interfaces |2 | sub_Archive.mod_FSArch.val_im 2013091536 10470 Standard O
L R Modules shedule — .

E|8 Loap 3_ sub_Archive mod_FSArch.val_1s 2905602928 10471 Standard O
- @& Loop S5L 4 |sub_Archive.vals 2888825712 10473 Standard O
5_ sub_DAQ.mod_BlockCalc.cntr_Anas.. 2897214320 10477 Standard |0
6_ sub_DAQ.mod_BlockCalc.cntr_Anas.. 2863859888 10478 Standard |0
?_ sub_DAQ.mod_BlockCalc.cntr_KM101 2855271280 10479 Standard |0
8_ sub_DAQ.mod_BlockCalc.cntr_KM102 2846882672 10480 Standard O
9_sub_DAQ.mod_BIockCaIc.cntr_I(M10... 2838494064 |10481 |Standard |0
E sub_DAQ.mod_BlockCalc.cntr_KM201 2830105456 10482 Standard O

_1 sub_DAQ.mod_BlockCalc.cntr_KM301 2821716848 10483 Standard O =

[«]»] E sub_DAQ.mod_BlockCalc.cntr_KM302 2813328240 10484 Standard 0O F

[=IF]froman 4

Fig 4c. "Tasks" tab of the main page of the configuration of the station.

OpenSCADA program description 39

I,.. 0 OpenSCADA QTCfg: Demeo statuion

File Edit Wiew Help QTStarer

88000 == gL 29

|Nime
5 @ Demo statuion e OpenSCADA station: "Demo statuion”
'.E Data Bases
I':EIB Security [Station | Subsystems | Tashs J Help l
'é} Transpors
@ Transpor protocols Options help:
= J Data acquisition [3
£l Module: mrmmmmnt OpenSCADAVD.G. 4.1 (Linux-2.6.30-std-def-alt15), ===
Data sources gate
MaodBus
DCON client
SNMF client The general system options
ICP DAS hardware
Block based salew -h, --help Info message about systern options.
R System DA —Config==path® Config file path.
OFC UA --Station=<id> Station identifier.
Sound card -demon Startinto demon mode.
Lagic level -MessLev=<level> Process messages <level> (0-7).
Java-like based ez --log==direct> Direct messages to:
Siemens DAQ cdirect> & 1 - syslogd;
Diamond DA boan <direct> & 2 - stdout;
[E Template library: <direct> & 4 - stderr;
| Archives =direct> & & - archive.
[@ Specials ||| | e The config file station </DemoStation’> parameters -----------
Dl User interfaces StName <nm= Station name.
6 Modules shedular WDﬂ{D.E <Type.Namef’ Woar DB (type and name).
3 Loop 'I.I'I.I'n:-ﬂ-:f:llr <path>'|.|'l.l'c-r|-:d|.rectow.
. leaDir <path® Icons directory.
Loop S5L ModDir <path= Modules directory. |
FLC MessLev <level> Messages <level> (0-7).
LogTarget =direction= Direct messages to:
=direct® & 1 - syslogd;
=direct® & 2 - stdout;
cdirect> & 4 - stderm; -
: I [III] =direct> &8 - archive. -
[]

Jlroman]

Fig. 4d. "Help" of the main page of the configuration of the station.

While examining the configuration pages of modular subsystems there will be described the general for
all modules properties. However, it should be noted that each module can provide both: the additional tabs,
and separate fields for the configuration of their own functioning for the pages, objects of which are
inherited by modules. Information on the features and additions of modules can be found in separate
documentation for each of them.

OpenSCADA program description 40

4.1. "DB" subsystem

The subsystem is the modular one and contains a hierarchy of objects depicted in Figure 4.1a. To
configure the subsystem the root page of the subsystem "DB" containing the tabs "Modules" and "Help" is
provided. Tab "Modules" (Fig. 4.1b) contains the list of modules in subsystem "DB", available at the
station. Tab "Help" tab contains a brief help for this page.

To modify the page's fields of this subsystem it may be required the super user's rights or the inclusion of
your user to the "DB" group.

4 Demo N
station
System layer
Ty

Subsystem layer

A D

Main DB Functions :

library o

S¥S| |DB| |UserFuncLibs | |DAQ BlockCale :

: reeeeveeseenees. B

L Modukes layer |
S >/

Fig. 4.1a. The hierarchical structure of "DB" subsystem.

% OpenSCADA QTCfg: Demo statuion
File Edi View Help QTStarter

B 000" =x 1l 200 29

Mame Type e
) #& Demo statuion . Eﬁ Subsystem: Data Bases
{ B 8% iData Bases
- 4 DB Salite Mod Modules | Help
WCA Main libraries DB
WCA Tests DB Modules:
OcHoeHana B DB DB SolLite
WVICA: AGLKS DB DB DBF
Export DB DB DB FireBird
Functions libraries DB DB MySaL
AGLKS model DB
'g DB DEF Mod
{y DB FireBird Mod
&) oBmysaL Mod
E}B Security Sub
9 Transports Sub—
@ Transport protocols Sub:
| Data acquisition Suk:
[] Archives Sub:
a Specials SubE
intarfaras -
4 I 4 ih
[|

2] froman]

Fig. 4.1b. Tab "Modules" tab of the root page of "DB" subsystem.

OpenSCADA program description 41

Each module of the "DB" subsystem provides the configuration page with the following tabs: "DB" and
"Help". "DB" tab (Fig. 4.1c) contains the list of databases registered in the module and the flag of the sign
of full deleting of the database when making the delete command. In the context menu of the databases' list
the user is provided with an opportunity to add, delete and move to the desired database. The "Help" tab
contains information about the module of the "DB" subsystem (Fig.4.1d):

+ Module - module's identifier.

+ Name - module's name.

« Type - module's type, subsystem's identifier, which contains the module.
+ Source - shared library - the source of the module.

« Version - module's version.

+ Author - module's author.

« Description - module's short description.

« License - license agreement of module's distribution.

=% OpenSCADA QTCfg: Demo statuion
File Edit “iew Help QTStarter

88000 Rx L1l 200 @0

Mame |T pt &
= i Demo statuion Locs t Y Module: SQLite
El- 55 Data Bases Sub
{ = B9 DB Sdlite ‘Mo DB Help
WICA Main libraries DB
VCA: Tests D& Full DB delete: ||
OcHoeHan B DB
VCA: AGLKS DB DE:
Export DB (b]=] WICA Main libraries
Functions libraries DB VCA: Tests
AGLKS model DB OcHoeHan bl
"',‘6 DB DBF Mo WVICA AGLKS
(@/ DB FireBird Mod EKF’;’? DB o
unctions libraries
& peMysaL Mod AGLKS model
E&ﬁ Security Sub
? Transports Sub—
wu Transport protocols Suk
/| Data acquisition Sukb:
[] Archives Suk
- .
{{d Specials Sub
interfares i
4 I 4 ib

fomen)
s,

Fig. 4.1c. "DB" tab of the module of "DB" subsystem.

OpenSCADA program description 42

| File

Edit View Help QTStarter

A 500 - = 2 @ e]

Mame |Typt
= (&) Demo statuion Locd E Module: MySQL
£ - &5 Data Bases Sub
% DB salite Mad |—]DB Help
_"ﬁ, DB DBF Mo
| DB FireBird Mod —Module information
H-TE ;I:ZIE| MySaQL ' Module: MySOL
Lm Security Sub
i M E
i Transports Sub HMS DB MySQL
= Transport protocaols Sub Type: gD
_i Data acquisition Sub : 3
Source:
7| Archives Sub ldib/openscadabd_MySQOL.so
{44 Specials Sub Version: 4 6.4
I] User interfaces Subd__| ALENOE Rornen Savochenko
& Modules sheduler Sy o
Loop Rem— Description: gD module. Provides support of the BD MySQL.
=
s [T'?F;"]H License: gpL

I

| DemoStation/sub_BDimod_MySQLMR:2fhelp¥2fm_inf%2fSource

=P

Fig. 4.1d. "Help" tab of the module of the "DB" subsystem.

Each database contains its own configuration page with the tabs "Data base" and "Tables". Besides the
basic operations you can copy the contents of the DB by means of the standard function for the copying the
objects in the configurator. The copying operation the DB contents involves the copying of the original
database to the destination database, and the contents of the destination database is not cleared before the
copy operation. Copying the contents of database is made only when the both databases are enabled,
otherwise it will run a simple copy of the object of the database.

Tab "Data base" (Fig.4.1e) contains the main configuration options of the DB as follows:

Section "State" - contains the properties which characterize the DB status:

« Enable - DB status "Enable".

« Accessible tables - list of tables that are in the database. Context menu of the property
gives the opportunity to physically remove the tables from the database.

« Load system from this DB - command to make load from this database. Can be used when
transferring data in the database between stations. For example, you can save the section of
one station in the export database, physically to move the DB to another station and connect
it in this subsystem, and call this command.

Section "Config" - contains the following configuration fields:

« ID - contains the information on the DB identifier.
+ Name - specifies the DB name.
« Description - short description of the DB and it's appointment.

Address - DB address in the specific for the database type (module) in the format. Format

Description of the DB address recording format is usually available in the tooltip for this
field.
« Code page -indicates the code page, in which the text values of database are stored and
provided. The value of the code page of database in conjunction with the internal code page
of the station is used for clear transcoding of the text message while exchange between the
station and the database.

To enable - indicates the state "Enable", in which to set the DB when start.

Tab "Tables" (Fig.4.1f) contains the list of the opened pages. In normal mode of the program operation
this tab is empty, because after the completion of working with tables the program closes them. The
presence of opened tables tells that the program is now working with tables or tables are opened by the user
to examine their contents. In the context menu of list of opened tables you can open the table for study (the
command "Add"), close the opened page (the command "Delete") and proceed to examination of the
contents of the table.

OpenSCADA program description 43

“ADA QTCHg: Deme statuion

File Edit View Help QTStarter

85000

2% Lkl 200 28

Mame

Data base: Generic DB

= 6 Demo statuion
= :.a Data Bases
% DB S0OLite

5 DB DEF T B

Data base Tables SaL

(@ DB FireBird Enable: /] —
= @ e mysaL Accessible tables:
WEA: Main librarie Archive_mess_proc
WCA: Tests Archive_val
Archive_val_proe
arch CIFPm_test
WEA AGLKS CIFPm_test_io
Functions libraries CfgExtHosts
AGLKS model DAQ_DAGQGate
% Seeurity DAG_DiamondBoards
g} Transports DAQ_ICP_DAS
el Transpart protocols DAQ_.Jav.?lee[:.alc
J Data acquisition DAQ_Logiclew
- DAQ_ModBus -
[] Archives DAG_SNMP E
ﬁ Specials T T
4| userinterfaces [L:ad system fram this DB
Qi Modules sheduler
Loop — Ganfig
Loop SSL ID: GenDB
PLC

Name: [Generic DE

Description:

Address: [seNer.diya.org:roman:rnmaszﬁaﬁ:nscadaDemoSt:::utB

Code page: [UTF-S

(1) To enable: [| E

Fig. 4.1e. Tab "Data base" of the DB of module of subsystem "DB".

File Edit “iew Help QTStarter

883000 R=xX Ll 200 29
Name IA

, "l Data base: Generic DB
= 6 Demo statuion

= ':a Data Bases
%) DB SQLite
5 DB DEF Opened tables:
@ DE FireBird FSArch_Pack
=- @ pemysaL
WCAD Main libraries
WA Tests
1. Generic DB
arch
WCAAGLKS
Functions libraries
AGLKES model

Data base Tables SoL

% Security

9 Transports

@ Transport protocols

ﬂ Data acquisition -
|| Archives -

)

“J[raman]
Fig. 4.1f. Tab "Tables" of the DB of module of subsystem "DB".

OpenSCADA program description 44

Page of the examination of the contents of the table contains only one tab, "Table". Tab "Table" (Figure
4.1g) contains the field of the name of the table and the table with the contents. Table of contents provides
the following functions:

- table's cells content redaction,;
« addition of the line;
« deleting of the line.

OpenSCADA QTCfg: Demo statuion

File Edit \iew Help QTStarter

BB 000=r% 4L 860 2@
Na—mg Dema statuion Table: SYS

El E Data Bases T

%) DB sOLite
%} DB DBF — Config

l.,y DB FireBird Name: gysg
=) ﬁ DE MySaL
WA Main libraries Data:
WCA: Tests
El- Generic DB D user | id val ul#val | it
FSArch_Pack i i
1 |root iDemoStation/sub_Ulima... /DemoStation
arch
VOA: AGLIKS 2 |moot iDemoStation/sub_Ulimo... roman
Functions libraries —
AGLKS model 3 |moot iDemoStation/sub_Ulimo... roman
ER, Security —_—
f}} Transpors 4 |root DemoStation/sub_Ulimo... romas26
@k Transport protocols |
J Data acquisition 5 |moot iDemoStationfsub_Ulima...
|| Archives
'ﬂ"' Specials g |moot iDemoStationfsub_Ulima...
L] Userinter
£ !] SErintenaces T |moot iDemoStationfsub_Ulimo... play -q %f
Modules sheduler
Loap 2 |raman |/DemoStationisub_Ulime... | AAAAWASAADDAAAALD.
Loop SSL E
FLC f raman /DemoStationfsub Transp... 1 | i

]

Fig. 4.1g. Tab "Table" of the DB table of the module of the subsystem "DB".

OpenSCADA program description 45

4.2. Subsystem "Security"

The subsystem is not modular one. To configure the subsystem the root page of the subsystem "Security"
is provided, which contains the tab "Users and Groups" and "Help". Tab "Users and Groups" (Figure 4.2a)
contains the list of users and users' groups. Users in the group "Security" and with the rights of the
privileged user can add, delete the user or group of users. All other users can go to the page the user or the
users' group. Tab "Help" contains the brief help for this page.

sa. O OpenSCADA QTCfg: Demeo statuion

File Edit Wiew Help QTStarter

880U X Lt l'/20L 8D
NamF | v. s .)
‘= @ Demo statuion 'T) ubsystem: Security

_'r-' Data Bases
Users and groups Help |

User:
Group: Users:
'i} Transports raman
gy Transport protocols root
J Data acquisition test
[] Archives user
Q Specials
@| Userinterfaces
@Y Modules sheduler
=) Loop
MY | nop SSL
FLC Groups:
users [3
BD
ModSeched
Transport
Archive
Security
Ul
root o
Protocaol -
: I | [III] Special E

[Fllreman]

Fig. 4.2a. Tab "Users and Groups" of the root page of the subsystem "Security".

OpenSCADA program description 46

To configure the user it is provided the page containing only the tab "User" (Fig.4.2b). Tab contains the
configuration data of the user's profile, which can be changed by the user itself, the user of the "Security"
group or the privileged user:

+ Name - information about the name (identifier) of the user.

« Full name - specifies the full name of the user.

« User picture - specifies the user's picture. Picture can be loaded and saved.

« User DB - DB address for the user's data storage.

« Password - the field to change the user's password. It always displays "#*#**#*",

« Groups - the table with a list of user groups of the station and with the sign of identity of the user
to the groups.

g4 i OpenSCADA QTCfg: Demo statuion

File Edit Wiew Help QTStarer
* ~% L4 800 28
MName |
. User user
= 6 Demo statuion
=
_i Data Bases User |
= Eﬁfd Security
[} User: Mame: | car
3 raman
root Full name: [Simple user
TT— |
Group: Picture is not set!
i} Transpaorts
ok Transport protacols User DE: [__,, |v]
J Data acquisition
[-F! Archlves Pim:rd [IIIIIIIIII
ﬂ Specials Groups:
[userinterfaces
= EI Graup |Inn|u:|e|
#y Modules sheduler
Loop 1 |users v
=y | gop S5L -
PLC 2 |BD
3 |[ModSched
4 | Transpaort
5 |Archive
6 | Security
FY
(<] (1] 7 lul wd E
i

Fig. 4.2b. The tab "User" of the user's page of "Security" subsystem.

OpenSCADA program description 47

To configure the user's group it is provided the page containing only the tab "Group" (Fig.4.2c). Tab
contains the configuration data of the group's profile, which can be changed only by the privileged use:
+ Name - information about the name (identifier) of the user's group.
+ Full name - specifies the full name of the user's group.
« User group DB - DB address for the user group's data storage.
« Users - list of users included in this group. With the context menu of the list you can add or
remove the user in the group.

1 OpenSCADA QTCfg: Demo statuion

£

File Edit “iew Help QTStarter

88 0V0OUrxXx Ll |BOL @0

Name [;]
= i Demo statuion
:a Data Bases m
= Eﬁ Security
Liser:
=l Growp:
m Full name: [Users group
BD
ModSched User group DB: ["." |v]
Transport Users:
Archive
Security
Ul
root

.G.

Group users

Name: cars

user
root
raman

Protocaol
Special
LA

'E} Transpors

gk Transport protoc

J Data acquisition
[] Archives "
GI Specials E

H-EH-H-H-H

[llreman]

Fig. 4.2c. The tab "Group" of the user's group page of "Security" subsystem.

OpenSCADA program description 48

4.3. Subsystem "Transports"

The subsystem is the modular one and contains the hierarchy of objects shown in Figure 4.3a. To
configure the subsystem it is provided the root page of the subsystem "Transports", containing the tabs

"Subsystem", "Modules" and "Help".
System layer

Outgoing :
Modulke ayer

Fig. 4.3a. The hierarchical structure of subsystems "Transports".

The tab "Subsystem" (Figure 4.3b) contains the configuration table of the external stations for a given
OpenSCADA. External stations can be the system's and the user's ones that is selected by the appropriate
option. System's external stations are available only to the super user and are used by the components of the
system purpose, for example, the mechanism of the horizontal redundancy and module DAQ.DAQGate.
User's external stations are tied to the user who created them, and thus the list of user's external stations is
individual for each user. User's external stations are used by the components of graphical interface, for
example, UL.QTCfg, UL.WebCfgD and Ul Vision. In the table of the external stations it is possible to add
and delete records about the station, as well as their modification. Each station contains the following
fields:

+ Id - identifier of the external station.

« Name - the name of the external host.

« Transport - the combobox of the subsystem's module "Transports" for the using of it when access
to the external station.

« Address - address of the external station if the format, specific to the chosen in the previous field
of the module of the subsystem "Transports".

+ User - the name/identifier of the user of the external station on behalf of whom to perform the
connection.

« Password - password of the user of the external station.

OpenSCADA program description 49

http://wiki.oscada.org/HomePageEn/Doc/Vision?v=1bd1
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=3k3
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=sc0
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni

Tab "Modules" tab (fig. 4.1b) contains the list of modules in subsystem "Transports" and is identical for
all modular subsystems. Tab "Help" contains a brief help for this page.

=% OpenSCADA QTCfg: Demo statuion
File Edit “iew Help QTStarter

B 8000 =+==hal|200 2O

Mame -

£l @ Demo statuion %} Subsystem: Transports
=% Data Bases
[Security Subsystem | Modules | Help |
=- ¥ iTransports]

[]

@ SsL System's external hosts: [+
El- tg Sockets External hosts poll:
Input transport:
Quitput transport: Idd | MName |Trﬂn=port| Address | User |Pﬂs=word|
Serial imterfaces .
@i/ Transport protocols < 1 |loop Loop Sockets TCP:localhost: 10005 roman
/| Data acquisition -
2 |loopSSL Loop S5L SS5L localhost: 10045 root amaan
4 I 4 Ib

._.,
E KDE

Fig. 4.3b. Tab "Subsystem" of the root page of subsystem "Transports".

Each module of the subsystem "Transports" provides the configuration page with the tabs "Transports"
and "Help". The tab "Transports" (Fig.4.3c) contains the list of incoming and outgoing transports registered
in the module. The context menu of lists of transports provides the user with the possibility to add, delete
and move to the desired transport. On the "Help" tab it is provided the information about the module of
subsystem "Transports" (Fig. 4.1d), whose structure is identical for all modules.

#8 OpenSCADA QTCfg: Demo statuion
File Edit View Help QTStarter

BBV URXx a4 200 B2

Mame |T'grpe
= i Demo statuion Local stati @ Module: Sockets
= Data Bases Subsysten
Eﬁﬂ Security Subsysten m
B i Transports Subsysten|
g SsL Module Input:
B £ Sockets i Module Self
Serial interfaces Module WWEE 1
@ Transport protocols Subsysten WVEB 2
J Data acquisition Subsysten| !Fiittﬁhi::dﬂus
[] Archives Subsysten|
&4 Specials Subsysten
| Usger interfaces Subsysten
&y Modules sheduler Subsysten| Output:
=N |oop Remote st DAGRedundantioop
8 Loop SSL Remate stj UGt Cgplc
UGt CfgnetBook
UVisionloop
testOPC
UGt Cfgloop "
[—I—] Test ModBus
[TI il s LI fiort et E

=

Fig. 4.3c. The tab "Transports" of the module of subsystem "Transports".

OpenSCADA program description 50

Each transport contains its own configuration page with one tab "Transport". This tab contains the basic
settings of transport. Incoming transport (fig.4.3d) includes:
+ Section "State" - contains the settings that characterize the state of the transport:
+ Status - information on the current transport's status and statistics of its work.
Running - state of the transport "Running".
« Transport DB - DB address to store the transport's data.
+ Section "Config" - directly contains the configuration fields:
+ ID - information on the transport's identifier.
+ Name - specifies the transport's name.
« Description - brief description of the transport and its appointment.
« Address - transport's address in the specific for the type of transport (module) format.
Description of the record format addresses transport, as a rule, is available in the tooltip for
this field.
« Transport protocol - indicates the transport protocol module (subsystem "Transport
protocols") that should work in conjunction with the input transport. Ie the received
unstructured data this module will sent to the structuring and processing to the specified
module of the transport protocol.
+ To start - indicates the status of "Running", in which to transfer the transport at startup.

=8 OpenSCADA QTCrg: Demo statuion
File Edit “iew Help QTStarter

880000 =X L1l 200 2O

MName |T'grpe
: Input transport: Self
= ’ Demo statuion Local stal np P
-
= Data Bases Subsyste Transpart]
'-j;b Security Subsyste
= :} Transports Subsyste _ State
@ ssL Madule Status: Started. Connections 48, opened 1. Traffic in 242 kb, out 2253 kb. Closed
El- &g Sockets Maodule connections by limit 0.
= input transpert: Input tran -
P heiSelf {Input tran Runing: |¥]

WEB 1 Input tran Trﬂnspnrt DB [n_n | v]
WEB 2 Input tran
testOPC Input tran ~ Caonfig
Test ModBus Input tran D
Output transport OutpLt tra - Self
Serial interfaces Module Mame: [Self]

@i Transport protocols Subsyste - A
J Data acquisition Subsyste Bl
| Archives Subsyste
G4 Specials Subsyste
IEI User interfaces Subsyste
. @ Modules sheduler Subsyste Address: [TCF‘::1UUU5:1]
Loop Remote
=) | cop SS5L Hemotej Transport protocol: | SelfSystem ﬂ
To start: [+
. []
Quevelengt (10 |2
Clients maximum: ﬂ
. =]
rput bt (o)
Keep alive connections: | 100 =
Keep alive timeout (s): ﬂ
A oo I B CE =

7] fromean]

Fig. 4.3d. Tab "Transport" of the page of incoming transport of module of subsystem "Transports".

OpenSCADA program description 51

Outgoing transport (Fig. 4.3¢) contains:

+ Section "State" - contains the settings that characterize the state of the transport:
+ Status - information on the current transport's status and statistics of its work.
Running - state of the transport "Running".
« Transport DB - DB address to store the transport's data.

+ Section "Config" - directly contains the configuration fields:
+ ID - information on the transport's identifier.
+ Name - specifies the transport's name.
« Description - brief description of the transport and its appointment.
+ Address - transport's address in the specific for the type of transport (module) format.
Description of the record format addresses transport, as a rule, is available in the tooltip for
this field.
« To start - indicates the status of "Running", in which to transfer the transport at startup.

=% OpenSCADA QTCfg: Demo statuion
File Edit “iew Help QTStarter

BB RXx 14l 200 8O

Name
: ul Output transport: DAQRedundantio
= o Demo statuion P Q opP
-
i Data Bases Transport ——
i securty
= ; Transports _ Stgte
S5L .
ey Status: Started. Traffic in 33.43 kb, out 3.599 kb.
El- kg Sockets
input transport: Runing: [+
= Quiput transport:
GRedundantloop i Transport DB: [*-* |']
GtCigple
UIotCignetBook —~Config
Uvisionloop IC: pAQRedundantloop
testOPC
UIGtCfgloop MName: [DAQHedundamlocp]
Test ModBus Description:
UICHC fgtest
DAQGatetestloop
DAQRednctloop
UICHCfgplxd
DAQGateloop i - -
Serial interfaces Address: | TCP-localhost-10005]
j ;r!:nspor’[.p:.:tocols - To start: [
H- | a acquisition
. - Timeout (ms): | 10000 =
4 I 4 IF
DemoStationisub_Transportimod_Socketsfout_DAGRedundantioop/%2fprm3%2fefg¥%2fname * [roman]|

Fig. 4.3e. Tab "Transport" of the page of outgoing transport of module of subsystem "Transports".

OpenSCADA program description 52

Outgoing transport, in addition, provides the tab for forming the user request via this transport (Fig.4.3f).
The tab is provided for setting communication, as well as for debugging the protocols and includes:
« Time (ms) - information about the time taken for request and receiving the answer.
+ Mode - indicates the regime of data from the following list: "Text" and "Binary", in which the
request will be formed and the answer will be provided. In binary mode data is recorded in pairs of
numbers in hex, ie bytes, separated by spaces.
+ Send - command to send a request.
+ Request - contains the request in the selected mode of data representing.
« Answer - provides the answer in the selected mode of data representing.

8 OpenSCADA QTCfg: Demo statuion
File Edit “iew Help QTStarter

B 8OO0 ==X hedl 200 29

MName

5 @ Demo ststuion F Output transport: DAQRedundantioop

-
-gq Data Eases Transport Request
I';Ef; Security
=] } Transports Time (ms) 0.786

6@ SsL

5 @ Socets
Input transport:
= Quitpwt transport:

L DACRedundantloop Request:
LIt Cfgplc
LIt CfgnetBook 48 45 4¢c 46 38 00 00 00 00 00 00 00 00 00 01 0D
UlVisionloop 000001 0000000001 8813000018 000000
testOPC 6f 70 63 2e 74 63 70 3a 2f 2f 6c 6f 63 61 6c 68
UIGtC fgloop 6173 74 3a 34 38 34 30
Test ModBus
Ul Cfgtest
DAQGatetestloop || ANSWer:
DACQRedndtl
UIQtheng}(B oop 41 43 4b 46 1c 00 00 00 00 00 00 00 00 00 01 0D
DAQGateloop O0DO0D1 0000000001 88130000
Serial interfaces
@ Transport protocols
Y
| Data acquisition E
. -

[]

2] roman]

Fig. 4.3f. The tab "Request" of the page of outgoing transport of module of subsystem "Transports".

4.4. Subsystem "Transport protocols"

The subsystem is modular. To configure the subsystem the root page of the subsystem "Transport
Protocols" is provided, it contains the following tabs: "Modules" and "Help". The tab "Modules" (Fig. 4.1b)
contains the list of modules in subsystem "Transport Protocols" and is identical for all modular subsystems.
The tab "Help" contains a brief help for this page.

Each module of subsystem "Transport Protocols" provides configuration page with the only one tab -
"Help". On the tab "Help" there is the information on the module of subsystem "Transport Protocols" (Fig.
4.1d), which structure is identical for all modules.

OpenSCADA program description 53

4.5. Subsystem '""Data acquisition"

The subsystem is modular and contains the hierarchy of objects depicted in Fig.4.5a. To configure the
subsystem the root page of subsystem "Data acquisition" is provided, which contains the tabs "Template
libraries", "Modules" and "Help".

To obtain access to modify the objects of this subsystem the user of the group "DAQ" or the rights of the

privileged user are required.
System layer)
Demao
station

Subsy stem layer)

Templaes
TCET

[d|gﬁda rm smpIBrd]r "
emp laie ;

Modulke layer

BlockCalc

DAQ type

ControNer:

[Memlnfn] [CPUInfn]kSH21lKSH22]

Fafa.'rreter
|fre eitntal llnadl 5ys]mst npen]

Fig. 4.5a. The hierarchical structure of subsystem "Data acquisition".

Tab "Redundancy" (Fig. 4.5b) contains the configuration of redundancy of data sources of subsystem
"Data acquisition" of the station with the following settings:
+ Status - contains information on redundancy scheme, this is usually the time spent on the
execution of one cycle of the task of reserve processing.
- Station level - indicates the level of the station in an arrangement (0-255).
+ Redundant task period (s) - indicates the frequency of execution of redundancy task in seconds
(1-255).
« Restore connection timeout (s) - indicates over the which period of time to attempt to reconnect
with the lost redundant station in seconds (0-255).
+ Restore data depth time (hours) - indicates the maximum depth of archival data to restore from
the archive of the remote station when start up in hours (0-12).
« Stations - contains the table with information about the redundant stations. Stations can be added
and removed via contextual menu. Id of the added stations is to be chosen from the list of available
OpenSCADA system stations. The table provides the following information about the station:
« ID - ID of the system OpenSCADA station, should be changed after the addition by
choosing from the list of available ones;
Name - name of the system OpenSCADA station,;
- Live - sign of the connection with the redundant station;
« Level - level of the remote station in the redundancy scheme;
« Counter - requests' counter to the redundant station or waiting time in the case of the
absence of connection;
Run - the list of available controllers with the sign (+) of the local execution on the remote
station.
+ Go to remote stations list configuration - command to go to the configuration page of the remote
OpenSCADA stations in the subsystem "Transports".
« Controllers - contains the table with the list of controllers, available for redundancy, and their
current status:

OpenSCADA program description 54

« Controller - full controller's ID;

« Name - controller's name;

+ Started - the sign of the controller's execution on the local station;

+ Redundant - redundancy mode of the controller can be changed from the list of: "Off",
"Asymmetric" and "Symmetric";

 Preferable run - configuration of the preferred execution at the specified station can be
changed; reserved values: <High Level> - execution at the station with the highest level,
<Low Level> - execution at the station with the lowest level, <Optimal> - the choice for the
execution of the least loaded station.

+ Remoted - sign indicating the execution of the controller on the remote station and the
transfer of the local one to the mode of data synchronization from the remote station.

OpenSCADA QTCHg: Demo statuion

File Edit \iew Help QTStarer
OlR % h &k 12O O
J | | e
|Nime |
5 @ Demo statuion S Subsystem: Data acquisition
.-ﬁ Data Bases
ﬁ;&, Security Redundance l Template libraries | Maodules | Help]
'5? Transports B
ok Transport protocaols Status: progess time 0.795 ms.
Data acquisition
B /I suvontever (10 |2
_J Archives
@ Specials Redundanttask periad (s} (1
@l Userinterfaces Restare connection timeout (5): E
¥y Modules sheduler
Laap Restore data depth time (hour):
Loop S5L Stations:
PLC
10 | Nimel Live | Lewel | Gnunterl Run |
1|loop Loop V’ 10 [u] BlockCale. Anast1toZ. ..
[Gn to remote stations list configuration
Caontrollers:
| Contraller | Mame | Started | Redundant | Preferable run | Flem:ted| e
1 |[DAQGate test [Test off <High level»
2 |ModBustestTCP testTCP Off <High lewvel>
3 |ModBustestRTU testRTLU Off =High lewvel>
<] («]*] 4 |sMMP.Iocalhost localhost off <High level> E
l -
—

Fig. 4.5b. Tab "Redundancy" tab of subsystem "Data acquisition".

OpenSCADA program description 55

The tab "Template libraries" (Fig.4.5¢) contains the list of libraries of templates for the parameters of
this subsystem. In the context menu of the list of template libraries the user can add, delete and move to the
desired library. The tab "Modules" (Fig. 4.1b) contains the list of modules in the subsystem "Transports"
and is identical for all modular subsystems. The tab "Help" contains the brief help for this page.

=8 OpenSCADA QTCrg: Demo statuion
File Edit “iew Help QTStarter

85000 =
[+]

| MName

200 29

1’
= (@ Demo statuion E Subsystem: Data acquisition

=i Data Bases
s, Security Redundance | Template libraries | Modules | Help |

'i? Transports
@ Transport protocols Template libraries:
- [l Data acquisition 57

= Moduwle: Main templates

E-EH-E-E

Data sources gate
ModBus

DCOM client Fr
SHMP client

ICP DAS hardware

Block based calculator

& SystemDA

OPC LA

Sound card "
Logic level -
1.] Twa-lilre hased o

R EY

E-EH-E-E

EH&

Jromar]
s,

Fig. 4.5¢. The tab "Template libraries" of the subsystem "Data acquisition".

Each template library of subsystem "Data acquisition" provides the configuration page with the tabs
"Library" and "Parameter templates". Tab "Library" (fig. 4.5d) contains the basic settings of the library:

« Section "State" - contains properties that characterize the state of the library:
« Accessing - state of library "Accessing".
« Library DB - address of the database for data storage of the library and templates.

+ Section "Config" - directly contains the configuration fields:
+ ID - information on the ID of the library.
+ Name - specifies the name of the library.
+ Description - short description of the library and its purpose.

Tab "Parameter templates" (Fig.4.5¢) contains the list of templates in the library. In the context menu of
the list the user can add, delete and move to the desired template.

OpenSCADA program description 56

g Demo statuon

File Edit “iew Help QTStarter

8 5000

=% 4L 200 2

Mame - ,
SCON siert Parameter templates library: base
SMMP client -
ICP DAS hardware Likrary l Parameter templates]
Block based calculator
& SystemDa . — State
OPC UA Accessing. [
Sound card
Logic level Library BD: | SGLite LibDB tmplib_base R
Java-like based calculatg confi
Siemens DAQ i wontlg
Diamond DA boards ld: pase
- Tempiate library:
ST Mame: [Maintemplates]
B Main templates Description:
[] Archives
'a Specials Allow realisation of the main templates.
!] User interfaces -
@y Modules sheduler w7

OpensSCADA QTCrg: Demo statuon

File Edit View Help QTStarter

8 8000

=% L 200 2D

Mame - .
DR chas Parameter templates library: base
SMNMP client
ICP DAS hardware Library | Parameter templates l
Block based calculator }
R System DA o Templates:
OPC LA Manual input (Linif)
Sound card Alarm digital
Logic level Analog alarm by borders
Java-like based calculatg Analog sign. (Unif)
Siemens DAQ o Diskret block (Unif}
Diamond DA boards rer Impulse PID sigr!. {Unif, stats)
El- Template library: Flow cortrol paint
S7 Diskret parameters block
] B Main templates Analog sign. (Unif, stats)
[] Archives PID sign. (Unif, stats)
& Specials
EJ User interfaces -
@@ Modules sheduler ™|
1 i 1|

2]lroman]

Fig. 4.5e. The tab of the list of templates in the template library of subsystem "Data acquisition".

OpenSCADA program description 57

Each template of the template library provides the configuration page with the tabs "Template" and "1O0".
The tab "Template" (Figure 4.5f) contains the basic settings of the template:

+ Section "State" - contains properties that characterize the state of the template:
« Accessing - state of template "Accessing".
« Used - counter of the template's using. Allows you to determine whether the template is
used and, consequently, the ability to edit the template.

+ Section "Config" - directly contains the configuration fields:
« ID - information on the ID of the template.
+ Name - specifies the name of the template.
« Description - short description of the template and its purpose.

File Edit View Help GQTStarter

A 500 - = o 2 Q@ 2 9

[«]
SPEUA Parameter template: Diskret parameters block
Sound card
Logic level Template 10
Java-like based calculator B
Siemens DAQ —State
Diamond DA boards Accessing o
= Template library: =
57 Used: 4
= Main templates
Manusal input (Unif) —Canfig
Alarm digital Iel: digitBlock
Analog alarm by borders
Analog sign. {Unif) Mame: [Diskret parameters block]
Diskret block l(UnifJ) Description:
Impulse PID sign. (Unif, sta
Flow contral point The block for union of Diskret parameters for one device control.
i-iDiskret parameters block n | 3
Analog sign. (Unif, stats ﬂ

DemoStation/sub_DAGAmplb_basetmpl_digitBlock M2 ftmpl% 2fcfgYe2fid Z| roman

Fig. 4.5f. The main configuration tab of the parameters template of subsystem "Data acquisition".

The tab "IO" (Fig.4.5g) contains the configuration of attributes (IO) of templates and the program of
template on the one of languages of the user programming of OpenSCADA, for example,
DAQ.JavaLikeCalc.JavaScript. To the table of attributes of template user can, through the context menu,
add, insert, delete, move up or down the record of attribute, as well as edit the attribute's fields:

« Id - ID of the attribute.

« Name - the name of the attribute.

« Type - select the value's type of the attribute from the following: "Real", "Integer", "Boolean",
"String".

+ Mode - select the mode of the attribute: "Input", "Output".

« Attribute - mode of the parameter's attribute, implemented based on a template from the list: "No
attribute" ,"Read Only","Full access". For the attributes of a template, in which this field is set, it
will be created an appropriate attribute in the controller's parameter of this subsystem.

« Configure - configuration mode of the attribute in the configuration tab of a template of the
controller's parameter of this subsystem from the list: "Constant", "Public constant", "Link". In
"Public constant" and "Link" modes tab in the configuration tab of the template will be added these
attributes to set the constant or specify an external link of the parameter.

+ Value -attribute's default value or template of the links to access by the link. The format of the
link's template depends on the component that uses it. Usually for the module DAQ.LogicLev the
link's template is written the following way: {Parameter}|{attribute}. Field {Parameter} -
specifies the parameter's name as the attribute's container. Attributes with the equal value
{Parameter} will be grouped and will be appointed only by the indication of attributes' container,
and individual attributes will be associated with the attributes of the container in accordance with the
field {attribute}.

The syntax of the language of the template's program you can see in the documentation of the module,
providing an interpreter of the chosen language. For example, a typical user programming language of
OpenSCADA - DAQ.Javal ikeCalc

OpenSCADA program description 58

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

» Demo statnon

File Edit WView Help QTStarter
e’ 200 28
L] QG@‘# i"—'_l%_ |ﬁf
s
HodBus Parameter template: Diskret parameters block
DCON client
SNMP cliert Template | 10
ICP DAS hardware -
Block hased calculator 1o: [l
R System DA i Il | MName | Type | Mode | Atribute |Cnnﬁgure | Value
OPC UA
Sound card 1 |cmdOpen Command "Open” Boolean Output | Full access |Link Cranejcom
Logic level —
Java-like based calculator 2 |cmdClose | Command "Close" | Boolean Output | Full access | Link Cranglclose
E Siemens DAQ _—
2] Diamand DA boards 3 |cmdStop | Command "Stop” Boolean |OQutput | Full access |Link Cranelstop
B T;mp.rate library: _—
Ié:::r?d;intemplmes 4 |stOpen State "Opened" Boolean Input | Readonly | Link Crane|st_open
- Manual input {Uni |
: A::;ﬂd:;gﬂlt nif) 5 |stClose State "Cloged" Boolean | Input Read only Link Crane|st_close
Analog alarm by borders | i
6 [tCmd E:;ld command time Integer | Input Full access |Constant |5 =
|mpu|se PlD Sign (Unlf St i laet el |_act roammaned It oo Tudrad hlm attriba ta T ranotant n L
Flow control point Programm language: | JavalikeCalc JavaScript |vl
- ! cl Programm:
Analog sign. (Unif, stats)
o PID gign. (Unif, stats) set=false; el
. |_J Archives iffcmdOpen &8 last_cmd!=1) { last_cmd=1; set=true; }
. ﬁ Specials iffcmdClose && last_cmdl=2) { last_cmd=2; set=true; }
0 [User interfaces if{fcmdStop && last_cmdl=3) { last_cmd=3; set=true; }
6’. Modules sheduler if{zet && tCmel=0) w_tm=tCmd;
if(w_tm=0) w_tm-=1 4 _frg;
(= | else I
=1 { . |
if{tCmel=0) —
[l I [.:.
Jfromen|

Fig. 4.5g. The configuration tab of the attributes and template's program of subsystem "Data acquisition".

OpenSCADA program description 59

Each module of the subsystem "Data acquisition" provides the configuration page with the tabs
"Controllers" and "Help". The tab "Controllers" (Fig.4.5h) contains the list of controllers, registered in the
module. In the context menu user can add, delete and move to the desired controller. The tab "Help"
provides information about the module of the subsystem "Data acquisition" (Fig. 4.1d), which structure is

identical for al

1 modules.

File

Edit View Help QTStarter

B8 00O =% = 2 Q 2 R

Marme

S Module: - Module: LogicLev

Data sources gate
ModBus Controllers Help

DCOM client [l
SHNMP client Controllers:
ICP DAS hardware Experimental
Block based calcula
¥ SystemDA
QP UA
Sound card

-iLogic level
Java-like based calc
Siemens DAQ

+}- Diamond DA boards L

Template library:

Archives

g Specials
[H| User interfaces

EXREY]

E-E-E5

1 [

ovar)

Fig. 4.5h. The tab "Controllers" of the module of the subsystem "Data acquisition".

Each controller contains its own configuration page with the tabs "Controller" and "Parameters".

The tab "C
slightly from

ontroller" (Fig.4.51) contains the basic settings. The structure of these settings may differ
one module of this subsystem to another, as you can find in the own documentation of

modules. As an example, lets examine the settings of the controller in the module of the controller of logic
DAQ.LogicLev:

« Section "State" - contains the properties, which characterize the state of the controller:

« Status - specifies the controller's status. In our case, the controller is running and the
computation time is 0.394644 milliseconds.

« Enable - the state of the controller "Enable". When enabled, the controller provides the
possibility of creating the parameters and their configuration.

+ Run - the state of the controller "Run". The running controller performs the physical data
acquisition and/or includes mechanisms for access to these data.

« Controller DB - the address of the database for data storage of the controller and its
parameters.

« Section "Config" - directly contains the configuration fields:

- ID - information on the controller's identifier.

« Name - specifies the controller's name.

« Description - brief description of the controller and its purpose.

« To enable - indicates the status of "Enable" in which to transfer the controller at startup.
To start - indicates the status of "Run" in which to transfer the controller at startup.

« Redundant - includes the controller in the scheme of the horizontal redundancy of data

acquisition of the subsystem "Data acquisition" and points the redundancy mode:

"Asymmetric" and "Symmetric".

OpenSCADA program description 60

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

« Preferable run - indicates preference for the execution of the controller at the station in
the redundancy scheme.

« Parameters table - table name in which to save the parameters (the objects of the
parameters of data acquisition) of the controller.

+ Request data period (ms) - periodicity of the data acquisition task. In this example it is the
periodicity of the template's calculation.

« Request task priority - sets the priority of data acquisition of this controller. It is used
when scheduling the operating system tasks. In the case of execution of the station as the
superuser "root", this field includes the planning of the controller's task in real time and with
the specified priority.

=) OpenSCADA QTCfg: Demo statuion
File Edt View Help GQTStarter

88O RR Ll 200 B9

=

Name I;

CI- @ Demo statuion Controller: Experimental

(=
i Data Bases Controller Parameters
E-.IB Security
'-E Transports _ State B
=), Transport protocols .
- port pre Status: g:Started. Calc time 0.599 ms.
Bl ~| Data acquisition
=) Module: Enable: [+
Data sources gate
ModBus Run: [v]
DCON Cl_'e”t Controller DB: [‘.‘ |vl
SHMP client
ICP DAS hardware ~— Config
Block based calculal o)
R System DA - experiment
OPC UA Mame; ’Experimerrtal
Sound card R
£ Logic level Description:

- Experimental It have the group of experimertal parameters.

Crane KSH

F3

F4

Close KSHE

TPP1 .

PR3 To enable: ||

TPPS To start: [#f]

P PP1

R

P PPS - "

Preferable run: | =High level=

P3 d n

P4 Parameteres table: l LogLevPrm_experiment

Account nof « i i =]

Pi - Request data period {ms). | 1000 =]
4 | = 4 | 3 Request task priority: _E

[|

H]E=

Fig. 4.51. The main configuration tab of the controller of subsystem "Data acquisition".

OpenSCADA program description 61

"Parameters" tab (Fig.4.5j) contains a list of parameters in the controller, as well as information on the
total number and the number of enabled parameters. In the context menu user can add, delete and move to
the desired parameter.

File Edit WView Help QTStarter

8800OORxX L4l 200 28

Mame [:]

i Transports

iz Transport protocols Controller Parameters
= J Data acquisition

= Module:

Controller: Experimental

Mumber: ajl: 19; Enabled: 19

Data sources gate
ModBus Parameters:
DCOM client Crane KSHT
SHMP client | F3
ICP DAS hardware F4
Block bazed calculal Close KSHE
¥ SystemDA T PP
OPC UA TPP3
Sound card TPPS
El- Logic level P PP1
| B-iExpermental P PP3
Crane KSH7 P PP3
F3 P3
F4 — P4 E
Close HSHEE Account node 1 —
T PP1 h i
E | | 1 |>

7 omar)

Fig. 4.5j. "Parameters" tab of the configuration page of the controller of subsystem "Data acquisition".

Parameters of the controllers of subsystem "Data acquisition" provides the configuration page with the
tabs "Parameters", "Attributes", "Archiving" and "Template config". The tab "Template config" is not
standard, but it is present only in the modules of subsystem "Data acquisition", which implement the
mechanisms of working under the template in the context of the data source, which they are served. In this
review this tab is included for logical completeness of the review of the configuration of templates of
parameters of subsystem "Data acquisition" and as the final stage - using.

The tab "Parameter" (Fig.4.5k) contains the main settings:

+ Section "State" - contains the properties, which characterize the state of the parameter:
« Type - information on the parameter's type.
« Enable - the state of the parameter "Enable". Enabled parameter is used by the controller
fro data acquisition.

+ Section "Config" - directly contains the configuration fields:
« ID - information on the parameter's identifier.
+ Name - specifies the parameter's name.

Description - brief description of the parameter and its purpose.

« To enable - indicates the status of "Run" in which to transfer the parameter at startup.
« Mode - contains two fields: directly the mode and its configuration. In the case of the
parameter of the controller of the module of this type it is the mode of working "under the
template" and the address of the previously discussed template.

The tab "Attributes" (Fig.4.51) contains the parametr's attributes and their values in accordance with the
configuration of the used template and calculation of its program.

The "Archiving" tab (Fig.4.5m) contains the table with the attributes of a parameter in the columns and
the archivers in rows. The user can set the archiving for the desired attribute with the required archiver

OpenSCADA program description 62

simply by changing the cell at the intersection.

The "Template config" tab (Figure 4.5n) contains the configuration fields in accordance with the
template. In this example it is the group link on the external parameter. This link can be set simply by
pointing the way to the parameter if the flag "Only attributes are to be shown" is not set, or to set the
addresses of the attributes separately in the case if the flag is set.

e OpensCADA QTCIg: Demo statuion

File Edit View Help QTStarter
880002 1L 200 28
Mame -
Sourd card Parameter: F3
Eh- Logic level ————} - =
£ Experimentsl Parameter | Afributes Archiving | Template config |
Crane KSH7 "
: oy — State
TYPE: gtd
Close KSHE
T PP1 Enable: [v
TPP3
TPPS - — Config
P PP g : F3
P PP3
P PPS Mame: | F3
P3 Description:
P4 =
Account node 1 Flow F3
Pi
Ti
PTOS03
F PP -
FPP3 E To enable: |wf|
F DDZ
1 s 1] Mode: [Template |v] [base.simleﬁcard |v] ﬂ
-
DemoStation/sub_DAQImod_LogicLevicntr_experimentiprm_F3/22fprm%2fcfg%2iSHIFR *|[roman]

Fig. 4.5k. The main configuration tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 63

Cfg: Demo statuion

File Edit “iew Help GQTStarter
- 200 29
883000 =% L&l B
Name -
& Sound card Parameter: F3
El- Logic level -
E}.- Experimental Parameter] Atributes l Archiving | Template config]
i Crane KSH7T e
3 IC: F3
- F4
. Close KSHE Name: | F3 |
- T PP i Description:
. TPP3
. TPP5 Flow F3
- PPP1
 PPP3
 PPP5
-~ P3 B :
-7 Error: g:1_ower warning border violation
’P"i"""“m node 1 Varigble: [33.1475
- T Dimension variable: [tonem]
.. PTOS03
- FPP1 - Lower work border: D
- FPPS
B} Java-like based calculatc Lower alarm border:
& Siemens DAG - i
[Diamond DA boards E Upper alarm border:
[Template librarv: i Lower warnin :
rrrrr)
1| e mﬁ 4| -
[] Upper warning border: | 80 g
*Jlroman] A

Fig. 4.51. The "Attributes" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA - Demo statuion

File Edit View Help QTStarter
—_ 200 D&
88000 |) ok &
Mame -
S soundcard Parameter: Crane KSH7
£ Logic level - -
" O Experimental Parameter | Afributes | Archiving l Template config
----F3 — Archiving:
E‘ _ Atribute | Archiving | FSArch.ih | FSArch.im | FSarch1s | DBArch1s | |
- Close
. TPP1 i 1 |SHIFR
-~ TPP3 |
Biic 2 e
E EEE 3 |DESCR
- P3 "
pa 4 |err
- Account node 1 |
- Pi 5 |cmdOpen
L Ti —_—
. PTOS03 6 |cmdClose
~ FPPM I —
. FPP3 7 |cmdStop
- FPP3 —_—
[#- Java-like based calculate g |stOpen =
[} Siemens DAQ " I e
[} Diamond DA boards E g |stClose -
. Temolate librarv: hd 3
< e 4| — —
u

Fig. 4.5m. The "Archiving" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 64

OpensCADA QTCIgE Demo statuion

File

Edit View Help QTStarter

8800CO

MName

=% Lkl 200 29

Parameter: F3

[} Block based calculator
= @ SystemDA
L. OPC UA
-- Sound card
£} Logic level
{ [2}- Experimental
L. Crane KSHT

Parameter Atributes | Archiving | Template config |

Only atributes are to be shown: ||

Parameters

Input; [BlockCalc Anast1to2nods F3.var | v]

e C—
Pt tiaion

Tfomar] |

Fig. 4.5n. The "Template config" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 65

4.6. Subsystem "Archives"

The subsystem is modular and contains the hierarchy of objects depicted in Fig.4.6a. To configure the
subsystem the root page of the subsystem "Archives" is provided, it contains tabs "Messages archive",
"Value archives", "Modules" and "Help".

To gain the access to modify the objects of this subsystem the user of the group "Archive" or the

privileged user rights are required.
Demao
station

Amhivaior
type

Vaiwes and messages archivabors:
Moduk layer

Fig. 4.6a. The hierarchical structure of subsystem "Archives"

The "Messages archive" tab (Fig.4.6b) contains the configuration of messages archive and the request
form of messages from the archive.

Configuration of the messages archive is represented by the fields:
« Maximum requested messages - indicates the global limit on the maximum number of messages
processed by the request.
« Messages buffer size - indicates the dimension of the area of memory reserved for the interim
buffer of messages. Messages from the buffer are requested for viewing and archived with the
messages archivers.
« Archiving period (s) - the periodicity with which the archivers select messages from the buffer for
their archiving.

The messages request form contains the configuration fields of the request and the table of results.
Configuration fields of the request are:

« Time - specifies the request time.
« Size (s) - specifies the size and the depth of the request in seconds.
« Category pattern - specifies the category of the requested messages. In the category you can
specify the elements of a sample of the template, namely, the characters '*' - for any string and '?' -
for any character.
+ Level - indicates the minimum level of messages, ie request will be processed for messages with a
level more than or equal to the specified one.
« Archivator - indicates the messages archiver, for which the request is to be processed. If the value
is missing, the request will be processed for the buffers and all archivers. If <buffer> is specified,
then the request will be processed only for the messages buffer.

The result table contains rows of messages with the following columns:
+ Time - message's time.
+ Category - message's category.
+ Level - message's level.
+ Message - message's text.

OpenSCADA program description 66

A QTCfg: Demo statuion

File Edit Wiew Help QTStarer

88000

== Lol 200 28

Name |
5 @ Demo statuion O Subsystem: Archives
_.-a Data Bases
%Securiw Messages archive I Value archives | Modules | Help]
g Transports "
e Transport protocols Maximum requested messages: | 3000 E e
| Drata acqguisition (=]
Messages buffer size: m
- Archives g Lx]
ﬁ Specials Arehiving period (s): E
!J User interfaces — View messages
& Modules sheduler Time: [23.01.2010 15:56:24 | |
Laop ime: 01, 56 -
Loop S5L Size (s): | s =
PLC
Category pattemn: [
. []
P O
Archivator: [FEAr:h.t!st |v]
Messages:
Time | MGCSEC | Category |Le1r|z|| hessage -
1 SatJan 23 15:56:18 2010 522805 |/DemoStationfsub_Ulimao... 1 roman| Change =/Demos...
2 SatJan 23 14:12:44 2010 833651 iDemoStationd 1 Final started!
3 SatJan 23 14:12:44 2010 833307 fDemoStationfsub_Ulimo... 1 Start module.
2 SatJan 23 14:12:44 2010 692115 | /DemoStationfsub_Archivel 1 Start subsystem.
a SatJan 23141244 2010 | 554815 | /DemoStationfsub_DARY... 1 Start contraller!
[} SatJan 23 14:12:44 2010 527303 |/DemoStationfsub_DAQY.. 1 Start contraller!
T SatJan 23 14:12:44 2010 |510718 | /DemoStationfsub_DAQJ... 1 Start contraller!
=] SatJan 22 14:12:44 2010 481801 fDemoStationfsub_DAGY.. 1 Start contraller!
4Ib] SatJan 23 14:12:44 2010 466528 | /DemoStationfsub_DAQGY. . 1 Start contraller! - [a]
g -

ﬂ reman

Fig. 4.6b. The "Messages archive" tab of the subsystem "Archives".

OpenSCADA program description 67

Tab "Value archives" (Fig.4.6c) contains the general configuration of value's archiving and the list of
archives of values. In the context menu of the list of values the user has the opportunity to add, delete and
move to the desired archive. The general configuration of archiving is represented by the fields:

 Get data period (ms) - indicates the periodicity of the active archiving task. In fact, the highest
level of detail or the minimum period of active archives is determined by this value.

« Get data task priority level - sets the priority of task of active archiving. It is used when
scheduling the operating system tasks. In the case of execution of the station with the rights of the
superuser "root" this field includes scheduling of the archiving task in real time and with the
specified priority.

The "Modules" tab (Fig. 4.1b) contains a list of modules in subsystem "Archives" and is identical for all
modular subsystems. The "Help" tab contains the brief help for this page.

File Edit View Help QTStarter
5 @ 2
8800 - = 2 QG
Mame .
B g Demo statuion [5‘,1 Subsystem: Archives
~. Data Bases
i Security [Messages archive] “alue archives [Modules | Help]

i} Transports
@ Transport protocols

E-B-E-FE-E

Get data period (ms): | 1000

=

Diata acquisition
- [i Archives
{44 Specials
[H User interfaces
u'S- Modules sheduler
Loop
Loop S5L

g5

B-B

Get data task priority level: [10

=

Mumber: ajj: 143; Enabled: 140

“alue archives:

PCY3_1_spl
TC2 1 _2 impQdwn
P_PP1_war

@@

TC2_1_2_auto
PCY3_1_wvarl
F12_1_war
Ti_var
TE1314_2_war
LC21_2_out
PC_KPO3 war
ES4_1_warl
F11_1_var
ES8_2_com

T A M e il wae

2] jromman]

Fig. 4.6c. The "Value archives" tab of the subsystem "Archives".

Archive of values of subsystem "Archives" provides the configuration page with the tabs "Archive",
"Archivators" and "Values".

Tab "Archive" (Fig.4.6d) contains the basic settings of the archive:
+ Section "State" - contains the properties, which characterize the state of the archive:
« Running - the state of the parameter "Running". Running archive collects data in the
buffer and is served by the archivators.
Archive DB - database address for storing the archive's data.
+ Section "Config" - directly contains the configuration fields:
« ID - information on the archive's identifier.
+ Name - specifies the archive's name.
 Description - brief description of the archive and its purpose.
To start - indicates the state "Running" in which to transfer the archive at startup.

OpenSCADA program description 68

« Value type - indicates the type of values which are stored in the archive from the list:
"Boolean", "Integer", "Real" u "String".

« Source - indicates the type and address of the source. Type of source is indicated from the
list: "Passive", "Passive param. attribute" or "Active param. attribute". Passive archive does
not have an associated source of values, the data to the such archive the source transfers by
itself. Types with the attribute of the parameter in the address field indicate the parameter of
the subsystem "Data acquisition" as the source. Passive attribute of the parameter sends data
to the archive by itself with its own period of data acquisition. Active attribute of the
parameter is queried by the archiving task of this subsystem.

- Buffer period (s) - indicates the periodicity of values in the archive's buffer.

- Buffer size (items) - indicates the dimensionality and depth of the archive's buffer. The
dimensionality is usually set in terms of 60 sec of the periodicity of the archiving task with
the reserve.

- Buffer hard time griding - indicates the mode of the buffer. The hard grid mode involves
the memory reservation for each value, but without the timestamp. This mode eliminates the
possibility of packaging the adjacently-identical values, but also saves on storage of the
timestamp. Otherwise, the buffer operates in the mode of storage the value and timestamp
and supports the packaging of adjacently-identical values.

« Buffer high time resolution - indicates the possibility of storing values at intervals up to 1
microsecond, differently the values can be stored at intervals up to 1 second.

88

File Edi “iew Help GQTStarter

TN€

Mame

i..iMeminfo_use

== L&l 20]

[]
ST Value archive: Meminfo_use
TC2_2_1_var0 -
D_1_PDED Archive | Archivators | Values |
E54_2 vari
Pi_war —State
EASE_1_st_open Runing:
STBE12_var EI
TE1314_1_vard Buffer end: 14.01-2010 10:37:15.0
gh1_P Buffer hegin: :35:
ol @ gin: 14-01-2010 10:35:36.0
slotd_st_open
F11_2_var —Config
TC2_1_2_sp o
21 var - Meminfo_use
PCT3_2_impQdwn0 Name: [Memlnfo_use]
EAST_2_st_open T
EAS1_1_st_open Description:
slot7?_st_open
T_PP3_var
T1_1_war
PC_n n=nm2_var
EAST_1_st_open To start: [#]
TC2_2_1_out
sloté_st_open . : "
F PP1 var Source: [Fasswe param. atribute |vl [DAG.System.ALﬂoDA.Memlnfo.use |v]
P73_1_var Buffer period (sec):
P3_var

slotS_st_open =
hs59_2_st_open E
b

J LCWV21 1 st o?e

Buffer size (tems): E

Buffer hard time griding: [w|

Buffer high time resolution: ||

Jfonen

Fig. 4.6d. The main configuration tab of the values' archive of subsystem "Archives".

OpenSCADA program description 69

Tab Archivators' (Fig.4.6¢e) contains the table with the configuration of the processing of the archive by
the available archivers. Lines are available archivers, and the columns are the following parameters:

Archivator - information on the archiver's address.
Start - information on the archiver's state "Started".
Process - sign of the processing this archive be the archiver. The field is available for
modification by the user.
Period (s) - information on the periodicity of the archiver.
Begin - date of the archive data beginning in the archiver.
End - date of the archive data ending in the archiver.

=% OpenSCADA QTCfg: Demo statuion

File

Wiew Help QTStarter

Mame

[+]

1

F101_var
TC2_2_1_varl
D_1_PD&D

E54_2 varl
Pi_war
EASE_1_st_open
STBE12_var
TE1314_1_var0
ghl1_P

ghll_@

gh1_T
slotd_st_open
F11_2_var
TC21_2_sp
T2_1_war
PCT3_2_impQdwni
EAST_2_st_open
EAST_1_st_openi
slot7?_st_open
T_PP3_var
T1_1_war

PC_n n=nm2_var
EAST_1_st_open
TC2_2_1_owtD
gh1_dP
sloté_st_open
F_PP1_var
P73_1_var
P3_var

eminfo_use

slots_st_open —
hs38_2_st_open E
A

8 5000 == Lkl

200 28

Value archive: Meminfo_use

J LCW21 1 st 0%&

[

]

Archive Archivators Values
Archivators:
I Archivator | Start | Process | Period (g) | Begin End
FStreh.ih V’ 3600
17-09-2008 14-01-2010
FSArchim | nf v (60 16:55:000 10:37.00.0
17-09-2009 14-01-2010
FSarchis | n/ | 1 16:55:000 10:37:59.0

1

DemoStation/sub_Archivelva_Meminfo_use/¥%2farch%2farch

Jfowen
=

Fig. 4.6¢e. The "Archivators" tab of the values archive of subsystem "Archives".

OpenSCADA program description 70

Tab "Values" (Fig.4.6f) contains the values request in the archive and the result as a table of values or
image of the trend. Values request contains the fields:

« Time - indicates the time of request. It contains two fields: the field of date + time and
microseconds.
+ Size (s) - specifies the size or depth of the request in seconds.
« Archivator - indicates values archiver for which the request is to be processed. If the value is
missing, the request will be processed for the buffer and for all archivers. If the <buffer> is
specified, then the request will be processed only for the archive's buffer.
« Show trend - indicates the necessity for presentation of the archive's data in the form of a graph
(trend), otherwise the result is presented in a table that contains only time and value. In the case of
installation of this field the schedule is formed and displayed, in addition additional configuration
fields of the image settings are appeared:
« Picture size - indicates the width and height of the generated image in pixels.
+ Value scale - indicates the lower and upper limit of the scale of value. If both values are
set to 0 or equal, then the scale will be determined automatically depending on the values.

File

85000 == el 20 2

Edit View Help QTStarter

MName b] -
Value archive: Meminfo_use
TC2.1_2_sp -
T2_1_war
PC73_2_impQdwn0 Archive | Archivators | Values l
EAST_2_st_open
EAS1_1_st_opent Time: [14.01201010:40:29 |~ | [D =

slot7_st_open : E
PP var Size (s}

PC_n n=nm2_var

EAS7_1_st_open Show trend: [

TC2_2_1_outD) - - _
g1 _dP Picture size: [600 H [230 H
sloté_st_open Value scale: [U |$] [U H
F_PP1

P?3_1 :::: Values trend:

P3_war

eminfo_use
slot5_st_open
hs59_2_st_open
J_LCW21 1 _st_oper
PC73_2_impQupl
LC21_2_var
slotd_st_open
hs58_1_st_open
PC73_1_impQupd
LCW21_2_var Lfo00d
TE1314_2_var0
PdG0_1_wvar LRI

F3_var = .
slot3_st_open E P e S o e o e
TE1313 1 vard 7 BENED LD QED ZD MEY 4 0:35 M k: 10:37 Mo 10:3 Mo L

[

]

[DemoStation/sub_Archive/va_Meminfo_use /2 fval%2ftrend ﬂ

Fig. 4.6f. The "Values" tab of the values archive of subsystem "Archives".

OpenSCADA program description 71

Each module of the "Archives" subsystem provides configuration page with the tabs "Archivators" and
"Help". The "Archivators" tab (Fig.4.6g) contains a list of messages and values archivers registered in the
module. The context menu of the list provides user with possibility to add, delete and move to the desired
controller. The "Help" tab contains information about the module of subsystem "Archives" (Fig. 4.1d),
whose structure is identical for all modules.

28500

File Edit View Help QTStarter

| Name

= g Demo statuion
=5 Data Bases
I':ff; Security
i Transports
e Transport protocols
_i Data acquisition
| Archives
Ei Module:

o-&-B-8-E-F

“5 To DB archivater
Value archive:
{4 Specials
|| User interfaces
-'5- Modules sheduler

Loop
Loop SSL

EH-H

B g Fie system archiv:

£ (1]

[

)

.4
Archivators Help

QL 29

Module: FSArch

Message archivators:

NetReqgusts
Test
StatErrors

“alue archivators:

1h
m
1s

L=

Fig. 4.6g. The "Archivators" tab of the module of subsystem "Archives".

|

Messages archivers contains their own configuration page with tabs "Archivator" and "Messages".

The "Archivator" tab (Fig.4.6h) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another as you can find in the own documentation of
modules. As an example we shall examine the settings of the messages archiver from the module of the
archive on the file system Arch.FSArch Settings:

- Section "State" - contains the properties, hich characterize the archivers' state:

« Running - archivers' state "Running". The running archiver processes the messages

archive buffer and puts his data in its repository, but also it processes requests for access to

data in the repository.
Archivator DB - database address for storing the archiver's data.

« End - date + time of the last data in the archiver's repository.

+ Begin - date + time of the first data in the archiver's repository.

- Archivator files size (kB) - information about the total size of the archiver's files with the

data.

« Archiving time (ms) - time spent on the archiving of messages archive data.

« Section "Config" - directly contains the configuration fields:

ID - information on the archiver's identifier.
« Name - indicates the archiver's name.

« Description - brief description of the archiver and its purpose.
+ Address - address of the storage in the specific for the type of archiver (module) format.
Format description usually available in the tooltip for this field. In the example it is the
relative path to the storage directory.
« Message level - indicates the level of archiver's messages. Messages with a level greater
than or equal to the specified one are processed by the archiver.

OpenSCADA program description 72

http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=zj3

« Message categories - list of categories, separated by ';', of messages. Messages matched
with the templates of categories will be processed by the archiver. In the category you can
specify the elements of a sample of the template, namely, the characters '*' - for any string
and '?' - for any character.
« To start - indicates the status "Running", in which to transfer archiver at startup.
+ Section "Additional options" - specialized section for module about the contents of which you
can read in the documentation on the module.

=8 OpenSCADA QTCig: Demo statuion
File Edit View Help QTStarter

800U 1 4L B800L 2@

|Name

E)- @) Demo statuion Message archivator: Test

-
- Data Eases Archivator | Messages
{fd, Security
? Transports _State B
@ Transport protocols o
/| Data acquisition Runing: ¥/
B[] Archives Archivator DB: ['." |v]
Madule: .
Bl- Mo e) Enc: 14.01.2010 10:22:15
= o File system archivs
El- Message archivato Begin: 26.08.2009 15:56:48
" NetRequsts Archivator files size (kB): 2p9.19
StatErrors Archiving time (msek). p,243
Value archivator:
4 To DB archivator — Config
Vaiue archive: o
{9 Specials test
@l User interfaces MName: [Test]
%y Modules sheduler Description:

H-H

=) Loop
=) | oop SSL

Address: [AHCHI‘-.“ESMESSI'I’ESTJ‘

Message categories: [*]

To start: [

— Additional options
XML archive files: ||

Maximum archive file size (kB): | 1024 E E
IDemoStation/sub_Archiveimod_FSArchimess_test®e2fprm%2fst%2ftarch E|

Fig. 4.6h. The main tab of the messages archiver configuration of subsystem "Archives".

The "Messages" tab (Fig.4.61) contains the form of the messages request from the archive of the
archiver:

« Time - indicates the time of the request.
+ Size (s) - indicates the size and depth of the request in seconds.
« Category pattern - indicates the category of the requested messages. In the category you can
specify the elements of a sample of the template, namely, the characters '*' - for any string and '?' -
for any character.
+ Level - indicates a minimum level of messages, ie the request will be processed for messages with
the level greater or equal to the specified one.

The result table contains messages rows with the following columns:
« Time - message time.
« Category - message category.
+ Level - message level.
« Message - message text.

OpenSCADA program description 73

File QTStarter

2 500
|Name
- (@ Demo statuion

Edit View Help

EH-EH

Loop
Loop SSL

:

EH-H

D

5 =

2

Message archivator: Test

-
= Data Ellases Archivator Messages
i, Security
i Transports Time: [14.01.201010:33:45 |~ |
(@ Transport protocols =
/| Data acquisition Size (s): | 3600]
B[] Archives Category pattern: []

=l Module: =]

El- [;g¥ File system archiva Level: _ﬂ
- Message archivato Messages:

MetRequsts
: o Time | MCSec | Category | Level | Message |
StatErrors ;
Value archivator: Thu Jan 14 10:22:15 2010 133109 | DemoStationdsub_Ulimo... |1 raman| Change =DemoSt...
"% To DE archivator)
Value archive: Thu Jan 14 10:22:06 2010 199832 | DemoStationdsub_limo... 1 raman| Change =DemoSt...
& Specials)
| User imerfaces Thu Jan 14 10:21:58 2010 265170 | IDemoStationdsub_Ulimo... |1 raman| Change =DemoSt...
&9 Modules sheduler Thu Jan 14 10:21:54 2010 | 355280 | /DemoStationisub_Ulimo... |1 roman| Change </DemoSt...
Thu Jan 14 10:21:47 2010 604295 | DemoStationdsub_Ulma... |1 raman| Change <DemoSt...
Thu Jan 14 10:20:59 2010 42381 DemoStationisub_Uma... 1 raman| Change <DemoSt...
Thu Jan 14 10:20:50 2010 910178 | DemoStationdsub_Uima... |1 roman| Change <DemoSt. .
Thu Jan 14 10:20:39 2010 485029 | DemoStationdsub_Ulima... |1 roman| Change <DemoSt. .
Thu Jan 14 09:55:24 2010 | 69201 DemoStation/ 1 Final started! @

Jomar]

Fig. 4.61. Tab of the messages request "Messages" of the messages archiver of subsystem "Archives".

Values archivers contains their own configuration page with tabs "Archivator" and "Archives".

The "Archivator" tab (Fig.4.6j) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another as you can find in the own documentation of
modules. As an example we shall examine the settings of the messages archiver from the module of the
archive on the file system Arch.FSArch Settings:

- Section "State" - contains the properties, hich characterize the archivers' state:

« Running - archivers' state "Running". The running archiver processes the messages
archive buffer and puts his data in its repository, but also it processes requests for access to
data in the repository.3ampochl Ha JOCTYH K JaHHBIM B XpaHUJIHUIIIE.

« Archiving time (ms) -information about the time spent on archiving data of the archives
buffers. Periodicity of archiving is set in the field "Period archiving" in the section "Config"
of the tab.

« Archivator DB - database address for storing the archiver's data.

+ Section "Config" - directly contains the configuration fields:

- ID - information on the archiver's identifier.

+ Name - indicates the archiver's name.

« Description - brief description of the archiver and its purpose.

« Value period (s) - indicates the periodicity of values that are contained in the archiver's
repository.

« Period archiving (s) - indicates the periodicity of the archives buffers data archiving task.
The dimension of the archives buffers in the time expression must not be less, and preferably
somewhat greater then the periodicity of the of archiving task.

« Address - address of the storage in the specific for the type of archiver (module) format.
Format description usually available in the tooltip for this field. In the example it is the

OpenSCADA program description 74

http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=zj3

relative path to the storage directory.

+ To start - indicates the status "Running", in which to transfer archiver at startup.
+ Section "Additional options" - specialized section for module about the contents of which you
can read in the documentation on the module.

QOpenSCADA QTCfg: Demo statuion

File Edit “iew Help QTStarer

88000

Name

= 6 Demo statuion

=% Lkl 200 B8

Value archivator: 1s

=
“uy Data Bases Archivator Archives
% Security
g Transports — State
I, Transport protocols
B - . P Runing: @
J Data acquisition
El- [] Archives Archiving time (msek): 3 33g
| Module:
& e . . Archivator DB: ["." |v]
[El- ¥ File system archiva
Message amhivator — Canfig
[} Value amhivator: -
1h s
1m Name: ['1:
“ai To DB archivator Description:

Value amhive:
a Specials
] Userinterfaces
&) Modules sheduler
Loop

Loop 55L Period archiving (seec): [ED l%]

Second's archive

Walue period (sec): ['1]

-

PLC

Address: [AHL’:HI"u"E ShALMs

To start: IE

—Additional options

File's time size (hours): [24]

Maximum files number: ['100 l%]

Mumberic values rounding (%) [0.0'1]

Pack files timeaut (min): |10 =

Check archives period {min): [BD l%]

4 I 4 Ip | ’Gh!:k archivator directory now

Fig. 4.6j. The main tab of the values archiver configuration of subsystem "Archives".

OpenSCADA program description 75

The "Archives" tab (Fig.4.6k) contains a table with information about the archives being processed by
the archiver. In the rows the table contains archives, and in the columns - the following information:
« Archive - archive's name.
« Period (s) - archive's periodicity in seconds.
+ Buffer size - buffer's dimension in units.
« Files size (Mb) - specific to the module Arch.FSArch field with information about the total size
of the files of the archiver's storage for the archive.

In the case of the module Arch.FSArch in this tab you can find the form of export the archiver's data.

sa. i3 OpenSCADA QTCfg: Demo statuion

File Edit Wiew Help QTStarer
$ - =) o QL 28
2 5000 =) & &Y D
Name =
: Value archivator: 1s
= i Demo statuion
=
'i Data Bases Archivatar Archives
IB Security
? Transports Archives:
gl Transpart pratocols o— — — R —
J Data acquisition EI rchive | erio {s}l u Ernzel iles size (Mb)
B[] Archives 1 |CPULoad_lead |1 100 01318
= Modwle: —
[l [of File system archiva 2 | F101_var 1 100 0.1133
Message armchivator -
= Value amhivator: 3 | F103_var 1 100 0.0127
1h |
m 4 |Fa_var 1 100 0.0137
I .)
w2 DB archivator 5 |F4_var 1 100 01914
Value amhive:
(9 Specials 8 |F_PP1_var 1 100 0.1953
| User interfaces |
& Modules sheduler 7 |Meminfo_uss |1 100 0.0518
Loop I
Loop 551 8 |P101_var 1 100 0.0518
PLEC I
o |P103_var 1 100 0.0127 E
| — v
— Export
Archive: [|v]
Begin: [m.m.m?nna:nn:nn |v]
End: [m.m.m?n 03:00:00 |v]
tpe: | 8
: I [III] Tao file: [] &~
-
Jome Arig.

4.6k. The "Archives" tab of the values archiver of subsystem "Archives".

OpenSCADA program description 76

4.7. Subsystem "User interfaces"

The subsystem is modular. To configure the subsystem the root page of the subsystem "User Interfaces"
is provided, it contains the tabs "Modules" and "Help". The "Modules" tab (Fig. 4.1b) contains a list of
modules of subsystem and it is identical for all modular subsystems. The "Help" tab contains a brief help
for this page.

Each module of the subsystem "User Interfaces" provides configuration page with the tabs "User
Interface” and "Help". The "User Interface" tab (Fig.4.7a) provides the parameter for monitoring the
"Running" status of the module, as well as the configuration sections specialized for the modules of this
subsystem. On the "Help" tab there is an information about the module of the subsystem "User Interfaces"
(Fig. 4.1d), which structure is identical for all modules.

=8 OpenSCADA QTCrg: Demo statuion
File Edit “iew Help QTStarter

B 0O A=x L1l 200 29

Name [;]
| Data acquisition a Module: WebCfgD

[] Archives

&J Specials User interface Help
- [E] User interfaces
=4 Operation user interface State
y System configurator (Fluning: @ ‘
L.} Visual control area engi
=) System configurator (Q Module options
: Fh QT U starter “Gn to remote stations list configuration ‘
e iDynamic WEB configura

B Operation user interfac

&y Modules sheduler E
-

=N |oop

[|

Fig. 4.7a. The "User Interface" tab of the module of subsystem "User Interfaces".

OpenSCADA program description 77

4.8. Subsystem "Specials"

The subsystem is modular. To configure the subsystem the root page of the subsystem "User Interfaces"
is provided, it contains the tabs "Modules" and "Help". The "Modules" tab (Fig. 4.1b) contains a list of
modules of subsystem and it is identical for all modular subsystems. The "Help" tab contains a brief help
for this page.

Each module of the subsystem "Specials" provides configuration page with the tabs "Special" and
"Help". The "Special" tab (Fig.4.8a) provides the parameter for monitoring the "Running" status of the
module, as well as the configuration sections specialized for the modules of this subsystem. On the "Help"
tab there is an information about the module of the subsystem "Specials" (Fig. 4.1d), which structure is
identical for all modules.

=% OpenSCADA QTCfg: Demo statuion
File Edit View Help QTStarter

BB 00O == 1l 200 29

Mame Ty . -
S @ Demo statuion IG Module: FLibSYS

-
'-ji Data Bases Su Special Help
{2, Security Su
i/ Transports Su _ Ctate
@ Transport protocols Su o
j Data acquisition Su Runing: [/
[] Archives Su Functions:
B g4 Specials Su Sys: Call
Complex1 function's lib My DE: SQL request
OpenSCADA system's tests Mo EML: Mode
Ei-iSystem AP| functions ®ML: Control reguest
Math funiction's lib e “al: Archive
I!I Usger interfaces Su “al Archive buffer
& Modules sheduler Su Time: Date
8 Loop Re Time: Time
- Time: String time
Loop S5L Re
= P Time: String to time
Time: Cran plane time -
4] (]} Mess: Get E

*Jfroman]

Fig. 4.8a. The "Special" tab of the module of subsystems "Specials".

OpenSCADA program description 78

4.9. Subsystem '"Modules sheduler"

The

subsystem is not modular. To configure the subsystem the subsystem's page "Modules sheduler" is

provided, it contains tabs "Subsystem" and "Help". The "Subsystem" tab (Fig.4.9a) contains the basic
settings of the subsystem. The "Help" tab contains a brief help for this page. The structure of the tab
"Subsystem":

 Path to shared libs (modules) - information about the location of the directory with the modules
of the OpenSCADA system. It is set by the parameter <ModDir> of the station, of the configuration
file.
+ Allowed modules - information about the list, separated by ',', of modules that are authorized for
automatic connection and renewal. The value of '*' is used to resolve all the modules. It is set by the
parameter <ModAllow> of the section of subsystem, sub ModSched, of the station of the
configuration file.
« Denied modules - information about the list, separated by ';' of modules that are denied for
automatically connection and updating. It is set by the parameter <ModDeny> of the section of
subsystem "sub ModSched" of station of configuration file. List of denied modules has higher
priority than allowed.
« Check modules period (sec) - indicates the periodicity of testing modules on the fact of their
updating. Modules that are allowed for automatically connection and updating will be automatically
updated.
« Check modules now - command to check the modules on the fact of their updating. Modules that
are allowed for automatically connection and updating will be automatically updated.
« Shared libs (modules) - table with the list of shared libraries with the modules detected by
OpenSCADA. Rows are modules, and in the columns there is an information about them:

« Path - information on the full path to the shared library.

Time - information about the time the of last modification of a shared library.

« Modules - information about the list of modules in a shared library.

« Enable - state "Enable" of the shared library. Privileged users are provided with an

opportunity to manually enable/disable the shared libraries by changing this field.

File

A2 8500 - = 2 QG]

Edit \iew Help QTStarter

Marme IT\rpe -
CI- @) Demo statuion Local sl @ Subsystem: Modules sheduler
.- [53 Data Bases Subsys
% DB saLie Module| [Subsystem | Help |
% DB DEF Madule =

(%) DB FireBird Maodule Path to shared libs(modules). ;. fibiopenscada
ﬁ DB MysQL Module Allowed modules:
l:fr) Security Subsys .
/, Transports Subsys Denied modules:

R & -E-E-E-E-E-E

e §r-.-1odl.4|es: sheduler i
=2 Loop Remate
=8 Loop S5L Remate

@y Transport protocols Subsys
/| Data acquisition Subsys

| Archives Subsys
&9 Specials Subsys
M| User interfaces

Check modules period (sec):
Check modules now.

Shared libs{modules):

Path | Time Modules

M Niblopenscadaldag_OPC_UA_.. | Tue Jan 12 02:54:54 2010 DAQ.OPC_LA; Protocol.OPC_\'\

I Niblopenscadafr_Sockets so Tue Jan 12 09:54:40 2010 | Transport Sockets;

M Niblopenscadalspec_System... | Tue Jan 12 09:54:37 2010 | Special SystemTests;
I fiblopenscadafr_Serial so Tue Jan 12 08:54:41 2010 | Transport Serial,

. Niblopenscadalui_WebCfg.so Tue Jan 12 09:35:02 2010 UlWebCfg;

I fibfopenscadalidag_SoundCa... Tue Jan 12 09:54:53 2010 DAQ . SoundCard; @

Jiomar)

Fig. 4.9a. The main configuration tab of subsystem "Modules sheduler".

OpenSCADA program description 79

4.10. Configuration file of the OpenSCADA and parameters of command-line
OpenSCADA execution.

Configuration file of the OpenSCADA system is provided to store the system and general configuration
of OpenSCADA-station. Only in the configuration file and through the command-line options you can
specify the part of the key system parameters of the station, so familiarity with the structure of the
configuration file is necessary for professionals who make solutions based on OpenSCADA.

The configuration file of the OpenSCADA system can be called somehow, but the oscada.xml name and
derived from it are accepted. The configuration file is usually indicated when you start the station by the
command-line option --Config=/home/roman/roman/work/OScadaD/etc/oscada_demo.xml. For the
convenience of the calling the startup scripts of the station are created with the correct configuration file,
for example script (openscada_demo) of the demo station execution:

#!/bin/sh

openscada --Config=/etc/oscada demo.xml $@

If the configuration file is not specified then the standard configuration file: /etc/oscada.xml is used.

Structure of the configuration file based on the extensible markup language XML. Therefore the strict
adherence to the rules of XML syntax is required. An example of the configuration file of the
OpenSCADA, with configuration nodes of most of the OpenASCADA components, is given below:

<?xml version="1.0" encoding="UTF-8" ?>
<OpenSCADA>
<!-- This is the OpenSCADA configuration file. -->
<station id="DemoStation">
<!-- Discribe internal parameter for station. Station this only OpenSCADA programm. -->
<prm id="StName">Demo station</prm>
<prm id="StName_ ru">Jlemo cranuus</prm>
<prm id="StName uk">Jemo cTanuis</prm>
<prm id="WorkDB">SQLite.GenDB</prm>
<prm id="Workdir">~/.openscada</prm>
<prm id="IcoDir">./icons</prm>
<prm id="ModDir">/usr/lib/openscada</prm>
<prm id="LogTarget">10</prm>
<prm id="MessLev">0</prm>
<prm id="Lang2CodeBase'">en</prm>
<prm id="SaveAtExit">0</prm>
<prm id="SavePeriod">0</prm>

<node id="sub_BD">
<prm id="SYSStPref">0</prm>
<tbl id="DB">
<fld ID="GenDB" TYPE="SQLite" NAME="Generic DB" NAME ru="OcHornas BI"
NAME uk="Ocuosra BJ" ADDR="./DEMO/DemoSt.db" CODEPAGE="UTF-8"/>
</tbl> -
</node>

<node id="sub_Security">
<!--
<tbl id="Security user">
<fld
NAME="root"
DESCR="Super user"
DESCR_ru="Cynep nosib30BaTens"
DESCR_uk="Cynep kopucTysau'"
PASS="openscada"/>
<fld
NAME="user"
DESCR="System user"
DESCR_ru="CuCTeMHsli NOJb30BaTeNb"
DESCR_uk="CucreMumit xopmcryeau"
PASS=""/>
</tbl>
<tbl id="Security grp">
<fld
NAME="root"
DESCR="Super users groups"
DESCR_ru="I'pynmna cynepnonssopaTenen"
DESCR_uk="I'pyna cynepxopucryeauis"
USERS="root;user"/>
</tbl>-->
</node>

OpenSCADA program description 80

<node id="sub_ModSched">
<prm id="ModAllow">*</prm>
<prm id="ModDeny"></prm>
<prm id="ChkPer">0</prm>
</node>

<node id="sub_Transport">
<!--
<tbl id="Transport in">
<fld
ID="WEB_1"
MODULE="Sockets"
NAME="Generic WEB interface"
NAME ru="OcroBHOM WEB uuTepdpenc"
NAME uk="OcroBumi WEB inTepdpernc"
DESCRIPT="Generic transport for WEB interface."
DESCRIPT_ ru="OcHOBHO} TpaHcnopT anss WEB uurTepdenca."
DESCRIPT_uk="OCHOBHMﬁ TpaHcnopT Anst WEB inTepdeiicy."
ADDR="TCP::10002:0"
PROT="HTTP"
START="1"/>
<fld
ID="WEB 2"
MODULE="Sockets"
NAME="Reserve WEB interface"
NAME ru="PesepsHini WEB murepdesc"
NAME uk="Pesepsumit WEB iuTeppesic"
DESCRIPT="Reserve transport for WEB interface."
DESCRIPT_ ru="PeBepeHiNi TpaHcnopr ans WEB uurepdeiica."
DESCRIPT_ uk="Pesepsuuii Tpaucnopr anss WEB inrTepdeincy."
ADDR="TCP::10004:0"
PROT="HTTP"
START="1"/>
</tbl>
<tbl id="Transport out">
<fld
ID="testModBus"
MODULE="Sockets"
NAME="Test ModBus"
NAME ru="TecT ModBus"
NAME uk="TecT ModBus"
DESCRIPT="Data exchange by protocol ModBus test."
DESCRIPT_ru="TecT o6MeHa mo npoTokony ModBus."
DESCRIPT uk="TecT o6Miny Ba npoTokonom ModBus."
ADDR="TCP:localhost:10502"
START="1"/>
</tbl>-->
</node>

<node id="sub_DAQ">
<!--
<tbl id="tmplib">
<fld ID="test2" NAME="Test 2" NAME ru="TecT 2" NAME uk="TecT 2"
DESCR="" DESCR_ru="" DESCR uk="" DB="tmplib_test2"/>
</tbl>
<tbl id="tmplib_ test2">
<fld ID="test2" NAME="Test 2" NAME ru="TecT 2" NAME uk="TecT 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB="test2"
PROGRAM="JavalikeCalc.JavaScript
cnt=5%i"/>
</tbl>
<tbl id="tmplib_ test2_io">
<fld TMPL_ID="test2" ID="i" NAME="I" NAME ru="I" NAME uk="I"
TYPE="4" FLAGS="160" VALUE="" POS="0"/>
<fld TMPL_ID="test2" ID="cnt" NAME="Cnt" NAME_ru:"Cnt" NAME_uk:"Cnt"
TYPE="4" FLAGS="32" VALUE="" POS="0"/>
</tbl>-->

<node id="mod_LogicLev">
<!--
<tbl id="DAQ">
<fld

ID="test2"
NAME="Test 2"
NAME ru="Tecr 2"
NAME uk="Tecr 2"
DESCR=""
DESCR_ru=""
DESCR_uk=""
ENABLE="1"
START="1"
PRM BD="test2prm"
PERIOD="1000"

OpenSCADA program description 81

PRIOR="0"/>

</tbl>

<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME ru="TecT 2" NAME_uk="TeCT 2"

DESCR="" DESCR_ru="" DESCR_uk="" EN="1" MODE="2"
PRM="test2.test2"/>

</tbl>-->

</node>

<node id="mod_System">

<!--
<tbl id="DAQ">
<fld
ID="DataOS"
NAME="Data OS"
NAME ru="[ause OC"
NAME uk="flani OC"
DESCR="Data of services and subsystems OS."
DESCR_ru="JlanHse cepBMCOB K mnopcmucrem OC."
DESCR_uk="llani cepmicis Ta nigcucrem OC."
ENABLE="1"
START="1"
AUTO_FILL="0"
PRM BD="DataOSprm"
PERIOD="1000" PRIOR="0"/>
</tbl>

<tbl id="DataOSprm">
<fld SHIFR="CPU" NAME="CPU load" NAME ru="Harpyska CPU"
NAME uk="HaBanTaxenuss CPU" DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" TYPE="CPU" SUBT="gen"/>
<fld SHIFR="MEM" NAME="Memory" NAME ru="IlamsaTs" NAME_uk="HaM\'sz"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" TYPE="MEM"/>
</tbl> -->
</node>

<node id="mod_DiamondBoards">
<!--
<tbl id="DAQ">
<fld ID="Athena" NAME="Athena board" NAME ru="Ilmara Athena"
NAME uk="Ilnara Athena" DESCR="" DESCR ru="" DESCR_uk=""
ENABLE="1" START="0" BOARD="25" PRM_BD_A="AthenaAnPrm"
PRM_BD_D="AthenaDigPrm" ADDR="640" INT="5" DIO_CFG="0"
ADMODE="0" ADRANGE="0" ADPOLAR="0" ADGAIN="0"
ADCONVRATE="1000"/>
</tbl>
<tbl id="AthenaAnPrm">
<fld SHIFR="ai0" NAME="AI 0" NAME_ru:"AI o" NAME_uk:"AI o"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="0" TYPE="Q0" CNL="0" GAIN="0"/>
</tbl>
<tbl id="AthenaDigPrm">
<fld SHIFR="diO" NAME="DI 0" NAME ru="DI o" NAME uk="DI o"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="0" TYPE="0" PORT="0" CNL="0"/>
</tbl> -->
</node>

<node id="mod_BlockCalc">
<!--
<tbl id="DAQ">
<fld ID="Model" NAME="Model" NAME ru="Mogens" NAME uk="Mogens"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM BD="Model prm" BLOCK_ SH="Model blcks"
PERIOD="1000" PRIOR="0" PER DB="0" ITER="1"/>
</tbl>
<tbl id="Model blcks">
<fld ID="Klap" NAME="Klapan" NAME ru="Knanaun" NAME uk="Knanaa"
DESCR="" DESCR_ru="" DESCR_uk=""
FUNC="DAQ.JavaLikeCalc.lib techApp.klap" EN="1" PROC="1"/>
</tbl>
<tbl id="Model blcks_io">
<fld BLK_ID="Klap" ID="1 k11" TLNK="0" LNK="" VAL="50"/>
<fld BLK_ID="Klap" ID="1_ k12" TLNK="0" LNK="" VAL="20"/>
</tbl>
<tbl id="Model prm">
<fld SHIFR="1 k1" NAME="Klap lev" NAME ru="llonox. kjianaHa'"
NAME uk="Ilosmox. xnanaxHa" DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" BLK="Klap" IO="l_k11"/>
</tbl> -->
</node>

<node id="mod_JavalLikeCalc">

OpenSCADA program description

82

<!--
<tbl id="DAQ">
<fld ID="CalcTest" NAME="Calc Test" NAME ru="TecT BRuMCI."
NAME uk="TecT obGumcn." DESCR="" DESCR_ru="" DESCR_uk=""
ENABLE="1" START="1" PRM BD="Cal FUNC="TemplFunc.d_alarm"

PERIOD="1000" PRIOR="0" PER DB="0" ITER="1"/>
</tbl>

<tbl id="CalcTest val">
<fld ID="in" VAL="0"/>
<fld ID="alrm" VAL=""/>
<fld ID="alrm md" VAL="1"/>

<fld ID="alrm mess" VAL="Error present."/>
</tbl>

<tbl id="CalcTest prm">

<fld SHIFR="alrm" NAME="Alarm" NAME ru="ABapusi" NAME uk="ABapis"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" FLD="alrm"/>

</tbl>
<tbl id="1lib">
<fld ID="TemplFunc" NAME="" NAME ru="" NAME uk="" DESCR="" ESCR_ru=""
DESCR_uk="" DB="lib TemplFunc"/>
</tbl>

<tbl id="1lib_TemplFunc">
<fld ID="d_alarm" NAME="Digit alarm" NAME ru="ABapusi N0 AMUCKp."
NAME _uk="ABapiss Ba guckp" DESCR=""
FORMULA="alrm=(in==alrm md) ?"1:"

+alrm mess:"O";"/>
</tbl>

<tbl id="1lib TemplFunc_io">
<fld F_ID="d alarm" ID="in" NAME="Input" NAME ru="Bxox" NAME uk="Bxig"
TYPE="3" MODE="0" DEF="" HIDE="0" POS—"O"/>
<fld F_ID="d_alarm" ID="alrm" NAME="Alarm" NAME ru="Amapwus"
NAME uk="Asapis" TYPE="0" MODE="1" DEF="" HIDE="0" POS="1"/>
<fld F_ID="d_alarm" ID="alrm md" NAME="Alarm mode"
NAME ru="PexuM aBapum'" NAME uk="PexuM aBapii" TYPE="3"
MODE="0" DEF="" HIDE="0" POS="2"/>
<fld F_ID="d_alarm" ID="alrm mess" NAME="Alarm message"
NAME ru="Coofbw. asapumu" NAME uk="IloBigm. amapii" TYPE="0"
MODE="0" DEF="" HIDE="Q0" POS="3"/>
</tbl>-->
</node>

<node id="mod_Siemens">
<!--
<tbl id="DAQ">
<fld ID="test2" NAME="Test 2" NAME ru="TecT 2" NAME uk="TecT 2"
DESCR="" DESCR_ru="" DESCR_1 uk="" ENABLE="1" START="1"
PRM BD= “test2prm“ PERIOD= “1000“ PRIOR="0" CIF_DEV=“0“ ADDR="5"
ASINC WR—"O"/>
</tbl>
<tbl id="test2prm">
<fld SHIFR="test2" NAME="Test 2" NAME ru="TecT 2" NAME uk="TecT 2"

DESCR="" DESCR_ru="" DESCR_uké“" EN="1" TMPL:“é?.ai_man"/>
</tbl>-->
</node>

<node id="mod_SNMP">
<!--
<tbl id="DAQ">
<fld ID="test2" NAME="Test 2" NAME ru="TecT 2" NAME_uk="Tecm 2"
DESCR="" DESCR;ru=““ DESCR;uk=““ ENABLE="1" START="1"
PRM_BD=“test2prm“ PERIOD="1000" PRIOR="0" ADDR="localhost"

COMM="public" PATTR LIM="20"/>
</tbl>

<tbl id="test2prm">
<fld SHIFR="test2" NAME="Test 2" NAME ru="Tect 2" NAME uk="TecT 2"

DESCR="" DESCR_ru="" DESCR_uké“" EN="1" OID_Lsé“system"/>
</tbl>-->
</node>

<node id="mod_ModBus">
<!--
<tbl id="DAQ">
<fld ID="test2" NAME="Test 2" NAME ,_ru="TecT 2" NAME uk="Tecm 2"
DESCR="" DESCR ru="" DESCR uk "" ENABLE="1" START=“1“
PRM_BD=“test2prm“ PERIOD=“1000“ PRIOR="0" TRANSP="Sockets"

ADDR="exlar.diya.org" NODE="1"/>
</tbl>

<tbl id="test2prm">
<fld SHIFR="test2" NAME="Test 2" NAME ru="Tect 2" NAME uk="TecT 2"
DESCR="" DESCR_ru="" DESCR uk=""

EN="1" ATTR_LS="321:0:tst:Test"/>
</tbl>-->

OpenSCADA program description 83

</node>

<node id="mod_Transporter">

<1--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME ru="TecT 2" NAME uk="Tect 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1"
PRM BD="test2prm" PERIOD="1000" PRIOR="0" SYNCPER="60"
STATIONS="1loop" CNTRPRM="System.AutoDA"/>

</tbl>-->

</node>

</node>

<node id="sub_Archive">

<prm
<prm
<prm
<prm
<!--
<tbl

id="MessBufSize">1000</prm>
id="MessPeriod">5</prm>
id="ValPeriod">1000</prm>
id="ValPriority">10</prm>

id="Archive_mess_proc">
<fld
ID="StatErrors"
MODUL="FSArch"
NAME="Errors"
NAME ru="Oum6xu"
NAME uk="TlomMumxn"
DESCR="Local errors\' archive"
DESCR_ru="ApXWUB JIOKAaJIBHEIX oumbok"
DESCR_uk="ApxiB JIOKaNIBHMX MOMMIIOK'"
START="1"
CATEG="/DemoStation*"
LEVEL="4"
ADDR="ARCHIVES/MESS/stError/"
FSArchMSize="300"
FSArchNFiles="10"
FSArchTmSize="30"
FSArchXML="1"
FSArchPackTm="10"
FSArchTm="60"/>
<fld

ID="NetRequsts"
MODUL="FSArch"
NAME="Net requests"
NAME ru="CeTeBsle Banpocs"
NAME uk="MepexeBi sanmurTn'"

DESCR="Requests to server through transport Sockets."
DESCR_ru="3anpocs k cepBepy uepes TpaHcnopT Sockets."
DESCR_uk="3amuTy no cepeepa uepes TpaHcnopT Sockets."

START="1"

CATEG="/DemoStation/Transport/Sockets*"

LEVEL="1"
ADDR="ARCHIVES/MESS/Net/"
FSArchMSize="300"
FSArchNFiles="10"
FSArchTmSize="30"
FSArchXML="1"
FSArchPackTm="10"
FSArchTm="60"/>

</tbl>
<tbl id="Archive_ val proc">

<fld
ID="1h"
MODUL="FSArch"
NAME="1lhour"
NAME ru="luac"
NAME uk="lrogm"
DESCR="Averaging for hour"
DESCR_ru="YcpenHeHue Ba uac"
DESCR_uk="YcepenHeHHs1 3a TI'OOuHY"

START="1"
ADDR="ARCHIVES/VAL/1h/"
V_PER="360"

A _PER="60"

FSArchTmSize="8640"
FSArchNFiles="10"
FSArchRound="0.1"
FSArchPackTm="10"
FSArchTm="60"/>

</tbl>
<tbl id="Archive val">

<fld
ID="testl"

OpenSCADA program description 84

NAME="Test 1"
NAME ru="Tect 1"
NAME uk="Tecr 1"
DESCR="Test 1"
DESCR_ru="TecT 1"
DESCR_uk="TecT 1"

START="1"
VTYPE="1"
BPER="1"
BSIZE="200"
BHGRD="1"
BHRES="0"
SrcMode="0"
Source=""

Archs=""/>
</tbl>-->
</node>

<node id="sub_Protocol">
</node>

<node id="sub_UI">
<node id="mod_QTStarter">
<prm id="StartMod">QTCfg</prm>
</node>
<node id="mod_WebCfg">
<prm id="SessTimeLife">20</prm>
</node>
<node id="mod_VCAEngine">
<!--
<tbl id="LIB">
<fld ID="test2" NAME="Test 2" NAME ru="Tecr 2" NAME uk="TecTr 2"
DESCR="" DESCR_ru="" DESCR uk="" DB TBL="wlib test2" ICO=""
USER="root" GRP="UI" PERMIT="436"/>

</tbl>
<tbl id="wlib_test2">
<fld ID="test2" ICO="" PARENT="/wlb originals/wdg_Box" PROC=""
PROC_ru="" PROC_uk="" PROC_PER="—1" USER="root" GRP="UI"

PERMIT="436"/>
</tbl> <tbl id="wlib_test2_io">
<fld IDW="test2" ID="name" IO_VAL="Test 2" IO_VAL ru="TecT 2"
IO_VAL_uk="TecT 2" SELF_FLG="" CFG_TMPL="" CFG_TMPL ru=""
CFG_TMPL_uk="" CFG_VAL=""/>
<fld IDW="test2" ID="dscr" IO _VAL="Test module 2"
IO_VAL_ru="Tect momyxns 2" IO _VAL_uk="TecT mogmyxus 2"
SELF_FLG="" CFG_TMPL="" CFG_TMPL ru="" CFG_TMPL uk=""
CFG_VAL=""/>
</tbl>
<tbl id="PRJ">
<fld ID="test2" NAME="Test 2" NAME ru="TecT 2" NAME uk="Tect 2"
DESCR="" DESCR_ru="" DESCR uk="" DB_TBL="prj_test2" ICO=""
USER="root" GRP="UI" PER </tbl> <tbl id="prj_test2">
<fld OWNER="/test2" ID="pgl" ICO="" PARENT="/wlb_originals/wdg_ Box"
PROC="" PROC_ru="" PROC_uk="" PROC_PER="-1" USER="root"
GRP="UI" PERMIT="436" FLGS="1"/>
<fld OWNER="/test2/pgl" ID="pg2" ICO=""
PARENT="/wlb_originals/wdg_Box" PROC="" PROC_ru="" PROC_uk=""
PROC_PER="-1" USER="root" GRP="UI" PERMIT="436" FLGS="0"/>
</tbl>
<tbl id="prj_test2 incl">
<fld IDW="/prj_test2/pg_pgl" ID="wdgl"
PARENT="/wlb_originals/wdg_ Box"/>
</tbl>-->
</node>
</node>

<node id="sub_Special">
<node id="mod_SystemTests">

<prm id="PARAM" on="0" per="5" name="LogicLev.experiment.F3"/>

<prm id="XML" on="0" per="10" file="/etc/oscada.xml"/> <prm id="MESS" on="0"
per="10" categ="" arhtor="DBArch.test3"/>

<prm id="SOAttDet" on="0" per="20" name="../../lib/openscada/daq_LogicLev.so"
full="1"/>

<prm id="Val" on="0" per="1" name="LogicLev.experiment.F3.var" arch_len="5"
arch _per="1000000"/>

<prm id="Val" on="0" per="1" name="System.AutoDA.CPULoad.load" arch_len="10"
arch_per="1000000"/>

<prm id="BD" on="0" per="10" type="MySQL"
bd="server.diya.org;roman;123456;oscadaTest"
table="test" size="1000"/>

<prm id="BD" on="0" per="10" type="DBF" bd="./DATA/DBF" table="test.dbf"
size="1000"/>

OpenSCADA program description 85

</node>

</station>
</OpenSCADA>

<prm

<prm

<prm
<prm
<prm
<prm
<prm
<prm

<prm

id="BD" on="0" per="10" type="SQLite" bd="./DATA/test.db" table="test"

size="1000"/>

id="BD" on="0" per="10" type="FireBird"
bd="server.diya.org:/var/tmp/test.fdb;roman;123456"
table="test" size="1000"/>

id="TrOut" on="0"
reg="time"/>
id="TrOut" on="0"
reqgq="time"/>
id="TrOut" on="0"
reg="time"/>
id="TrOut" on="0"
regq="time"/>

per="1" addr="TCP:127.0.0.1:10001" type="Sockets"
per="1" addr="UDP:127.0.0.1:10001" type="Sockets"
per="1" addr="UNIX:./oscada" type="Sockets"

per="1" addr="UDP:127.0.0.1l:daytime" type="Sockets"

id="Func" on="0" per="10"/> <prm id="SysContrLang" on="0" per="10"
path="/Archive/FSArch/mess_StatErrors/%2fprm%2fst"/>

id="valBuf" on="0" per="5"/> <prm id="Archive" on="0" per="30"
arch="testl" period="1000000"/>

id="Base64Code"

on="0" per="10"/>

Lets examine in details the structure of the configuration file. A configuration file can contain a
configuration of several stations in the sections <station id="DemoStation"/>. To attribute set the identifier
of the station. Using one or another section of the station at startup is specified by the command-line option
--Station=DemoStation. Section of the station directly contains parameters of the station and subsystems'
sections. Configuration options of the section are written in the form <prm id="StName">Demo
station</prm>. Where in the attribute <id> the ID of the attribute is specified, and in the tag's body the
value of parameter "Demo station" is specified. The list of available options and their description for the
station and all other sections can be obtained from the console by calling OpenSCADA with parameter
--help or in the "Help" tabs of the pages of the components of the configuration files of OpenSCADA

(Fig.4.10a).

OpenSCADA program description 86

File

rg: Demo

Edt View Help QTStarter

QOQRx L4200 28

Mame

@

3]

Type

e OpenSCADA station: "Demo statuion”
£ Subsy
- {2 Security Subsy Station | Subsystems | Tasks | Help |
g Transports Subsy
G Transport protocols Subsy Options help:
/| Data acquisition ~ Subsy|
- [] Archives Subsy st OnenSCADA v0.6.4 .1 (Linux-2.6.30-std-def-alt15), e
- Specials Subsy,
I3 User interfaces Subsy
- @y Modules sheduler Subsy,
Loop Remot

D

e E@-B-E-E-E-E-E-E

The general system options

Loop S3L Remot -h, --help Info message about system options.
--Config=<path= Config file path.
--Station=<ic> Station idertifier.
--demon Start into demon mode.
--Messl ev=<level> Process messages <level= (0-7).
--log==direct>= Direct messages to:
=direct> & 1 - syslogd,
<direct= & 2 - stdout;
=direct> & 4 - stderr;
=girect> & 8 - archive.
----------- The config file station =/DemoStation/> parameters -—--—-----—--
StName <nme= Station name.
WorkDBE =<Type Mame:= Wark DB (type and name).

Workdir =path=> Work directory.
lcoDir <path= lcons directory.
ModDir =path= Modules directory.
MessLev <level> Messages <level> (0-7).
LogTarget =direction> Direct messages to:
[1—|T] <direct> & 1 - syslogd; E
=direct= & 2 - stoout; i

Fig. 4.10a. The "Help" tab of the OpenSCADA component.

OpenSCADA program description 87

The result of the command: # ./openscada_demo --help

KA Ak A A A A A Ak kK

FrAkxAkxEkxx* OpenSCADA v0.6.4.1 (Linux-2.6.30-std-def-altlb) . *x*x*xxkxx*

khkkhkhkhkkhhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkk

The general system options

-h, --help Info message about system options.
--Config=<path> Config file path.
--Station=<id> Station identifier.
--demon Start into demon mode.
--MessLev=<level> Process messages <level> (0-7).
--log=<direct> Direct messages to:

<direct> & 1 - syslogd;
<direct> & 2 - stdout;
<direct> & 4 - stderr;

<direct> & 8 - archive.
——————————— The config file station </EmptySt/> parameters —-----------—
StName <nm> Station name.
WorkDB <Type.Name> Work DB (type and name) .
Workdir <path> Work directory.
IcoDir <path> Icons directory.
ModDir <path> Modules directory.
MessLev <level> Messages <level> (0-7).

LogTarget <direction> Direct messages to:
<direct> & 1 - syslogd;
<direct> & 2 - stdout;
<direct> & 4 - stderr;
<direct> & 8 - archive.
Lang2CodeBase <lang> Base language for variable texts translation, two symbols code.
SaveAtExit <true> Save system at exit.
SavePeriod <sec> Save system period.

Subsystem "Module sheduler" options
--ModPath=<path> Modules <path> (/var/os/modules/).
———————————— Parameters of section </DemoStation/sub ModSched/> in config file -----------

ModPath <path> Path to shared libraries (modules) .

ModAllow <list> List of shared libraries allowed for automatic loading, attaching and starting
(bd_DBF.so;daq JavaLikeCalc.so). Use '*' value for allow all modules.

ModDeny <list> List of shared libraries deny for automatic loading, attaching and starting
(bd DBF.so;daqg_JavaLikeCalc.so).

ChkPer <sec> Period of checking at new shared libraries (modules).

Subsystem "DB" options
——————————— The config file station </DemoStation/sub BD/> parameters -----------
SYSStPref <1> Use station id prefix into generic (SYS) table.

Subsystem "Security" options

Subsystem "Transports" options

============ Subsystem "Transport protocols" options

The module <Protocol:HTTP> options
—————————— Parameters of the module section </DemoStation/sub Protocol/mod HTTP/> in config file ----------
AuthTime <min> Life time of the authentication, minutes (default 10).

Subsystem "Data acquisition” options
———————————— Parameters of section </DemoStation/sub DAQ/> in config file -----------

RdStLevel <lev> The curent station redundant level.

RdTaskPer <s> The redundant task call period.

RdRestConnTm <s> Restore connection timeout to dead reserve stations.

RdRestDtTm <hour> Restore data archive depth from a reserve station after deadline.
RdStList <list> Redundant stations list, separated symbol ';' (stl;st2).

Subsystem "Archives" options
———————————— Parameters of section </DemoStation/sub Archive/> in config file -----------
MessBufSize <items> Messages buffer size.

MessPeriod <sec> Message arhiving period.

ValPeriod <msec> Values arhiving period.

ValPriority <level> Values task priority level.

MaxRegMess <items> Maximum request messages.

MaxRegVals <items> Maximum request values.

Subsystem "Special" options

The module <Special:SystemTests> options
—————————— Parameters of the module section </DemoStation/sub Special/mod SystemTests/> in config file

All tests main options:
id test's id;

OpenSCADA program description 88

on on test's flag;

per repeat period (sek).
*** Test's options ***
1) Param DAQ parameters test. Make read a parameter's attributes and config fields.
1:name DAQ parameter address
2) XML XML file parsing test. Parse and show selected file structure.
l:file XML file
3) Mess Messages archive test. Periodic read new messages from archive, for selected archivator.
l:arhtor Archivator
2:categ Messages category pattern
3:depth Messages depth (s)
4) SOAttach Attach/detach module test.
1:name Path to module
2 :mode Mode (l-attach;-1-detach;0-change)
3:full Full attach(to start)

5) Val Parameter attribute's value test.
Periodic make gathering for last value of selected attribute, and also gathering from archive for selected

depth.
1:name Parameter attribute path
2:arch len Archive value getting depth (s)
3:arch per Archive value getting period (us)

6) DB Full database test. Make:
- make/open DB;
- make/open table;
- make multiply records for determined structure;
- modify multiply records;
- get and check values for multiply records;
- modify record and table structure;
- remove multiply records;
close/remove table;
close/remove DB.

l:type DB type
2:addr DB address
3:table DB table
4:size Records number
7) TrOut Output and/or input transports test.
Make test for output transport by send the request to selected input transport.
1l:addr Address
2:type Transport module

3:req Request text
8) SysContrLang System control language test.
Make request to language elements by full path set.
Full path to language element have view </Archive/%2fbd%2fm per>.
Full path contained two included path.
First </d_Archive/> is path to the node of the control tree.
Second </bd/m_per> is path to concrete node's element.

l:path Path to language element
9) ValBuf Value buffer tests.
Contain 13 tests for all aspects of value buffer (subsystem "Archives").
10) Archive Value archive allocation tests.

Contain 7(8) tests for value archivator for check to correct working the consecutive pack mechanism.
l:arch Value archive
2:period Values period (us)

11) Baseb64Code Mime Base64 encoding algorithm tests.

Subsystem "User interfaces" options
The module <UI:Vision> options
—————————— Parameters of the module section </DemoStation/sub_ UI/mod Vision/> in config file ----------

StartUser <user> No password requested start user.

RunPrijs <list> Run projects list on the module start.

RunTimeUpdt <mode> RunTime update mode (0 - all widgets periodic adaptive update, 1 - update only
changed widgets) .

VCAstation <id> VCA station id ('.' - local).

The module <UI:VCAEngine> options
--VCADBClearForce Force clear VCA DB from data of API 1.

The module <UI:QTCfg> options
—————————— Parameters of the module section </DemoStation/sub UI/mod QTCfg/> in config file ----------
StartPath <path> Configurator start path.

StartUser <user> No password requested start user.

The module <UI:QTStarter> options
—————————— Parameters of the module section </DemoStation/sub UI/mod QTStarter/> in config file ----------
StartMod <moduls> Start modules list (sep - ';').

The module <UI:WebVision> options
—————————— Parameters of the module section </DemoStation/sub UI/mod WebVision/> in config file ----------
SessTimeLife <time> Time of the session life, minutes (default 10).

OpenSCADA program description 89

Sections of subsystem (<node id="sub DAQ" />) contains parameters of subsystem, sections of
modules and sections of tables of reflections of the data of databases in the configuration file. Sections of
modules (<node id="mod DiamondBoards" />) contain the individual parameters of modules and sections
of tables of reflection of the data of databases in the configuration file.

Sections of the tables of reflection of the data of databases are provided for placement in the
configuration file records of DB tables for the OpenSCADA components. Lets examine the table of
incoming transports "Transport in" of subsystem transports (<node id="sub Transport">) from the
example of configuration file above. The table contains two records with fields: ID, MODULE, NAME,
DESCRIPT, ADDR, PROT, START. After booting with this section and in general without the DB in the
subsystem "Transports" of the "Sockets" module you'll see two input transports. Formats of the table's
structures of the main components are included in the demo configuration files. For the details of the
database's structure you should read the relevant documentation of modules.

5. System-wide API of user programming.

User programming API is the tree of OpenSCADA objects, every object of which can provide own list
of properties and functions. Properties and functions of objects can be used by the user in procedures on the
languages of user programming of OpenSCADA. The entry point for access to the objects of system
OpenSCADA from user programming language JavalLikeCalc is the reserved word "SYS" of the root
OpenSCADA object. For example, to access the function of outgoing transport you should write:
SYS.Transport.Serial.out ModBus.messIO(mess);.

API of the objects provided by the modules is described in the own documentation of the module.

5.1. System-wide user objects.

Abstract object is an associative container of properties and functions. Properties can contain the data of
four basic types and other objects. Access to the properties of an object is usually made by recording the
names of properties through a point to the object <obj.prop>, as well as by entering the property name in
brackets <obj/"prop"]>. It is obvious that the first mechanism is static, while the second lets you to specify
the name of the property through a variable. The basic definition of the object does not contain functions.
Copying of an object actually makes reference to the original object. When you delete an object the reduce
of the reference counter is made, and when the reference counter is equal to the zero object is removed
physically.

Different components can redefine the basic object with special properties and functions. The standard
extension of the object is an array "Array".

Array object

Peculiarity of the array is that it works with the properties like with the indexes, and complete their
naming if senseless, and hence the mechanism of addressing is available only by the conclusion of the
index in square brackets <arr/l]>. Array stores the properties in its own container of one-dimensional
array.

Array provides the special property "length" to get the array size <var = arr.length;>. Also array

provides the following functions:
. string join(string sep = ","), string toString(string sep = ","), string valueOf(string sep = ",")
- Returns the string with the array elements separated by <sep> or the character ','.
« Array concat(Array arr); - Adds to the initial array the elements of the <arr> array. Returns the
initial array with changes.
- int push(ElTp var, ...); - Places the element(s) <var> to the end of the array, as to the stack.
Returns the new array size.
- ElTp pop(); - Deleting of the last element of the array and return of its value, as from the stack.
« Array reverse(); - Changing the order of the elements of the array. Returns the initial array with
changes.
« ElTp shift(); - The shift of the array to the top. The first element is removed and its value is

OpenSCADA program description 90

returned.

int unshift(ElTp var, ...); - Shift element(s) <var> to the array. The first element to the 0, second
to the 1 and so on.

Array slice(int beg, int end); - Returns an array fragment from <beg> to <end>. If the value of
beginning or end is negative, then the count is made from the end of the array. If the end is not
specified, then the end is the end of the array.

Array splice(int beg, int remN, ElTp vall, ElTp val2, ...); - Inserts, deletes or replaces the
elements of the array. Returns the initial array with the changes. Firstly it is made the removing of
elements from the position <bheg> and in the quantity of <remN>, and then the values <vall> are
inserted and so on, beginning from the position <beg>.

Array sort(); - Sort array elements in lexicographical order.

XMLNodeObj object

Functions:

string name() - The name of the node, XML-tag.

string text(') - The text of the node, contents of the XML-tag.

string attr(string id) - The value of the node's attribute <id>.

XMLNodeObj setName(string vl) - Setting of the node's name to <v/>. Returns the current node.

XMLNodeObj setText(string vl) - Setting of the node's text to <v/>. Returns the current node.

XMLNodeObj setAttr(string id, string vl) - Setting the attribute <id> to the value <v/>. Returns
the current node.

int childSize() - Quantity of the embedded nodes.

XMLNodeObj childAdd(ElTp no = XMLNodeObj) - Addition of the object <no> as the
embedded one. <no> may be the direct object-result of the function xm/Node(), and the string with
the name of the new tag. Returns the embedded node.

XMLNodeObj childIns(int id, EITp no = XMLNodeObj) - Insert of the object <no> as the
embedded one to the position <id>. <no> may be the direct object-result of the function xm/Node(),
and the string with the name of the new tag. Returns the embedded node.

XMLNodeObj childDel(int id) - Deleting the embedded node from the position <id>. Returns
the current node.

XMLNodeObj childGet(int id) - Getting the embedded node in the position <id>.

string load(string str, bool file = false) - Loading the XML from the string <st7> or from the
file with the path in <st7> if the <file> "true".

string save(int opt = 0, string path = "") - Saving the XML tree to the string or to the file
<path> with the formatting parameter <opt>. Returns the XML text or the error code. The
following formatting options <opt> are provided:

0x01 - interrupt the string before the opening tag;
0x02 - interrupt the string after the opening tag;
0x04 - interrupt the string after a closing tag;
0x08 - interrupt the string after the text;

0x10 - interrupt the string after the instruction;
Ox1E - interrupt the string after all.

5.2. System (SYS)

Object functions:

string system(string cmd, bool noPipe = false); - calls the console commands <cmd> of OS
returning the result by the channel. If <noPipe> is set the return code is returned the the execution
of the programs in the background ("sleep 5 &") is possible. The function offers great opportunities
to the OpenSCADA user by calling any system software, utilities and scripts, as well as by way of
access to the huge volume of system data. For example the command "Is-1" returns the detailed
contents of the working directory.

int message(string cat, int level, string mess), - formation of the system message <mess> with
the category <cat>, level <level/>. The negative value of the level forms the alarms (Alarm).

int messDebug(string cat, string mess); int messInfo(string cat, string mess); int

OpenSCADA program description 91

messNote(string cat, string mess); int mess Warning(string cat, string mess), int messErr(string
cat, string mess), int messCrit(string cat, string mess); int messAlert(string cat, string mess); int
messEmerg(string cat, string mess); -formation of the system message <mess> with the category
<cat> and the appropriate level.

« XMLNodeObj XMLNode(string name = ""); - creation of the XML node object with the name
<name>.

. string cntrReq(XMLNodeObj req, string stat = ""); - request of the control interface to the
system via XML. The usual request is written as <get path="/OPath/%2felem"/>. If the station is
indicated to the request to the external station is made.

- int time(int usec), - returns the absolute time in seconds from the epoch of 1/1/1970 and in
microseconds, if <usec> is specified.

« int localtime(int fullsec, int sec, int min, int hour, int mday, int month, int year, int wday, int
vday, int isdst); - returns the full date in seconds (sec), minutes (min), hours (hour), days of the
month (mday), month (month), year (year), days in the week (wday), days in the year (yday) and
sign of summer time (isdst), based on the absolute time in seconds <fullsec> from the epoch
1.1.1970.

. string strftime(int sec, string form = "%Y-%m-%d %H:%M:%S"); - Converts an absolute time
<sec> to the string of the desired format <form>. Record of the format corresponds to the POSIX-
function strftime.

- int strptime(int str, string form = "%Y-%m-%d %H:%M:%S"), - Returns the time in seconds
from the epoch of 1/1/1970, based on the string record of time <s#r>, in accordance with the
specified template <form>. For example the template "%Y-%m-%d %H:%M:%S" corresponds with
the time "2006-08-08 11:21:55". Description of the template's format can be obtained from the
documentation on POSIX-function "strptime".

- int cron(string cronreq, int base = ()); - returns the time, planned in the format of the standard
Cron <cromreq>, beginning from basic time <base> or from the current, if the basic is not
specified.

« string strFromCharCode(int charl, int char2, int char3, ...); - String creation from symbol's
codes charl, char2 ... charN.

5.3. Any object of OpenSCADA objects tree (SYS.*)
Object functions:

’

« TArrayObj nodeList(string grp = "", string path = ""); - Get child nodes list for group <grp>
and node from path <path>. If <grp> empty then return nodes for all groups.

« TCntrNodeObj nodeAt(string path, string sep=""); - Attach to node <path> into OpenSCADA
objects tree. If a separator set into <sep> then path process as separated string.

5.4. "DB" subsystem (SYS.BD)
DB object functions (SYS.BD["TypeDB"]|["DB"]):

« Array SOLReq(string req); - Formation of the SQL-request to the DB.

Example:
DBTb1=SYS.BD.MySQL.GenDB.SQLReq ("SELECT * from DB;");
for(var i rw = 0; i rw < DBTbl.length; i rw++)

{

}

var rec = "";

for(var i _fld = 0; i fld < DBTbl[i rw].length; i fld++)
rec += DBTbl[i rw][i fld]+"\t";

SYS.messDebug ("TEST DB", "Row "+i rw+": "+rec);

OpenSCADA program description 92

5.5. Subsystem "DAQ" (SYS.DAQ)

Functions of object of atribute of controller's parameter (SYS.DAQ["Modul"]["Controller"]
["Parameter"][" Attribute"]):

ElTp get(int tm = 0, int utm = 0, bool sys = false); - get attribute value at time <tm:utm> and
system access flag <sys>.

bool set(ElTp val, int tm = 0, int utm = 0, bool sys = false); - write value <val> to attribute with
time label <tm:utm> and system access flag <sys>.

5.6. ""Archives" subsystem (SYS.Archive)

Functions of the subsystem's object:

Area messGet(int btm, int etm, string cat = "", int lev = 0, string arch = ""); - request of the

system messages for the time from <btm> to <etm> for the category <cat>, level </ev> and
archiver <arch>.

5.7. "Transports' subsystem (SYS.Transport)

Functions of the outgoing transport object (SYS.Transport["Modul"]["OutTransp"]):

string messlO(string mess, real timeOut = 1000),; - sending the message <mess> through the
transport with the waiting timeout <timeQut>.

int messlO(XMLNodeObj req, string prt); - sending the request <reg> to the protocol <prt> for
the implementation of a connection session through the transport by means of protocol.

OpenSCADA program description 93

Data acquisition in OpenSCADA

Data acquisition of the SCADA (Supervisory Control and Data Acquisition)-system is its integral part,
which get data from sources of different type. The nature of data, which operates SCADA, is characterized
by signals of basic value's types (integer, real, boolean and string). The signals vary over time and has their
history, life. In the theory of technological processes (TP) under the signal it is meant the value of TP
sensor in the ADC code, "raw" signal or in the real value. Signals can be combined into groups, which are
often called parameters. For example, the developed data sources can provide the structures of parameters
with the predefined set of related signals. In addition to the direct data acquisition in the function of this
mechanism is also included the transfer of actions to control devices of TP; usually it is a gate valve, pumps
and control valves. Taken together, this process is known as computer-process interface (CPI).

Sources of data are characterized by their great variety, which can be divided into three groups.

« Sources of "raw" data, providing the ADC code or levels of discrete signals, and also the sources
which include simple processing. Usually, it is the modules of the allocated CPI or the simplest
industrial programmable logic controllers (PLCs).

Powerful industrial PLCs, which have significant computing power and the possibility of
formation of complex parameters with different structure.

Local or related data sources. For example, the CPI as expansion cards, and also the data of the
hardware and software environment in which the system operates.

The variety of data sources has created a wide range of mechanisms to access them. Local data sources
are different in application programming interface (API), and network sources, in their turn, in transport
and protocol interaction level. In general, this has led to the fact that the addition of support for a new data
source requires the creation of interface module or driver. Taking into account the great variety of sources,
it is extremely expensive and actually impossible to cover the entire spectrum of the market of these
devices. The situation is somewhat simplified with the network source due to the presence of the number of
standard and free interaction protocols, but many sources still use their own protocols: private, commercial
or protocols, tied to private mechanisms of the limited range of commercial operating systems (OS).

In terms of OpenSCADA system the following objects to serve the data acquisition mechanism are
provided:
Attribute - object of reflection of the signal data, it includes the current value with the type of
signal and the history of changes of value;
- Parameter - object of the attributes' (signals') group with the structure corresponding to the
characteristics of the separate data source;
- Controller - object of the separate data device. Typically, this is a separate CPI module or the
devices of industrial PLC.

To account the features of different data acquisition devices, as well as the different mechanisms of
interaction in the OpenSCADA the modular subsystem "Data acquisition" is provided. The module of the
subsystem is the driver for interfacing with a data source of specific type. Each module can contain a
configuration of several devices of this type in the form of "Controller" objects of OpenSCADA. The
general scheme of objects of "Data acquisition" subsystem is shown in Figure 1.

Data acquisition in OpenSCADA 94

Demo
station

Sy stem layer)

Subsystem layer)

Temqiabsi
m.f'f'n"?ﬂ'?if

Fig. 1. The subsystem's "Data acquisition" scheme.

Data acquisition in OpenSCADA 95

1. Data acquisition methods

Taking into account variety of the data sources, and also the ways of their possible interaction data
acquisition methods can be divided to simple synchronous, simple asynchronous, package and passive ones.

To the examination of the mechanisms below the following objects will be involved:
« ObjectSCADA - any object of the SCADA-system, applying for the signal value, for example,
archives and visualizers;
- DAQParamAttribute - attribute of the parameter of subsystem "Data acquisition" which is an
intermediary for access to the value of the signal of data source;
- DAQParamAttributeArch - attribute's archive object;
- HardwarePLC - data source object, for example, modules of the allocated CPI or industrial PLC.

1.1. Simple synchronous acquisition mechanism

The mechanism is characterized by requests to the data source synchronously with the request to the
attribute of parameter (Fig. 2). This mechanism is usually used when working with local sources of data,
characterized by low latency, ie delay in response to the request. With this method you can get actual data
directly with the request, but the time of the request of object will include the time for transportation and
processing of the request by the data source.

% : DAQParamAttribute : HardwarePLC % s DAQParamAttribute || - HardwarePLC

: ObjectSCADA

. 1: setWal| .
| 1:getval() 2: valueRequest() |) L|2_vaIuE-5E-r".l:Ii} |

N e B W

| : ObjectSCADA | |

Fig. 2. Diagram of the sequence of interaction with the synchronous requests.

In accordance with the diagram above, we obtain the following sequence of requests for data acquisition
and their transfer:

+ object of the SCADA-system sends the value request to the object of attribute of the parameter
DAQParamAttribute::getVal();
- object of the attribute of parameter, receiving the request, sends it to the data source
HardwarePLC::valueRequest();
- source of data after processing the request returns the result;
- object of the attribute of parameter, receiving the result, returns its to the SCADA-system object.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

« ModBus - module of access to data of the sources through the family of ModBus protocols. In the
module the synchronous mode for recording data is implemented.
+ DiamondBoards - module of the data access to the PC/104 card of Diamond Systems company.
PC/104 boards are available on the ISA-bus, hence are local and available relatively quickly. When
data acquisition is made not by interruption the access to the values of the ADC is synchronous.
Recording mode of the DAC values always works synchronously.
« DAQGate - module of the reflection of the controller's objects of the remote OpenSCADA-
stations on the local one. In the module the synchronous mode for recording data is implemented.
BlockCalc - calculator in the language of block diagrams. The source of data for it is the custom
block diagram. Attributes of parameters of the module synchronously address the inputs/outputs of
the blocks of block scheme.
« JavalLikeCalc - calculator on the Java-like high level language. The source of data it supports is
the user program on the Java-like language. Attributes of the parameter of module synchronously

Data acquisition in OpenSCADA 96

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=144c
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=sef

address the inputs/outputs of the user computing function.

« LogicLev - module of the logic-level parameters of data acquisition, see more about it in section
2. The source of data for this module are the other parameters of subsystem "Data acquisition" and
the execution context of the parameters' template. Attributes of the parameters of module
synchronously address the attributes of other parameters in the reflective mode of parameters of
subsystem "Data acquisition", or the inputs/outputs of the execution context of the template when
work under the template.

1.2. Simple asynchronous acquisition mechanism

The mechanism is characterized by requests to the data source, regardless of the request to the attribute
of parameter (Fig. 3). Usually, requests to the source of the data are made periodically in the own inquiry
task of the single controller and with the blocks of few signals. This request to the parameter's attribute
returns the value obtained from the last connection session with the data source. This mechanism is usually
used when working with remote (network) data sources, characterized by high latency, ie delay in the
response to the request.

With this method it is possible to optimize the time resource spent on one signal, and thereby increase
the maximum number of requested signals during the time interval of the inquiry.

As an example, lets examine an industrial PLC Siemens S7-315 during requesting him on the bus
Profibus (1,5 Mbit/s). The average processing time of the MPI-request of this controller is 30 ms. If you use
a synchronous mechanism for each signal, ie one request for each signal, then in one second we can get
something about 33 signals. And if you apply an asynchronous mechanism, ie in the MPI-package to
receive up to 220 bytes or 110 signals of integer type of 16-bit, then we can for one second get up to the
3630 signals. As you can see, the effectiveness of asynchronous mechanism in this case is 110 times,
namely, the maximum capacity of MPI-package.

The disadvantage of asynchronous mechanism is that the request of the value of attribute of the
parameter returns not actual at the time of request value, but value of the last session of the inquiry of the
controller. However, taking into account that the source of data can be updated at intervals of ADC
hardware limitations, and the sensors themselves may have certain restrictions on the reaction rate, the
using of an asynchronous acquisition mechanism could have a serious grounds.

Application of asynchronous mechanism for recording the values to the PLC is a fairly rare fact, because
recording of values usually involves impact of the operator on the TP. Operator on the fact rarely makes
adjustments to the process, therefore, the recording can be performed synchronously. However, there are
situations, such as managing of the TP by the regulator on SCADA-system, acting as a runtime of PLC.

% : DAQParamAttribute : HardwarePLC % : DAQParamAttribute : HardwarePLC
| | | |
: Objecf:SCADA | : valueRequest() LJ_ : Objecf:SCADA | : valueSend() |
| 1: getVal() L ____________________ I 1+ setvall) | F
frommmmmmmeeeeeeee-l T T
X ! : valueRequest() I X lr:valuesend:} I
[4 I *
I("""""""""" 1 I’: """"""""""" —
: valueReqguest() : valueSend()
| 1 | 1
R 11 | '
[T

fommoTmTT s —|-
|
|

Fig. 3. Diagram of interaction sequence with asynchronous requests.

In accordance with the diagram above, we obtain the following picture:
- object of the attribute of parameter (or the parent object of the controller) performs the periodic

Data acquisition in OpenSCADA 97

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

requests HardwarePLC::valueRequest() to get the value of a signal or group of signals;

- received signal values stored in the objects of parameter's attributes locally;

- an object of SCADA-system sends the value request to the object of parameter's attribute
DAQParamAttribute::getVal() and gets locally saved value of the previous session of the inquiry of
data source.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

« Siemens - module of access to the data of Siemens controllers of S7 series. In this module an
asynchronous mode is implemented as for reading data and for recording (optional) to the PLC.
« ModBus - module of access to data sources through the family of ModBus protocols. In the
module an asynchronous mode of reading data is implemented.
« SNMP - module of access to the data of the network devices through the Simple Network
Management Protocol. In the module an asynchronous mode of reading data is implemented.
« System - module of access to the data of the execution area of OpenSCADA. In the module an
asynchronous mode of reading data is implemented.
« DAQGate - module of the reflection of controller's objects of the remote OpenSCADA -stations
on the local one. In the module an asynchronous mode of reading data is implemented.

1.3. Package acquisition mechanism

Package data acquisition mechanism is characterized by the acquisition of data for each signal by the
packet that includes the history of its changes. Ie per one session of data inquiry we obtain multiple values
of history of the signal. Package mechanism works in conjunction with synchronous and asynchronous
mechanisms.

In the case of working with the synchronous mechanism the actual transfer of the archive of data source
for operational work in the system is done (Fig. 2). As the simple synchronous mechanism, it is desirable to
apply only to low-latency data sources or to the sources whose work is a session type, for example, in the
commercial account to read the values of the counters.

When working in conjunction with an asynchronous mechanism the history of the received signals is
usually placed directly in the archives (Fig. 4), and the current value of the parameter's attribute is set to last
value of the package. This combination is effective during the acquisition of the fast data or during the
synchronization of the archives after the loss of connection to the remote data source.

% : DAQParamAttributedrch : DAQParamAttribute : HardwarePLC

: ObjectSCADA

| n+1: valuesReguest()

n+2: setValues()

1: getValues()

|
|
n+3: valuesRequest() |

*

3: getVal()

n+4: setValues() |

X

I
|
| 2: getValues() |
| |
| |
|
Fig. 4. Diagram of interaction sequence with the asynchronous requests of the package mechanism.
In accordance with the diagram above, we obtain the following behavior of the package mechanism for

asynchronous requests:

- object of the attribute of parameter (or the parent object of the controller) performs the periodic

requests HardwarePLC::valueRequest() to get the value's packages of a signal or group of signals;

- received value's packages of signal are placed in the archive by the request

Data acquisition in OpenSCADA 98

http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/System?v=hf
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=101r
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=sef
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=zhg

DAQParamAttributeArch::setValues(), and the last value of the packages is located in the objects of
parameters' attributes;

- object of SCADA-system sends the request of the archive's fragment to the object of parameter's
attribute DAQParamAttribute::getValues(), and he relays the request to the archive
DAQParamAttributeArch::getValues(). As the result the fragment of the archive, available after the
previous session of the inquiry of data source, is returned;

- object of the SCADA-system sends the request of the last value of the object of parameter's
attribute DAQParamAttribute::getVal() and gets the locally saved value of the previous session of
the inquiry of data source.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

« DiamondBoards - module for data access of PC/104 cards of Diamond Systems company.
PC/104 cards are available on the ISA-bus, hence, are local and available relatively quickly. When
data acquisition is done through interruption the expectation of the packets of fast (up to 200 kHz) in
one second (up to 200,000 values in the package) is made and the subsequent placing of packets
data in the archives of the DAQ parameters' attributes.
« DAQGate - module of reflection of controller's objects of remote OpenSCADA-stations on the
local one. The synchronous and asynchronous packet mode of reflection of the archives of remote
OpenSCADA-stations is provided.

1.4. Passive acquisition mechanism

The feature of the passive data acquisition mechanism is the initiative of the providing data in the
SCADA-system from the data source. This mechanism is quite rare, but can occur in certain conditions or
restrictions of the possibility of using the direct data acquisition mechanisms, Fig. 5. An example of such a
situation can be the geographically allocated systems of data acquisition through mobile networks
GPRS/EDGE. In such networks, empowering the individual client nodes with the real IP-address or the
formation of a corporate wireless network can be rather expensive, and therefore more accessible is an
initiative of the data transfer session from client dynamic IP-addresses to the one real IP-address of the
SCADA-system server. Nevertheless it is possible to work through the network DBMS of the dealer.

Impacts of the modification are transmitted to the source of data at the time of data transfer session by
the source.

% : DAQParamAttribute : HardwarePLC % : DAQParamAttrinute : HardwarePLC

: ObjectSCADA : ObjectSCADA |

|
|
X

n+1: setVal()

| n+1: getval()
| 1: setval() |

|
|
n+2: setVal() !)l(
|
[

|
|
1: getval() |
|
|
[
|

|
I
|
| n+2: getVal()
|

Fig. 5. Diagram of interaction sequence with the passive working mode.

In accordance with the diagram above, we obtain the following behavior of the passive mechanism:
- data source object carries out periodic connection sessions with the object of the parameter's
attribute DAQParamAttributeArch::setVal() to transfer its own data and receive influence
commands;
« object of the SCADA-system sends the request to the last value of the object of parameter's
attribute DAQParamAttribute::getVal() and gets the locally stored value of the previous connection
session of the data source.

In OpenSCADA this mechanism has not been yet used, but in principle there is the possibility of its
realization in the system.

Data acquisition in OpenSCADA 99

http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=144c

2. Virtual data sources

In addition to physical data acquisition the function of the virtual data acquisition is also important.
Virtual data are the data obtained inside the system both independently and on the basis of physical data.
Practically the formation mechanisms of virtual data are implemented in conjunction with the mechanism
of user computing. Among the industrial controllers and SCADA-systems the different programming
languages are used. In the case of controllers such languages can be for example low-level languages
(assemblers), but in recent years the high-level languages (C, Pascal and others) are increasingly used, as
well as the formal languages of IEC 61131-3 (sequential function chart SFC, function block diagrams FBD,
LD relay circuits and text ST, IL). In the case of SCADA-systems computings are often provided with the
help of high-level programming languages and formal languages.

In the OpenSCADA system the programming interfaces and virtual data sources on the basis of different
languages in separate modules of a subsystem "Data acquisition" can be implemented. At the time of
version 0.6.3.2 the available modules of virtual calculators are:

Calculator on Java-like language: JavaLikeCalc;
Block calculator: BlockCalc.

At the OpenSCADA kernel the mechanism for user-defined functions or API of user programming is
integrated. User functions can be provided by any object of the system, including modules in accordance
with their functionality, thus providing the user with the set of functions for the control of one or another
object. User API functions can be either static, ie implementing the fixed functionality of an individual
object, and the dynamic ones, ie formed by the user for the desired task in the language of the user high-
level programming.

Module JavaLikeCalc provides the system with the mechanism to create dynamic user-defined functions
and libraries for Java-like language. Description of functions for Java-like language is to tie up the
parameters of the function by the algorithm. In addition, the module has the functions of the direct
calculations by creating a computer controllers with the associated computational function. Module
provides the mechanism to precompile the context-dependent functions that are used to embed the user
algorithms directly in the context of the various components of OpenSCADA. For example, the mechanism
of the parameters' templates of subsystem "Data acquisition" and the visual control engine (VCA).

Module BlockCalc provides the OpenSCADA system with the mechanism for creating user calculations.
Mechanism of calculations based on the formal language of block diagrams (functional blocks). Languages
of block programming based on the concept of block diagrams (functional blocks). And depending on the
nature of the block, block scheme can be: logic circuits, relay logic circuits, a model of technological
process and others. The essence of the block scheme is that it contains the list of blocks and links between
them. From a formal point of view the block - is an element (function), which has inputs, outputs and an
algorithm for computing. Based on the concept of programming area block - is a frame of values associated
with the object of function. Inputs and outputs of blocks are to be connected to get the whole block scheme.

With the purpose of filling user programming API with user functions the following specialized modules
of static user programming API functions are created:
Library of function for the compatibility with SCADA Complex1: FLibComplex1;
Library of standard mathematical functions: FLibMath;
Library of System API functions: FLibSYS.

Data acquisition in OpenSCADA 100

http://wiki.oscada.org/HomePageEn/Doc/FLibSYS?v=hgy
http://wiki.oscada.org/HomePageEn/Doc/FLibMath?v=67m
http://wiki.oscada.org/HomePageEn/Doc/FLibComplex1?v=17ps
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

\ (= -
Parameter 1 Bl > B2
Parameter 2 l T
Parameter 3 B3 B4
Parameters Blocks' scheme
Core Controller |
OpenSCADA Module "BlockCalc”
Digital block ArcCos|| || Date
(] Simple summator ArcSin Time
10 Simple multiplicator ArcTan CTime
: Multiplicator+divider Cosine
TFunction
o Module Module
TValFunc | Module "FLibComplex1"| | FribMai~) "FLibTime")
OM API _ L, .
Parameter 1 Functionl
Parameter 2 Function 2
Paramcter 3 Lock cranes library
Parameters Function
 Controller | Function 2
M. Gd [3 e Compressors library
"JavaLikeCalc" \ Libraries |

Fig. 6. The overall structure of the components of the programming area

Data acquisition in OpenSCADA 101

3. Logic level of data processing

Above we talked that type of data source can vary from a "raw" to the complex. The "raw" means the
source that provides only the basic signal (integer, real, boolean, string, ...) separately. Under the complex it
is meant the source that groups the signals and in the parameter of subsystem "Data acquisition" it provides
the attributes of an additional purpose, covering practically all diagnostic tasks, ie the parameter is the
complete object, which do not need any additions.

Taking into account this variation, the situation may occur, when the information in the object of data
source controller's parameter, is insufficient to describe the real TP object in general and the derived object
of a higher level of abstraction is needed. The solution of this situation is the formation of complementary
parameters, which is not obvious and confusing. The better solution is to use layer, so-called "Logic level",
serving for the flexible formation of parameters, containers of signals with the necessary structure, and
which has post-processing.

Functionally "Logic level" is intended to provide the OpenSCADA system with mechanism of free
formation of parameters' objects, containers of signals of the necessary structure.

Operating appointment of the "Logic level" is:
- expansion of the scope of the OpenSCADA system by increasing the flexibility of description of
parameter's objects of subsystem "Data acquisition";
+ reduction of labor costs for the creation of complex automated systems.

The conception of "Logic level" based on the parameters' templates for which in the subsystem "Data
acquisition" it is provided the container of the templates libraries (Fig. 1). Each library contains templates
of parameters that can be used by the modules of "Data acquisition" subsystem for the implementation of
parameters based on templates. The modules of OpenSCADA, which use the templates in their work, are:

« Logiclev - module of the implementation of the classical conception of "Logic level".

- Siemens - data acquisition module for Siemens controllers Series S7. Taking into account the
high flexibility and functionality of this controllers, which allows you to create complex data types
of different structure, all the parameters of this module work on templates.

General mechanism of the "Logic level" on the example of the LogicLev module is shown in Fig. 7.

4 — — — — — — ~

| Module)

I"DiamondBoards"

o ___ I |

: Module DAQ.LogicLev Wl Cacidlzel

|

I (" Controller 1 I Param. 1 |

| | I

/|| Param. 1 | : Param. 2 |

: Param. 2 [Templ. 1 ; : Param. 3 :

: Param. 3 [Templ. 2 : : Controller 2 :

Param. 4)
: : Param. 1 :
Param. 5 [Templ. 2

! P ' Param. 2 |||
[[

[| Param. 3 :

[[P >

: Param. N : | Module)

\E ________ -, I "BlockCalc"

I I

| | Controller 1 ||

- 1|1

T Param. 1 |

Open SCADA | Param. 2 :

Subsystem "Data acquisition" | || param.3 ||

(| V— ")

\ J
Fig. 7. The mechanism of the "Logic level" on the example of LogicLev module.

Data acquisition in OpenSCADA 102

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=zhg
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

On the figure you can see that the parameters of the logic level controller function as reflections of other
parameters of "Data acquisition” subsystem (on the example of parameters 1 and 4) and the free formation
of parameters based on templates 1, 2 and other parameters of "Data acquisition" subsystem (on the
example of the parameters 2, 3 and 5).

Structure of the parameters with the template in their basis has the structure shown in Fig. 8.
' ™

Logical level parameter
Function object | ' configuration|
T i
Attributes _EJ Param. 1 —~ Link 1
Attribute 1 | Param. 2 J—:‘ Link 2
Attribute 2 : Param. 3 |+ Constant 1
Attribute 3 B Param. 4 ~ Link 3
Attribute 47 4— param. 5 T
Adtribute 57— Param. 6
Param. 7
_ vy

Fig. 8. Structure of the parameters, with a template in its basis.

As can be seen from the structure, the logic level parameter consists of the function object, attributes and
configuration of the template. The function object is an instance of the execution of the template's function
with the set of inputs/outputs and the computation program of the template on the language of user
programming, usually it is the Java-like programming language of the module DAQ.JavalLikeCalc. But the
template may be generally without the program, providing only the structure of transfer the inputs/outputs.
Attributes in the structure represent the list of attributes of the result parameter in accordance with the
template. Configuration in the structure provides the configuration of the template's properties and its
external links.

The logic of the work of logic-level parameters can be written as follows:
« Parameter connects with the template from which we obtain the structure of attributes in
accordance with the template's function.
- At the moment of linking the parameter with the function the linkage of an object of the
parameter's function instance with the function of the template.
- Further, in accordance with the template of function, the structure of links is formed. Based on
the structure of links the form of linkage the parameter is formed and the user sets the links .
- When you access the attributes of the obtained parameter the check for the presence of a direct
link is done. In the case of a direct link presence the request is routed by this link, otherwise the
value is taken from an object of the parameter's function instance.
- At this moment the template's function calculation works using the the object of the parameters'
function. However, before the calculation the reading of the values by the links is made, and after
calculation the results are recorded by these links.

Parameters' template in general provides the following:
- structure of I/O of the template's function;
- signs of the configuration and linkage of the template (constant, link);
- preliminary values of the configuration of constants and templates of links' configuration;
- signs of the attributes of the resulting parameter of the logic level types: not attribute, an attribute
with full access, attribute with read-only access;
- mechanism for calculating the I/O of the templates' function using the user programming
language of OpenSCADA.

Data acquisition in OpenSCADA 103

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

Fig. 9 shows image of the configuration tab of the parameters' template of subsystems "Data acquisition"
as the table with the configuration of inputs/outputs and the text of the program of user programming.

File Edit View Help QTStarter
% L4200 2@
B 8O00CO =% ekl ®
|Nﬁme Parameter template: Analog alarm by borders
=) @B Demo statuion : g Y
_‘-g. Data E.lases Template 0
'-_ff) Security o
i} Transports 10 sl
lay Transport protocols - =
g J Data acquisition Ied | Mame | Type | Mode | Attribute Configure Walue
Module: 1 |in Input Real Input | Mo attribute | Link Parameter|var
[l Template library: |
a?ain templates 2 |var ‘Variahle Real Input | Full access | Constant 1]
Manual input (Unif)
Alarm digital 3 |ed Dimension variable | String Input | Full access | Constant
i... Analog alarm by bol
Analog sign. (Uif) 4 |min t:::: work Real Input | Full access | Constant i
Digkret block {Unif)
Impulse PID sign. (U 5 |max Upper work border Real Input | Full access | Constant 100
Flow contral point Lower alarm
Digkret parameters 6 |aMin Real Input | Full access | Constant
-) border
Analog sign. (Unif, :
PID sign. (Unif, staty 7 |aMax | Upper alarm border Real Input | Full access | Constant] .
| Archives : E
@ Specials Biin Lower warning Baal et Eull Conctant ful M
Id| User interfaces Programm language: | JavalikeCale JavaScript |v]
%9 Modules sheduler Programn:
Loop ; y
Loop SSL _var=||‘v1u|t‘(|n+|Add); o
if{var=max) f_err="1:Upper work border violation",
else if{var<min) f_err="2:Lower work border violation";
else iffaMax=aMin &8 var=ahax) f_err="3:Upper alarm border violation";
else if(aMax=aMin && var=aMin) f_err="4 Lower alarm border violation";
elze if{wMax>wMin && var>whMax) f_err="3:Upper warning border violation"; b
else if{wMax>wMin && var<whin) f_err="6:Lower warning border violation";
else f_err="0";
£l (1) -
-
DemoStation/sub_DAQAmplb_basetmpl_simleBoard/Se2fio%2fprog *][roman|

Fig. 9. The configuration tab of parameters' template of subsystem "Data acquisition".

The input/output field of the parameter's template provides the following properties of special purpose:
"Attribute", "Configure" and "Value".

The "Attribute" property is the reflecting sign of the the i/o of the template on the resulting attribute of
the parameter. There the following options for this property are provided:
« No attribute - input/output of the template's function does not reflect on the attribute;
+ Read only - input/output of the template's function reflects on the attribute with read-only access;
« Full access - input/output of the template's function reflects on the attribute with full access.

The "Configure" property is the sign indicating the using of input/output of the template's function in the
resulting configuration of the template on the logic level. The following options for this property are
provided:

« Constant - available for setting only on the level of the configuration of parameter's template as a
constant;

« Public constant - available for setting at the parameter of logic level in the configuration section
of the template as a constant;

« Link - available for setting at the parameter of the logical level in the configuration section of the
template in the form of link.

The field "Value" describes the preset value for the constants and configuration template of the external
links. Template of the configuration of external links is used to describe the mechanism of grouping and
automatic allocation of external links. The structure of the template of configuration of external links is the
specific for each module of subsystem "Data acquisition", which uses the template's mechanism. In the case
of the logic level module the allocation is made over the external attributes of the parameters with the
template of configuration of the external link of the form: <Parameter>|<attribute>. Where <Parameter> is
used to combine the parameters and place on the configuration form, and an attribute - for the associated

Data acquisition in OpenSCADA 104

linkage of the attributes at the appointment of the parameter.

As an example of the template's using in Figure 10 lets show an images of the parameter of the logic
level module "F3". In Fig.10 the tab "Template config" is presented', it serves for the configuration,
including the linkage, of the parameter's template. In Fig.11 the tab "Attributes" is shown with the list of
attributes and their values, created through the template.

% OpenSCADA QTCfg: Demo statuion
File Edit View Help QTStarter

8 80CQCO =

| MName B

.ﬁ.

| 1) & &

200 28

Parameter: F3

Block based calculal
System DA
§C Ui. Parameter Atributes | Archiving] Template config
Sound card
B} Logic level Only atributes are to be shown: ||
[Z}- Experimental Parameters
Crane KSH7
Parameter: [BlockCalc Anast1to2node F3 | 'v]
F4 .
Close HSHEE Addon to input: [U]
TPP1 il Input multiplication: [1]
*|[roman|

Fig. 10. The "Template config" tab of the "F3" parameter of the logic level module.

=8 OpenSCADA QTCfg: Demo statuion

File Edit View Help QTStarter

|Name B

g} Transports
wi Transport protocols
= J Data acquisition
= Module:

Data sources gate
ModBus
DCON clignt
SHMP client
ICP DAS hardware
Block based calculal
#& SystemDA
OPC UA
Sound card
Logic level
[} Experimental
Crane KSHA—
Z°F3

F4

Close KSHE

TPP1

TPP3

T PPS

P PP1

P PP3

P PP5

P3
P4

H-&

E-F-E5-5

e

8 BOCOO == | o

1 i
[]

Parameter: F3

Parameter I Atributes [Archiving | Template config]

200 28

D F3

Name: [F3

Description:

Flow F3

Error: g:Lower warning border violation

Variable: | 331411

Dimension variable: [tone.lh

Upper alarm border:
Lower warning border:

Upper warning border:

Lower waork border: D

Upper work border: | 100

Lower alarm border:

35

DemoStationfsub_DAQIMod_| ogicl evicntr_experimentiprm_F3M%2fval%2fed

] roman]

Fig. 11. The "Attributes" tab of the "F3" parameter of the logical level module.

Data acquisition in OpenSCADA 105

4. Redundancy of the data sources

Redundancy in general and of the data sources in particular serves to increase the overall level of fault-
tolerance of the solution by integrating the redundant nodes in collaboration with the main node. In case of
failure of the main node the grab of the main node functions by the redundant one takes place. The
redundant scheme can work in the mode of capacity allocation between the co-operating nodes.

o

»

p
-
— User
DAQGate PLCA:
St1.Siemens.PLC1
St2. Siemens.PLC1
DAQGate MBus_Devl:
St1.ModBus.Devl
St2 ModBus.Devl \
E 7 Users'level

Nea!!work

ﬁ Siemens.FLC1 - —— Siemens.PLCY ﬁ
= Siemens.PLC2 -ll{{-— — Siemens.PLC2 =

. ModBus.Devl -sl{r—— — ¥ ModBusDevl .
Station |pconDevi ~{{-——#DCON Devl Station
#1 JavalikeCalc.Proc JavalikeCalc.Proc #2
Servers' level

Fig. 12. Horizontal and vertical redundancy.

In the case of a subsystem "Data acquisition" of the OpenSCADA system the data redundancy (Figure
12) performs the following functions:

« Redundancy of the data acquisition mechanism. Typically, this function is realized without
special arrangements by simply running of the parallel redundancy stations with the same
configuration and working independently. However, in the case at the station, which works as PLC,
such approach is unacceptable because of the simultaneous making of control actions and the
absence of synchronization of calculators' data.
- Compensation of the data loss on the time of the node stop with the redundant node archive.
There are two mechanisms of compensation. The first and the main mechanism implements the
loading of the sections of the archive from the redundant station at the time of the station startup in
general or of individual controllers of "DAQ" subsystem. the section of the archive is requested
from the moment of the last record in the local archive and till the current time. The depth of the
request is limited by the indicating of the limit time in the configuration of the redundancy. The
second, complementary mechanism, performs the filling of the "holes" in the archive at the time of
the actual user's request to the data. Such an approach on the one hand allows to make the
predictable in time synchronization at startup and on the other hand - actually eliminates the data
loss in the case of working at least one station during the entire time.
« Capacity allocation of data acquisition between the nodes. When creating complex allocated
systems there can be an important question of predicting and optimizing of the overall system
performance. Taking into account these problems the redundancy mechanism provides the execution
of tasks of data acquisition of individual sources (OpenSCADA controllers) only at one station. The
other stations' tasks would go to data synchronization mode with the executive station. In the case of
loss of the connection with the executive station the task of the local data acquisition is started. It is
also provided the possibility of optimal capacity allocation of the execution of data acquisition task's
of the controllers' group between the stations.
+ Optimization of the load on the external data sources through the data request from an external
source by the only one node. In practice, we often meet highly loaded data sources or interfaces of
access to the data sources, for which even the data acquisition by one station can be a problem and

Data acquisition in OpenSCADA 106

would require reducing the acquisition periodicity, ie data quality. The mechanism of redundancy,
except of capacity allocation between the stations as described above allows you to remove an
additional load form the data source and its interfaces, thereby improving the quality of data.

- Prevention of some differences of data on different nodes associated with the mismatch of
moments of time at the independent acquisition of data by individual nodes by means of receiving
the data from the station with an active controller. In systems with redundant and high
accountability it should be excluded or minimized the differences in the data at different stations,
that means the real acquisition of data by one station and synchronization with these data of other

stations.

Configuration of the redundancy starts with the addition of redundant stations in the list of OpenSCADA
system stations in the tab "Subsystem" of the "Transports" subsystem (Fig.13). Then the whole
configuration of the redundancy is made in the "Redundance" tab of subsystem "Data acquisition" (Fig. 14).

#% OpenSCADA QTCfg: Demo statuion

File Edt View Help QTStarter
8 5000 == 20 28
|Name
ET- @ Demo statuion ? Subsystem: Transports
= Data Bases
[0, Security Subsystem | Modules | Help |
E-- ¥ Transports
= Transport protocols System's external hosts: |E|
j Data acquisition External hosts poll:
| Archives
@ Specials Id | Name |Transpnrt| Address | Uger |Pﬂ=swcrd
@l User interfaces 1§Iccp Loop Sockets TCPlocalhost: 10005 roman | e
&P Modules sheduler I
Loop 2 |loopSSL |Loop SSL | S5L localhost: 10045 root kbl

Loop S50

Fig. 13. The "Subsystem" tab of the "Transports" subsystem.

Data acquisition in OpenSCADA 107

Edit View Help QTStarter

88000 == 200 28

(-

eq

Type
El- @ Demo statuion |Loca|: M Subsystem: Data acquisition

=, Data Bases Subsy
Lﬁf, Security Subsy Redundance I Template libraries | Modules | Help]
it Transports Subsy E
@ Transport protocols Subsy, Status: process time 1.035 ms.

- Data acquisition Subsy)

. Modure: Modut ST T R
Template library: Templ] | Redundant task period (s):

| Archives Subsy| o i =

G Specials Subsy Restore connection timeout (s): ﬂ

|| User interfaces Subsy| Restore data depth time (hour):

-'5' Modules sheduler Subsy Stations:

Loop Remat
Loop SSL Remat ID| MName | Live | Level | Counter | Run

EL::nm:: 1-\./ 10 0 BlockCale Anastito2node (+); BlockCale Anastito2node_cnt...

[Go to remote stations list configuration]

Controllers:

Controller | MName | Started | Redundant | Preferable run | Remoted | B
BlockCale Anastito2node Commaonstation % \./ Off <High level=
[II—| @I] BlockCalc KM102critr KM102cntr w-J Off <High level= E
l [x} Olnnli™alo Aeccdddo Tnnd o od e ™ e, kbt Sk e S l [alls] PN S e o ﬂ h
*[[roman

Fig. 14. The "Redundance" tab of the "Data acquisition" subsystem.

The service task of the redundancy mechanism is always running and executed at intervals which are
prescribed in the appropriate configuration field. The real work on implementing the redundancy is carried
out in the presence of at least one redundant station in the list of stations, and implies:

+ Monitoring of the connection with external stations. In the monitoring process the requests to
remote stations are made to get the information about them updated and to check connection. In the
case of loss of connection with the station the repeat of connection to it is made through interval
specified in the configuration field "Restore connection timeout". In the "Live" field of the station
the current state of communication is displayed. In the "Counter" field the number of requests
carried to the remote station, or the time remaining for the next connection attempt to the lost station
is displayed. In the "Run" field there is a list of active controllers at the remote station with a sign of
the local execution.

+ Local planning of the controllers' execution in reserve. Planning is carried out in accordance with
the station's level and preferences of controllers' execution.

+ calling the data synchronization function for the local controllers working in the mode of
synchronization of data from external stations. During the call, it is being prepared to request of the
data from the remote station for the parameters in the controller starting from the time of the last
request. On the request the only the values of modified attributes and sequence of values from an
archive in case of loss of several cycles of values are returned.

To monitor the time spent in the cycle of redundancy tasks the field status is provided. When
approaching the real time of execution to the cycle of the redundancy tasks it is recommended to increase
the frequency of execution of this task!

For the controller of subsystem "Data acquisition" there is provided the modes of asymmetric and

Data acquisition in OpenSCADA 108

symmetric redundancy. Asymmetric redundancy is working with the configuration of the controller of the
remote station, as it is, and does not trying to generalize it. Symmetrical mode supposes the synchronization
of configuration of the controllers of stations with the configuration of the highest level station, and
suggests the changes in the configuration of all controllers of the stations when changing it on the one of the
stations. Currently this mode is not implemented!

Data acquisition in OpenSCADA 109

Quick start OpenSCADA

An open system OpenSCADA is extremely modular, flexible and multi-functional SCADA-system. As a
consequence of this the first contact with OpenSCADA can be quite complex because of the small chance
of matching the previous experience of the user or complete lack of it with the methods of work in
OpenSCADA. However, this is largely just a first impression, because the whole power of OpenSCADA is
in the palm of the user, because of the abundance of which the user can get confused, and he may require
considerable efforts to select the functions needed to solve his tasks.

For this reason, and to visualize the general concept of work in OpenSCADA this document is created.
The document in the concise and understandable form shows the path from start of OpenSCADA to
creation of the user interface elements on real examples. In addition, the document contains the chapter
with recipes for the configuration, implementation, and typical problems of the user.

The document does not contain the detailed description of the concept and a deep dive into the details of
OpenSCADA, and provides links to the appropriate OpenSCADA documents, containing such information.

Document description is synchronized with the implementation of the examples on the demonstration
database (DB) of OpenSCADA. Consequently, the user must obtain the distribution kit of OpenSCADA
with this database for illustrative study and testing the examples.

1. Terms, definitions and abbreviations

The automated workplace - Usually consists of a system unit of the computer system, display, mouse,
sometimes with the keyboard, and other peripheral equipment that is used for visual representation of
technological process data and making the control actions on the TP.

Lock (term) — notional boundary of technological parameter, in the case of its getting over the preset
algorithm steps to prevent the accident are made. In some modes of TP (start) in accordance with the
regulation it may be necessary to disable the lock (unlocking).

Unlocking (term) — process of the lock disabling for the duration of the TP working in the modes for
which the regulation provides this operation. Attention, unlocking the technological parameters is strict
accountable operation and the must be made by operational staff in the proper order.

Quittance (term) — the process of confirming the fact that operational staff drew attention to the failures
of TP working. This process usually entails the adoption of measures by the operator to correct violations
and pressing the appropriate button to stop the alarm.

PLC (abbreviation) — Industrial PLC. Microprocessor-based electronic device to which via computer-
process interface (CPI) the signal of processing parameters are going. PLC acts the role of the direct data
acquisition, processing and making the control actions by means of algorithms of automatic control. In
addition the PLC provides data for the visualization of TP, and receives data of the manual intervention
from the "top level" system.

Alarm (term) — process of notifying the operational staff of the violation of process or work of the
automation equipment. Way of signaling may be of different types of impacts on human senses in order to
attract attention. Often it is involved the following types of alarms:

- Light alarm — usually is done by changing the color of the graphic object (blinking) to emerging
events and by the setting of static accidents colors (red and yellow) for acknowledged events.

- Sound — is made by an audible signal at the time of occurrence of the event. Type of alarm can be
monotonous and the synthesized voice message with information about the violation.

TP (abbreviation) - Technological process. The whole complex of technological equipment of the
production process.

CPI (abbreviation) — Computer-Process Interface. A number of devices or modules of PLC, to which
are directly connected the signals from the sensors of TP for subsequent conversion from analog to digital
form and vice versa. The transformation is carried out with aim of further processing of values of
technological parameters in the PLC.

Quick start OpenSCADA 110

Alarm setpoint (term) - conventional boundary of the value of technological parameter, the overcoming
of which is considered ad the emergency situation. Usually the following boundaries are provided:

The upper and lower emergency boundaries — boundaries of the emergency values of
technological parameter.

The upper and lower warning boundaries — boundaries of the prevention, regulation boundaries,
of the violation of the technological parameter of the working range.

Failure - sign of parameter getting over the hardware boundaries of technological equipment.
Usually it characterizes the sensor failure, breakage of the communication channel with the sensor
or PLC.

SCADA (abbreviation) - Supervisory Control And Data Acquisition. The software that performs
complex tasks of data acquisition of TP, their archiving and presentation, as well as the making the control
actions by the operator in manual mode.

2. Installation and start

The installation of distribution kit of OpenSCADA can be done in two ways. The first and the easiest
way is to get packages for your distribution of the Linux operating system. The second - to build the
OpenSCADA system from sources. In general, the installation procedure depends strongly on the used
Linux distribution and to exhaustively describe it in this guide it does not seem possible! Therefore, you
may need a deep familiarity with the mechanisms of software installation for the selected Linux distribution
in its documentation.

If user does not have deep enough knowledge and skills in the chosen distribution of Linux, it is strongly
recommended to choose the Linux distribution by the criterion of existence for it the packages of
OpenSCADA in the repositories of the distribution, which will ensure an easy and problem-free
installation!

If the user can not only install the OpenSCADA, but also the Linux distribution, for the first time he can
use the "live" distribution of Linux, with the installed and ready for work or study demonstration of
OpenSCADA. Currently are available "live" builds on the basis of distribution ALTLinux in the form of
CD and Flash-images on the link: ftp:/ftp.oscada.org/OpenSCADA/Live.

2.1. Installing OpenSCADA from packages

Installing OpenSCADA from packages, in its turn, can be made by two methods. The first - the simplest
one, when packages of OpenSCADA are already present in the official or additional repositories of the
distribution of used Linux, and installation of them - the question of running the typical program of
packages' management followed by selection of the OpenSCADA packages. The second is when the
packages of OpenSCADA are got and installed manually.

At the moment the system OpenSCADA packages can be found in the repositories of such distributions
OS Linux: ALTLinux and distributions based on package base of Fedora.

To check for OpenSCADA packages presence in the repositories of the used Linux distribution, as well
as to download packages of OpenSCADA for manual installation you can download at the official

OpenSCADA site (http://oscada.org/en/zagruzka).

Description of the installation from the repository of the selected Linux distribution we'll omit and refer
the reader to the documentation of the appropriate distribution.

For the manually installation of OpenSCADA packages lets download them from the official website or
from the other source. You can download packages of two types.

The first type is represented by a set of four packages:
openscada - package with all files necessary to start OpenSCADA, including all modules;
openscada-demo - files of the demo database with the configuration to start the demonstration;
openscada-doc - all documentation on the OpenSCADA system;

openscada-devel - development packages for the creation of the separate modules to the
OpenSCADA system.

Quick start OpenSCADA 111

http://oscada.org/en/zagruzka)
http://fedoraproject.org/
http://www.altlinux.ru/
ftp://ftp.oscada.org/OpenSCADA/Live

The second type is represented by the set of about forty packages with separation of OpenSCADA
modules in separate packages:

- openscada - contains the OpenSCADA core, basic configuration and launching(starting) files;

openscada-DB.* - "DB" subsystem's modules;

openscada-DAQ.* - "Data acquisition" subsystem's modules;

openscada-Archive.* - "Archives" subsystem's modules;

openscada-Transport.* - "Transports" subsystem's modules;

openscada-Protocol.* - "Transport protocols" subsystem's modules;

openscada-UL* - "User interfaces" subsystem's modules;

openscada-Special.* - "Specials" subsystem's modules;

openscada-demo - files of the demo database with the configuration to starta the demonstration;

openscada-doc - all documentation on the OpenSCADA system;

openscada-devel - development packages for the creation of the separate modules to the
OpenSCADA system.

openscada-plc - virtual package containing dependencies for installing the typical configuration
of the OpenSCADA as PLC;

openscada-server - virtual package containing dependencies for installing the typical
configuration of OpenSCADA as SCADA-server;

openscada-visStation - virtual package containing dependencies for installing the typical
configuration of OpenSCADA as visual SCADA-station.

The first type of the packages' set is provided for easy, manual installation, because it contains only four
packages. The second type is designed to be placed in a repository of Linux distribution and for the
following installation of them using the package manager, which made auto-dependency resolution. The
second type of the packages' set allows you to install only the required components of OpenSCADA,
thereby optimizing the working environment, which is do not allowed by the packages of the first type.

If you are installing from the repository you should only select the package "openscada-demo".
Everything else, according to the dependencies, will be selected and installed automatically.

Manual installation of RPM-packages of the first type can be made by the following command, after
changing the working directory to the directory with the package:

rpm -i openscada-demo-0.6.4.1-alt2.1586.rpm openscada-0.6.4.1-alt2.i586.rpm

Manual installation of DEB-packages of the first type is made by the following command, previously
having changed the working directory to the directory with the package:

dpkg -i openscada-demo 0.6.4.1-2 all.deb openscada 0.6.4.1-2 i386.deb

In the process of implementation it may cause bugs related to missing dependencies. The manual
installation of the packages means that you'll solve them manually, like installing packages of
OpenSCADA, or via the package manager of Linux distribution. To familiarize with the process of
installing software in RPM-package you can by the «click on: http:/skif.bas-

net.by/bsuir/admin/node5 1.html.

2.2. Installation from sources

If you can not get packages of OpenSCADA for the selected distribution, it remains the only ine option
of OpenSCADA building from the sources. The building process of OpenSCADA is described in details in
the guide on the following link http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource. However, it
must be borne in mind that if you managed to build OpenSCADA from sources, then this document is not
for you, and you probably can easily master the basic documents of OpenSCADA

(http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual).
This chapter is given here for completeness and integrity of the consideration of the question, because

the required qualification level of the user for this chapter is much higher than the level of the document at
whole!

Quick start OpenSCADA 112

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual
http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource
http://skif.bas-net.by/bsuir/admin/node51.html
http://skif.bas-net.by/bsuir/admin/node51.html

3. Initial configuration and start

After proper installation of the OpenSCADA with demo database no pre-configuration is required. If you
want to perform a particular configuration, which differs from the base, then use the document of
description the OpenSCADA program on the link:

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual/part4?v=7k{.

Attention! The demonstration of OpenSCADA based on the demo database is not the same as that is
usually provided by the commercial software vendors to demonstrate the possibilities, but to exclude or to
complicate the normal operations by limiting the functions. Demonstration of OpenSCADA is fully-
functional system that provides examples of implementation and configuration of various components.
Based on the demo database of OpenSCADA one can easily create own projects, using the given resources.

To execute the OpenSCADA with demo database you can from the menu of the desktop environment in
the "Graphics" section, "Demo of open SCADA system" with the characteristic icon (Fig. 3.1).

E SIM Instant Messenger (Sim-IM (without KDE))
@ Weh Browser (Mozilla Firefox)

@ Scientific Calculator (KCalc)

G: Package Manager (Synaptic Package Manager)
Bl Midnight Commander

B
Development »
El Edutainment b
{h Games r
% b Eh
@ Internet Ml Djvu Viewer (Djview3) m
5@_ Multimedia ¥ 4 Image Editor (GIMP)
T Office M & Image Viewer (Kuickshow)
o Settings ¥ =h Open SCADA systemn (OpenSCADA)
System M () PDF Viewer (KPDF)
Utilities M [Photo Management (digikam)
<> Lost & Found _Q, PSIPDF Viewer (KGhostview)
Autostart B8 Screen Capture Program (KSnapshot)
' A4 Find Files/Folders % MpocmoTp u3oBpanenni (showF ota)
& Help ™ Pepaktop gvarpamm Dia
[E5) Home Folder [5"] More Applications »
] =| Recent Documents 3
“! <» Run Command..
L Switch User »

B & Lock Session
< A| Log Out...

Fig. 3.1. Menu item of the desktop environment to start the demonstration of OpenSCADA.

Start also can be done from the console by the command:

openscada demo

Quick start OpenSCADA 113

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual/part4?v=7kf

After start we'll get the window of graphical configurator of OpenSCADA system - QTCfg (Fig.3.2)
with the opened root page. Demo database specifically set up so that the first to appear when you start it
would be the configurator's window. You can then open the window for creating graphical user interfaces,
as well as run the project of user interface for execution.

T8 OpenSCADA QTCrg: Demo statuion

QTStarter

File Edit

88 00O % = £ G

View Help

|Name

= O Demo statuion

'ﬁ Data Bases

thb Security

';} Transports

@i Transport protocols

El- | +| Data acquisition

El Module:

Data sources gate
ModBUS
DCOM client
SMMP client
ICP DAS hardware
Block based calculator
AMR devices
¥ systemDA
OPC UA
Sound card
Logic level
Java-like based calculal
Siemens DAQ
Diamond DA boards

Template library:
| Archives
9 Specials
3| User interfaces

@9 Modules sheduler

=) | cop
=) Loop 5SL

eI REY

HEHEHEHHHE-BEHDE

H-3

(41v]

[]

200 22
@

Station [Subsystems

| Tasks | Help]

OpenSCADA station: "Demo statuion”

IO pemoStation

Station: [Demao statuion

Program: ppenSCADA
Wersion: g g.4.1

Host name: aeer.diya.org

System user. ygear

Operation System: | jnux-2.6.30-std-def-alt15
Frequency (MHZ): g4.0897

Realtime clock resolution (msec). 4a_06

Internal charset: yTF_g

Config file: homeuseriwork/0ScadaD/etcioscada_demo.xmi

Wiork directory: [homeluseriworkiOScadaDishare/OpenScada

Icons directory: [Jicons

Modules directory: [. fiblopenscada

Work DB: | SQLite GenDB -]

Save system at exit: |:|

Save systemperioat [0 [3]

Language: [en_LIS UTF-8

16

FFoman
S

Fig. 3.2. OpenSCADA configurator - QTCfg, the root page.

Configurator of OpenSCADA is the main and sufficient mean for the configuration of any component of

the system. Like many others components of OpenSCADA, configurator is implemented as a module.
Besides the configurator QTCfg there may be available other configurators that performs the same function,
but implemented on the basis of other technologies. For example, these are the Web-configurators: WebCfg

and WebCfgD.

All actions in the future, we will examine only in the configuration tool QTCfg, although all of them can
be done in other configurators.

Quick start OpenSCADA 114

http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=a9k
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=8v0

The structure of the interface of the configurator's window can be considered in detail by reference
http://wiki.oscada.org/HomePageEn/Doc/QTCfg. For us it is more important now to examine all the
available interfaces of OpenSCADA, so click next to last icon in the top on the toolbar. After clicking on
this icon the window of user interface development will be opened (Fig.3.3).

‘_ﬁeﬁﬂamwwywr_wmm \

Aftributes

Fig. 3.3. Window of the UI development.

Quick start OpenSCADA 115

http://wiki.oscada.org/HomePageEn/Doc/QTCfg

Then we can start the project "AGLKS" for execution. To do this, select it in the list of projects and run
by clicking on the first left icon on the toolbar or in the the popup menu. The result will be the window of
user interface (Fig.3.4).

File Alarm View Help

[+)

To torch

Gasto Glinsk
)

| "l Res. gra-p-r
23.514 @E

38.018

28.193

P| 5.505
F| 76.324
Tl 20.404

Fig. 3.4. Window of the user interface of the "AGLKS" project.

Building and executing of the user interfaces is implemented by the Vision module of the subsystem
"User interfaces". In addition to this module it can be accessed the other modules of visualization. For
example, OpenSCADA provides module WebVision, which allows to execute projects, previously
developed in the interface module "Vision", through the Web-based technologies and standard Web-
browser. All actions in the future we will examine only in the interface of the "Vision" module.

So we ran the demonstration of OpenSCADA and familiarized with the main set of tools. In the future
we will use them for configuration of OpenSCADA, creating the tasks of data acquisition, binding the
collected data with the purpose of their processing and making the impacts, as well as to create the user
interface of visualization of the received data and to make the control actions.

Lets close the window of the project "AGLKS" execution and the window of development of the user
interface for the preparation to the study of the following chapters.

The whole process of configuration of SCADA-system to perform the functions of the "top level" can be
divided into two stages:
The configuration of data sources and creation the database (DB) of the parameters of these

sources.
Formation of a visual presentation of TP data by creating the operator interface in the form of
mnemonic schemes, groups of graphs, groups of contours, documents, etc.

Quick start OpenSCADA 116

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=155m
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=ba3

4. Working with Data Sources

The main function of any SCADA-system is to work with data sources, namely the inquiry of
programmable logic controllers (PLC) and simple modules of CPI. For more details see the document "Data
acquisition in OpenSCADA" on the following link: http://wiki.oscada.org/HomePageEn/Doc/DAQ .

Support of the one or another data source depends on the protocol or API, through which the source
provides its data, and the availability for the protocol/API the module in the subsystem "Data acquisition"
in OpenSCADA. The total list of modules of the subsystem "Data acquisition" and documentation on them
can be found here http://wiki.oscada.org/HomePageEn/Doc?v=9b7#h735-4 in the appropriate chapter.

Obtained from sources data subsequently are archived, processed and used for visual representation for
the operator of TP.

4.1. Data inquiry of the TP device

As an example lets examine and create the inquiry for the air cooler device. Demo database contains the
model of real-time of TP of compressor station of the six compressors. Data for two devices of air coolers
"AT101 1" and "AT101 2" of the compressor station "KM101" are available on the protocol ModBus/TCP
on port 10502.

We will create the inquiry controller on the protocol ModBUS/TCP and get these data, thereby
practically made the task of inquiry of real data, because from the external device our configuration will be
different only in address of the device and addresses of the ModBUS registers.

For the data acquisition through ModBUS/TCP protocol in the OpenSCADA there is "ModBUS"
module in the subsystem "Data acquisition". To add a new controller we will open the page of the modules
"ModBUS" in the configurator ("Demo Station"->"Data acquisition"->"Module"->"ModBUS") and in the

pop-up menu of the "ModBUS" item click "Add" (Fig. 4.1.1).

File QTStarter

88 OO0

Name

=] @ Demo statuion
5 Data Bases
'-JE, Security
i Transports
au Transport protocols
| Data acquisition
=} Module:
Data sources gate

Edit View Help

0-®2-8-8-5

/=% OpenSCADA QTCfg: Demo statuion

Controllers | Help

2

Module: ModBus

Cortrollers:

testTCP
testRTU

a Load from DB
SN Save to DB
P

= Delete

A Ctri+D

B2 - E-E- -

Tempia

Sou
Log
Jav
Sie
Dia

ftem cut
ftem copy
ftem paste

‘2:':3 Refresh items tree

Ctri+5

Ctri+

Cir+C

Ztrl+

& NBrary.

| Archives

9 Specials
| User interfaces
& Modules sheduler
9 Loop
=B Loop S5L

1)

(i

l

Press for adding new item.

FlFomen] _§

Fig. 4.1.1. Adding the controller in the "ModBUS" module of the subsystem "Data acquisition".

Quick start OpenSCADA 117

http://wiki.oscada.org/HomePageEn/Doc?v=9b7#h735-4
http://wiki.oscada.org/HomePageEn/Doc/DAQ

At the result of our actions the dialog window will appears (Fig.4.1.2) to enter the ID and name of the
new controller. IDs of any objects in OpenSCADA are limited to 20 characters and they should be entered
using English alphabet characters and numerals. In addition, it is desirable to start the ID with the letter.
This is due to the fact that the identifier can later be used in scripts. The names of objects of OpenSCADA
are limited to 50 characters and can be entered by any symbols. The names commonly used for display. If
the name field is blank, instead it the identifier will be used to display. Enter the ID "KM101" and the name
"KM 101".

=. Add node

E Add item to node: 'DemoStationssub_DAQIMod_ModBus'.

ftem type: [Controller | -]
ID: | KM101 |
Name: |KM101] |

W Ok | | & Cancel |

Fig. 4.1.2. Dialog to specify the ID and name of the new object.

After confirming we have a new controller's object. Lets choose it in the configurator and get acquainted
with the settings (Fig.4.1.3).

'¥% OpenSCADA QTCfg: Demo statuion

File Edit Wiew Help QTStarter

880X Ll BOWL 29

ame : Controlier: KM 101
= a Demo statuion
-
4 Data Bases Controller Parameters
iﬂﬁ Security =
? Transports — Stat sl
@ Transport protocols Status 2:Disabled.
= J Data acquisition
El- Module: Enable: ||
Data sources gate
5 ModBUS Rum: [
testTCP Controller DB: ['.' |v]
testRTU
[— Config
DCOM client D: Km0
SHMP client
ICP DAS hardware Mame: [KM 101
Block based calculator
AMR devices Description:
B systemDA
OPC LA
Sound card
Logic level
Java-like based calculal
S?emens DAQ To enable: [
Diamond D& boards
Template library: To start; [of]
["] Archives)
D schie recuraant (o[
|3| User interfaces Preferable run: n
& Modules sheduler Parameteres table: [ModBusPrm_KM'l m]

-3

= | oop L
= | oop SSL Acguisition schedule: [1 |v]
Gather task priority: _E
Modbus protocol: | TCPAP v

[Il—| [III] Trﬂn.spo.rt address: [| V] @
[] Destination node: | 1 IE]v

=

Fig. 4.1.3. The main tab of the controller's object settings of the ModBUS module.

Quick start OpenSCADA 118

Settings of the controller's object, as a rule, are specific for the different types of data sources and
protocols. To familiarize in details with the settings of the controller's object of the "ModBUS" module you
can using the link http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=btc#h871-13. We'll examine the
general configuration of the controller's object and the key settings for the "ModBUS" module.

With the help of the page of the controller's object in the section "Status" may be primarily assessed the
current state of the controller's object and the real state of connection with the physical controller, as well as
quickly to change it. For example, field "Status" contains the code of error and the textual description of the
current state of connection with the controller, in this case the controller's object is disabled. We are able to
enable it and start by setting the flags beside the appropriate fields. Enabled controller's object initializes the
parameters objects, the running one runs the task of inquiry and provides an opportunity to transmit data to
the controller through the attributes of the parameters. The DB field indicates which database to store in the
configuration of the object. We will store the data the main database, ie leave field the default.

In the "Config" section the configuration of the controller's object is directly contained:
- "ID" and "Name" are the fields, we've just entered at the object's creation. The Name can be
changed right here, but the ID can not be changed so symply. If you want to change the ID you must
Cut (Ctrl+X) and Paste (Ctrl+V) the object and enter the desired ID.
+ "Description" may contain the detailed description and purpose of the controller's object. In our
case, the value of this field is not fundamental.
- "Enable" and "Run" indicated the state, in which to transfer the controller's object at start of
OpenSCADA. Lets set both fields.
« Two next fields "Redundant" and "Preferable run" serves for the configuration the horizontal and
vertical redundancy of the data sources at the different stations
(http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-10). We'll not touch them.
- "Parameters table" - contains the name of the database's table in which to store the configuration
of parameters of the controller. Leave it default.
« "Acquisition schedule" - contains the configuration of the scheduler to run the inquiry task. To
get the description of the format of the configuration of the field you can from the tooltip. The single
number indicates the frequency of run in seconds. Let it be one second.
« "Gather task priority" - indicate the priority of the task (from -1 to 99). Priorities above zero are
meaningful only when you start OpenSCADA from the privileged user. Leave this field unchanged.
« "ModBUS protocol" - indicates the variant of the ModBUS protocol. We are interested in the
option "TCP/IP", so leave it as is.
-« "Transport address" - indicates the outgoing transport of the subsystem "Transports", which is
used to connect to the controller. In the case of "TCP/IP" option we need the transport module
"Soskets". We'll examine the creating of the outgoing transport in "Sockets" in details below.
« "Destination node" - indicates the ModBUS node. In our case, it should be "1".
- "Data fragments merge" - includes the merging not related fragments of registers in the single
block of the request, up to 100 registers, instead of generating individual requests. Allows you to
reduce the total time of the inquiry. Lets set this option.
"Connection timeout" - indicates how long to wait for the response from the controller and after
which to report an error of connection. Zero indicates the use of time of transport. Unchanged.
"Restore timeout" - specifies the time in seconds after which if there is no connection to retry to
reconnect.

Lets save our changes to the database by clicking the second left icon on the toolbar.

Quick start OpenSCADA 119

http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=x1w
http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-10)
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=btc#h871-13

Now, in the same manner as the controller's object, let's create the outgoing transport in the module
"Sockets" ("Demo Station" ->"Transports"->"Sockets") through the context menu (Fig.4.1.4). And let's call
the transport as well as the controller: "KM101" and the name - "KM 101". Note that in the "Item type" of
the dialog (fig.4.1.2) you should choose the "Output transport.

=% OpenSCADA QTCfg: Demo statuion

File Edit View Help QTStarter
g = |1 e 200 29
8OO R=1al|®
Marme t
‘= @ Demo statuion @ Module: Sockets
= Data Bases |
E:Eﬂ Security Transports
= 9 Transports
g ssL Input I
- -
a Load from DB
Save to DB Cirl+5
:.- dBus
=y Delete Ctri+D
i ftem cut Cirl+X
tem copy Cirl+C
| ftem paste Ctri+f
@ Refresh items tree
T Fgphed i ‘I‘”dﬂ"“'““p (2]
DAQGateloop L.IIQthgp:tE)
Serial interfaces oy 'ng1 0o
i Transport protocols te stlgllgg oop
J Data .ﬂcquis'rtiun UIGtCTgloop
[Archives Test ModBus
9 Specials UItCTgtest
|!] User interfaces E DAQGatetestioop i
; dules sheduler i DAGRedndtloop -
1| 1] LIGHC fgplxa [~ |
Press for adding new item. B
S

Fig. 4.1.4. Adding the outgoing transport in the module "Sockets" of subsystem "Transports".

Quick start OpenSCADA 120

The configuration page of outgoing transport is shown in Fig.4.1.5. This page also contains the section
of the status and operational control. In the "Status" field the textual description of the current state of
transport is contained. We can run it for execution by checking the box in front of the appropriate field.
Running object of the transport initiates the connection to the external node. Field DB indicates the
database to store the configuration of the object. We will store it in the main database.

File Edit Wiew Help QTStarter
8 & - 20 2R
E b
B OO = =x ek &
|Nﬂme B .
S A ORedirar Output transport: KM 101
UIGtCfgple ﬁﬁ
UIGHC fgnetBook Transport | Request
UlVisionloop
- KM 101 i
testOPC Status: Started. Traffic in 0 kb, out 0 kb.
UIctCfgloop
Test ModBus Runing: &
UICtC fgtest e
DAOGatetestioo Transport DE: [. |v]
DAGQRedndtloop ~ Config
LISt Cfgplxa i
DAQGateloop | | B k101
Serial interfaces
M s | KM 101
ek Transport protocols ﬂme. [
El- | Data acquisition Description:
E Module:
Data sources gate
= ModBUS
testTCP
testRTU Address: | TCP:localhost: 10502 |
KM 101 -
DCON client — To start: (]
CRIRAN i
: | [I|I] Timings: [5:1]
Fronan] A ..
Fig.

4.1.5. The configuration page of the outgoing transport of the "Sockets" module of subsystem "Transports".

In the "Config" section the configuration of the transport object is contained:
- "ID" and "Name" contain the titles, which we entered when creating the object.
« "Description" may contain the detailed description and purpose of the object.
« "Address" specifies the type, address and mode of connection with the remote station. You can
view the record format in the tooltip. Let's set this field to the value "TCP:localhost:10502".
« "To start" indicates in what state to transfer an object at start of OpenSCADA. Let's set the field.
« "Timings" indicate the duration of waiting for the response from the remote station. You can
view the record format in the tooltip. Let us leave the value unchanged.

Let's save the transport and return to the configuration field "Transport address" of the controller's object
and select the address "Sockets. KM101". Setting the controller's object is finished. The next step is
configuration and choose the data you need to query from the controller. This setting is done by creating an
object "Parameter” of the controller. The "Parameter" object allows you to describe the list of data obtained
from the comptroller and to transmit them to the environment of OpenSCADA.

To add a new object of the parameter we will open in the configurator the page of our controller's object
and on the popup menu of item "KM101" we'll click "Add". The parameter's object we'll call "AT101 1"
and the name "AT 101 _1".

The configuration page of the obtained parameter is shown in the Fig.4.1.6. This page contains the
section of status and operational control. In the "Type" field it is contained the ID of the type of the

Quick start OpenSCADA 121

parameter, in this case it is only possible the "Standard" type (std). We can enable the parameter by
checking the box of the appropriate field. The enabled parameter is involved in the process of exchange
with the controller.

=4 OpenSCADA QTCfg: Demo statuion
File Edit “iew Help QTStarter

' WKL B0 298
8B 00O == el |2 .
Name [i]
S A OGaisiostios Parameter: AT 101_1
DAGRedndtloop : =
UIGHCTgplxa Parameter Atributes | Archiving]
DAGGateloop
Serial interfaces —State
e Transport protocols TYPE. atd
[El- =4 Data acquisition
EIJ Modute- Enable: [v]
Data sources gate _ Config
=l ModBUS
testTCP C: AT101_1
testRTLU
B K101 Name: [AT 101_1
AT 101 1 Description:
AT101 2
DCOM client
SHMP client
ICP DAS hardware
Block hased calculal
AMR devices
R System DA | To enahle: E|
OPC UA Aftributes list:
Sound card —
Logic level RAQORTET input
£ Java-like based calc RA0T:rToT output
Siemens DAQ - R 02 rw: Cw: Productivity
Diamond DA boards [™
4 I |1 IP
[*|[roman]

Fig. 4.1.6. Configuration page of the controller's parameter "ModBUS".

In the "Config" section the configuration of tge parameter's object is contained:
- "ID" and "Name" contain the titles, which we entered when creating the object.
- "Description" may contain the detailed description and purpose of the object.
- "To enable" indicates in what state to transfer an object at start of OpenSCADA. Let's set the
field.
- "Attributes list" contains the configuration of attributes of parameters in relation of them to the
registers and bits of ModBUS. You can view the record format in the tooltip. Let's set the contents

of the text field as follows:
R:100:r:Ti:T input
R:101:r:To:T output
R:102:rw:Cw:Productivity.

Quick start OpenSCADA 122

Similarly, create the second option: "AT101 2" with the name "AT 101 2". The list of attributes fro it

let's set in:
R:103:r:Ti:T input
R:104:r:To:T output
R:105:rw:Cw:Productivity.

Let's save the both objects of the parameter. Now we can enable and run our controller to initiate the
exchange. To do this, go back to the page of our controller's object and in the "Status" section let's set the
flag "Run". If we do not miss something, the exchange is successfully started and in the "Status" field we'll
get something like this, as it is shown in the Fig.4.1.7.

=8 OpenSCADA QTCfg: Demo statuion

File Edt “iew Help QTStarter
het L2000 28
BB OO0 el 2
Mame [:]
Controller: KM 101
KM 101
testOPC —I—]
UIGtCfgloop Controller Parameters
Test ModBus [3
UIGtCfgtest e
DAQGatetestloo Status: 0:Started. Call by period 1 s. Gather data time 0.256 ms. Read 6(0) registers, 0{0)
DAGRedndtloop— coils. Write 0 registers, 0 coils. Errors of connection 0, of respond 0.
UICtCfgplx8 .
Enakle:
DAQGateloop nabie: (V]
Serial interfaces Run: i
I Transport protocols -
= J Data acquisition S l - |v]
El- Modute: —Caonfig
Data sources gate D:
El- ModBUS - KM101
testTCP
Mame: | KM 101
testRTU ame: |
B KM10 Description:
AT101 1
AT101_2
DCOM client
SHMP cliert
ICP DAS hardware |
Block based calculal__]
AMR devices To enable: (V]
B systemDA To start: [
CPC UA
Sound card Redundart [Off ||
T '
Javadice based cald & Preferable run: | <High level= ﬂ
Siemens DAQ = Parameteres table: [MndElusPrm_Km iyl l
F
[II [III] Acquisition schedule: [1 |VI E
=

Fig. 4.1.7. The page of the controller's object if the exchange with the physical controller is successful.

Quick start OpenSCADA 123

In the case of a successful exchange with the physical controller, we'll obtain the described data of the
controller in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our
parameters AT101 1 (Fig.4.1.8) and AT101 2. Because the inquiry is regularly and at intervals of a
second, then we can observe their changes by clicking the button "Refresh current page" on the toolbar.

=% OpenSCADA QTCfg: Demo statuion

88

File Edit View Help QTStarter

VOO =# =X ek

| Mame

(<]

= 6 Demo statuion
"a Data Bases
EE Security

i Transport protocols
= J Data acquisition

Parameter Atributes

200 29

Parameter: AT 101_1

Archiving

= 9 Transports ID: AT101_1
g ssL
i@ Sockets Name: | AT 101_1
Serial interfaces Description:

Bl Module:
Data sources gate
= ModBUS | |
testTCP — -
testRTU
1 KM 101 Tinput: 30842
L AT 101 1
AT 101_2 T output: 15728
DCOM client o -
SMMP cliert Productivity: [EUU H

ICP DAS hardware
Block based calculal o
AMR devices -

|7 . T:__II]

Fig. 4.1.8. The page of described attributes of the AT101 1 parameter.

The configuration of data acquisition is complete.

Quick start OpenSCADA 124

4.2. TP data processing

Frequently the initial data obtained from the data source are the "raw", ie unprepared or uncomfortable
for the visual presentation, so you need to perform this preparation. In our example, we received the data
that comes in the code from the scale inside the controller. Our task is to perform the calculation of real
values from the received data. Data processing in OpenSCADA can be done, either during the visualization,
and in the subsystem "Data acquisition". However, the mixing of the visualization process and processing
of initial data makes the configuration confusing and makes the obtained images of the visualization
unsuitable for reuse. For this reason, let's make the preparation of data in the subsystem "Data acquisition".

Calculations in the subsystem "Data acquisition" are done via the module of logic level "LogicL.ev" and
the templates of parameters of the subsystem "Data acquisition". To familiarize with the concept of "logical
level" you can here: http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-9 .

To make calculations in the module of the logic level you must first create the template of the parameter
of subsystem "Datafcquisition". To do this, let's open the page of templates' library "Main templates"
("Demo Station"->"Data acquisition"->"Template library"->"Main templates") and through the context
menu we will create the template object "airCooler" with the name "Air cooler". The configuration page of
the resulting object is shows in the Fig.4.2.1. This page contains the "State" section and the section of the
operational control. We can make the template accessing by checking the box next to the corresponding
field. Accessing templates can be connected to the data acquisition parameters, and the parameters will
make calculations on this template. In the "Used" field the number of objects that use this template to
calculate the image of the parameter is indicated. In the "Config" section only the familiar for us
configuration fields are present.

File Edt View Help QTStarter

8800V &L 200 2@

Mame [:] -
Parameter template: Air cooler
El- 3# Transports
B ssL B Template (8]
b Sockets
Serial interfaces — State
e Transport protocols o |:|
= J Data acquisition s
Module: Used: g
= Tempiate library:
g7 — Canfig
= Main templates I airCooler

Manual input {Linif)
Alarm digital Mame: | Air cooler
Analog alarm by borders
Analog sign. (Unif)

Diskret block {Unif)

Impulse PID sign. (Unif, stats)
Flow control point

Diskret parameters block
Analog sign. (Unif, stats)

PID =ign. (Unif stats)

Description:

| Archives

y .- £d Snecials oD
[]

Ffomar]

Fig. 4.2.1. The configuration page of the template's object.

Quick start OpenSCADA 125

http://wiki.oscada.org/HomePageEn/Doc/DAQ?v=adg#h942-9
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=18hf

The basic configuration and the formation of the template of parameter f data acquisition is made in the
tab "IO" (Fig.4.2.2) of the template. The detailed description of the process of the template's formation can

be found here: http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=iuc#h932-6 .

Let's create in the template two properties fro the inputs ("TiCod", "ToCod"), two for outputs ("Ti","To")
and one clear property ("Cw"). For the "TiCod", "ToCod" and "Cw" let's set the "Configure" flag to the
"Link", this will let to link to them the "raw" source. For the "Ti" and "To" let's set the "Attribute" flag to
the "Read only", and for the "Cw" - "Full access", we make it to form the three attributes of the resulting
parameter of the data acquisition: two - read only and one with the full access..

The program language let's set to "JavaLikeCalc.JavaScript", and the program:

Ti=150*TiCod/65536;
To=100*ToCod/65536;

J- Demo statuion
File Edit View Help QTStarer

— ¥ 2
88000 &l 200 28
|

|Name .
&/ @ Demo statuion Parameter template: Air cooler

'f. Data Bases Template -

l:[]j, Security

Bl §f Transports o E

g ssL

g Sockets

Serial interfaces
@l Transport protocols
Bl | +/| Data acquistion

ldd | Mame | Type |Mode| Adtribute Configure Value

TiCod | Ticod Integer Input | Mo attribute | Link Parameter|Ti
ToCod | Tocod Integer Input | Mo attribute | Link Parameter|To

Module: Cw Productivity Integer | Input | Fullaccess | Link Parameter|Cw
El- Template library: Ti Ti Real Input |Read only Constart
7

£} Main templates To To Real Input |Read only | Constant

Manual input (Unif)

Alarm digital

Analog alarm by borders
Analog sign. (Unif)

Diskret block (Unif)

Impulse PID sign. (Unif, stats)
Flow control point

Diskret parameters block
Analog sign. (Unif, stats)

PID sign. (Unif, stats)

ffrg | dnetioncalculae o Input |Mo attribute | Constant 1000
freguency (Hz)

Function start flag Boolean Input | Mo attribute | Constant 0
f_stop Function stop flag Boolean | Input | Mo attribute | Constant 0

o i [i oo e i i
—
@
o
=1

f_err Function error String Input | No attribute | Constant 0

L. Air cooler
| Archives
@ Specials Programm language: | JavalikeCalc JavaScript |v] E
4| User interfaces
'5' Modules sheduler RLOOTR
g Loop Ti=150*TiCod/&5536;
Loop SSL To=100"ToCod/E5538;
(1 D =
-

[|

Iﬂ roman

Fig. 4.2.2. Tab "I1O" tab of the configuration page of the template's object.
Let's save the resulting template and set the accessibility flag.

Now we'll create the controller's parameters' objects in the "LogicLev" module of subsystem "Data
acquisition". The controller and its parameters in the module "LogicLev" are identical to the previously
created in the module "ModBUS" and they are created on the page: "Demo station"->"Data acquisition-
>"Module"->"Logic level". The object of the controller and the parameters will be called identical to the
objects in the module "ModBUS".

Quick start OpenSCADA 126

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=iuc#h932-6

The object of the controller of the module "LogicLev" (Fig.4.2.3) has no specific settings and the default
ones may not be touched.

a OpenSCADA QTCTg: Demo statuion
File Edit View Help QTStarter
20 28
83000 m L2
Name il -
, Controller: KM 101
= i Demao statuion
=
4 Data Bases Contralier | Parameters
% Security
FY
g} Transparts — State B
=l @ Transport protocols Stgtus: .41
HTTP-realisation - ZDisabled.
Self system OpenSCADA protocol Enable: |:|
User protocol
ModBUS Run: [
OPC UA
Controller DB: | *.* hd
= j Data acquisition [|]
E}- Module: e — Config
Data sources gate e o:
ModBUS - Ko
DCON client Name: | KM 101
SNMP client -
ICP DAS hardware Description:
Block based calculator
AMR devices
8 SystemDA
OPC UA
Sound card
= Logic level .
To enable:
Experimertal vl
To start: |E|
Java-like based calculator)
Siemens DAQ Redundart: ﬂ
Diamond DA boards Preferable run: | <High level= n
Template library:
[] Archives - Parameteres table: [LogLe\rPrm_KM1U1 l
&) Specials E Request data period (ms): | 1000 = e
4 SrEe 4 |p -
I """ | Request task priority: _E -
FFoman]

Fig. 4.2.3. The main tab of the configuration of the object of controller of the LogicLev module.

Quick start OpenSCADA 127

The object of the parameter of controller of the "LogicLev" module (Fig.4.2.4) has only the one specific
setting - "Mode", where you need to set "Template" and select the address of the template, we have just
created.

File Edit View Help QTStarter

880V0OUrxX L&kl |80 2

Mame l:] -
= ModBUS Parameter: AT 101_1

test
gate
OPC UA
Bl | Data acquisition | W i
E}- Module: Type: gtd
Data sources gate
MaodBUS — Config
DCON client o
SNMP client AT101.1
ICP DAS hardware MName: | AT 101 _1
Block based calculator
AMR devices
¥ SystemDA
OPC LA
Sound card
Logic level
Experimental e
= KM 101 _ To enable; [+

AT 101 ;2 : Mode: [Template | vl [hase airCooler | v]
Java-like based calculator

Siemens DAGQ

Diamond DA boards E
- Tempiate library: hd
4 | 4 ||

Parameter l Afributes | Archiving]

E-#

Description:

0-BE-E-EE2H 55

-3

[roman

Fig. 4.2.4. Configuration page of the "LogicLev" controller's parameter.

In addition to the basic configuration of the parameter it is necessary to configure the attached template
(Fig. 4.2.5). Configuration tab of the template appears in the parameter's mode "Enable". To enable the
parameter it is possible by the previously enabling the controller. The flag "Only attributes are to be shown"
allows you to set apart each link (Fig.4.2.6). Since we are made the following format of linkage in the
template "Parameter|T1", then all three links we can set simply by typing an address to the parameter in the
"ModBus" controller. We shall specify the following addresses "ModBus.KM101.AT101 1" and
"ModBus. KM101.AT101 2" in the appropriate parameters.

It should be noted that all the input fields addresses of objects in OpenSCADA provide a mechanism to
set the address. This mechanism involves elemental choice, during which there is a movement in the
interior. For example, typing the address "ModBus.KM101.AT101 1" first we will be able to choose the
type of data source, including the "ModBus". By selecting "ModBus" in the list of available items for
selection will be added to the module controllers "ModBus", among which will be "ModBus.KM101".
Select the item "ModBus.KM101" add to the list of parameters of the controller, etc. to the final element in
accordance with the hierarchy of objects (http://wiki.oscada.org/Doc/OpisanieProgrammy?v=gax # h827-
6). To be able to return to levels above the selection list of all the elements are inserted into the higher
levels of the current value of the address.

Quick start OpenSCADA 128

http://wiki.oscada.org/Doc/OpisanieProgrammy?v=gax

=8 OpenSCADA QTCfg: Demo statuion

Help QTStarter

File Edit

88000 ==
Name =

OPC LA
= J Data acquisition
= Moduie:
Data sources gate
ModBUS —
DCOM client
SHMP client
ICP DAS hardware
Block based calculator
AMR devices
B systemDA
OPC LA
Sound card
Logic level
Experimental
= KM 101

Wiew

&

0-&#-H5-6-EH2-85E

AT 101 1
AT101_2
Java-like based calculator =
Siemens DAQ -

hea L 200 29

Parameter: AT 101_1

Parameter | Atributes | Archiving] Template config |

Only atributes are to be shown: |:|
(Parameters

Parameter:

ModBus KM101 AT101 _1 | -]

[llroman]

2% OpenSCADA QTCrg: Demo statuion

File Edit QTStarter

88000 ==
Name a

OPC LA
El- || Data acquisition
= Moduie:
Data sources gate
ModBUS —
DCOM client
SHMP client
ICP DAS hardware
Block based calculator
AMR devices
® systemDA
OPC LA
Sound card
Logic level
Experimental
= KM 101
AT 101 1

Wiew Help

F-H

I T o B E B

AT101 2
Java-like based calculator -
Siemens DAQ -

K |

Ll 200 298

Parameter: AT 101_1

Parameter | Atributes | Archiving] Template config I

Only atributes are to be shown: IE|

Parameters

Ticod: | ModBus KM101.AT101_1.Ti -
To cod: | ModBus KM101.AT101_1.To 4
Productivity: | ModBus KM101.AT101_1 Cw |-

[lroman]
e

Fig. 4.2.6. The "Template config" tab of the "LogicLev" controller's parameter page with the links details.

Quick start OpenSCADA 129

Let's save the created objects of the controller and parameters. After this, run the controller for execution
by setting the controller's flag "Run" in the "State". If we do not miss something, the calculation is
successfully started and in the "State" we'll get something like the one on Fig.4.2.7.

OpensCADA QTCrg: Demo statuion

Fie Edit \iew Help QTStarter

88000

Name

OPC LA
(=] J Data acquisition
= Module:
Data sources gate
ModBUS
DCOM client
SMNMP client
ICP DAS hardware
Block based calculator
AMR devices
B systemDa
OPC LA
Sound card
Logic level
Experimental
B-iKM 101
AT101_1
AT101_2
Java-like based calculator
Siemens DAG
Diamond DA boards
=l Template iibrary:
57
Main templates
[] Archives
&9 specials o
!] User interfaces
@9 Modules sheduler

EH-B

0-#25608BEHB

[+

+ % &L 200 29

Controller: KM 101

Controller | Parameters

— State

Status: g:Started. Calc time 0.049 ms.
Enable: IE

Run: IE

Controller DB: ['.' | v]

— Config
D Km101

Name: | KM 101

Description:

To enable: IE
To start: IEI

Recundart: (01|~
Preferable run: | <High level> n

Parameteres table: [LoglLevPrm_KM101

)

[

Fig. 4.2.7. The page of the controller's object if the calculation of the controller in the "LogicLev" module is

successful.

Quick start OpenSCADA 130

In case of successful processing of the template's code in the parameters we'll obtain the processed data
in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our parameters
AT101 1 (Fig.4.2.8) and AT101 2.

e OpensCADA QTCrg: Demo statuion

=% Lkl 200 88

File Edt “iew Help GQTStarter

88000

Name

OPC UA Parameter: AT 101_1

= J Data acquisition 4[—. _
E Moduls: Parameter | Afributes | Archiving | Template config |

Data sources gate o

MaodBLS i - AT101_1

DCOM cliert

SHMP client

ICP DAS hardware Description:

Block based calculator

AMR devices

B SystemDA

OPC UA

Sound card

Logic level | Error: g

Experimental

KM 101 Productivity: | 200 =
AT 101 1 Ti

®-H

Name: | AT 101 _1

I B T 3 O B R R

nga-like bhased calculator — To: 25,5249
Siemens DAQ
Diamond D& boards v

4 TEEEE 4 ||.

[lromn]

Fig. 4.2.8. The page of the attributes of the parameter AT101 1 of "LogicLev" module.

The configuration of data processing is complete.

Quick start OpenSCADA 131

4.3. Enabling the TP data archiving

Many tasks require to keep the history of parameters of the TP. To activate the archiving of the attributes
"Ti" and "To" of the AT101 1 and ATI101 2 parameters in the previously created controller of the
"LogicLev" module it is enough on the "Archiving" tab of the configuration page to choose which attributes
are to be archived and by what archiers (Fig.4.3.1). We'll choose the archiving of "Ti" and "To" attributes in
the "FSArch.1s" archiver.

8 OpenSCADA QTCrg: Demo statuion

File Edt Wiew Help QTStarter
883000 =% L&l /800 28

Name I_] .
OPC UA Parameter: AT 101_1

= J Data acquisition
£l Module:
Data sources gate
ModBUS e

DCON client atribute | Archiving | FSArch.1h | FSArchm | FSArch.1s | DBAc
SNMP cliert
ICP DAS hardware 1 |SHIFR
Block based calculator 2 | NAME
AMR devices
® SystemDA 3
OPC UA =
Sound card
5
6
7

Parameter | Atributes] Archiving l Template config]

Archiving:

FH-E

DESCR

0-#3-5-8-HE5-E

Logic level
Experimental
= KM 101

e AT 101 _1
AT101_2
Java-like based calculator
Siemens DAQ E
Diamond D& boards i

Fig. 4.3.1. The "Archiving" tab of the AT101 1 parameter of the "LogicLev" module.

Quick start OpenSCADA 132

As the result of this operation it will be automatically created the objects of archives for the selected

attributes. For example, the archive's object for the attribute "Ti" of the AT101 1 parameter is presented at
Fig.4.3.2.

e OpenSCADA QTCrg: Demo ¢

File Edi View Help QTStarter
: 200 28
8 BOCCO ==X &l 2
= [rvpe = Value archive: AT101_1_Ti
LC21_1D_close0 Value & -
TC2_1_2_impQup “Value & . =
TE1313_1_var Value & Archive I Archivators | Values]
F3_var Value z -
ES4_1_varl Value 2 —State [l
EASE_1_st_open(Value & Runing: ||
EASE_1_st_openi “Value &
hs59_1_com Value ¢ Buffer end: 26-05-2010 11:03:55.0
STB612_var Value & Buffer begin: e
slotB_st_open Valus 2 an. 26-05-2010 11:02:16.0
PC_KPO2_war “Value £ Archive DB: [-_- | v]
TC2_2 1_sp “Value &
ple_plet Value £ —Config
ES4_2_wari Value z ID: .
EAST 2 st openl Value: ATIM_1_Ti
LC21_1D_close Value & Name: [,rmm AT
ple_ple2 “Value & L
D1T2 Value & Description:
EAST_2_st_open
101 1 Ti
P_PP1_war
ES8_2_com
PdE0_2_var To start: [w]
hs2_2_com
slot7_st_open0 Valuetype: [Real |
AT101_1_To Source: [ﬁctive param. atribute |VI ’sub_DAQ.mod_LogicLev.cntr_KM‘l 01 prm_AT101_1.a_Ti | V]
EAST_2_st_openl oo
L21_1_war e Buffer period (sec):
e e (tems)
a Specials Subsy s Buffer size (items): | 100 =]
I3 user interfaces Subsys+ Buffer hard time griding: [|
14 I EEEEE | [‘ I'] Buffer high time resolution: Ifl el
-
[roman]

Fig. 4.3.2. The page of the archive's object of the "Ti" attribute of the AT101 1 parameter.

Quick start OpenSCADA 133

Usually the settings of the archive do not need to be change, but if you need the special configuration, it
can be done on the aforesaid page. Often you may need to obtain the information about the archive. For
example, find the archive's size, both in time and in the bytes, as well as to look at the graph(diagram) of

the parameter (Fig.4.3.3).

File

8800

Edit \iew Help QTStarter

Mame

LE21 _1D_closel
TC2_1_2_impQup
TE1313_1 _var
F3_var
ES4_1_varl
EASG_1_st_open0
EASG_1_st_openi
hs39_1_com
ST8E12_war
slot8_st_open
PC_KPO2_var
TC2_ 2 1 _sp
ple_pled
ES4_2_wvarl
EAS1_2_st_openl
LC21_1D_close
ple_plc2
D_1_T2
EAST_2_ st open
AT101_4_Ti
P_PP1 _var
ES8_2_com
PdE0_2_wvar
hs2_2_com
slot? _st_openl
- AT101 1 To
EAST_2_st_openO
L21_1_war
EAST_2_st_openi
€9 Specials

F
4| User interfaces E
Al (1]

[Archive | Archivators J Values l

29

Value archive: AT101_1_To

Time: [26.05201011:0639 |~ [0

=

Show trend: @
] [230

Picture size: [&00

SIC

Value scale: [0

=)
=)

Values trend:

Mz 10:30 Me

[|

11:00 M-

I

9F
u ﬁuﬂu

HUH

104 M

11:01 M= 11:02 M= 11:03 N 11:05

Ffoman

Fig. 4.3.3. The "Values" tab of the page of the archive's object of the "Ti" attribute of AT101 1 parameter.

Quick start OpenSCADA 134

5. The formation of visual presentation

The formation of visual presentation may be performed at three levels of complexity and the user can
select any of them, depending on the level of his knowledge and availability of libraries with ready-made
images and templates.

The first level requires a minimum qualification of the user, but implies the presence of template frames'
libraries, which are needed to solve his task. Within the limits of the first level the user only has to know
how to connect the dynamics to the template frames' pages and how to add new pages of the template
frames.

The second level provides the additional ability to create new frames based on the finished complex
elements, simply by their placement in the frame. To achieve this qualification level users will need
libraries of complex elements needed to solve his tasks.

The third level requires that user is able to use of all the tools of the development environment of visual
interfaces of OpenSCADA, including the creation of new complex elements and developing of the new user
interfaces in the project.

All works on the visualization interface we will make in an environment of the "Vision" module of
subsystem "User interfaces". To open the "Vision" interface window you should click the second icon on
the right on the configurator toolbar. The result is the window previously shown in Fig.3.3.

5.1. Adding the template page in the project and linkage of the dynamics

Let's examine the first level of complexity task, when in the already designed interface it is necessary to
link the dynamics to the template page. The concept of "Page's template" means the page on the basis of
which with the help of inheritance it can be created a lot of final visualization pages with an individual list
of the dynamics. The examples of these pages are: "Graphics group", "Contours group", "Overview frames
panel" and "Result graphics". In the Fig.5.1.1 the template page "Graphics group" in the project tree "Signal

groups (template)" is presented.

J=4 Vision developing _Talx|
File Edit Project Widget Window View Help QTStarter

— . . _— e o .

56 8 DR SR E R o « i E B

@ Prajects Widget: /prj_tmplSO/pg_so/pg_1/pg_ggraph -
L |Name |

= | & @) signal groups (template) Graphlcs group:

=} I Root page (SO)

=} Group 1
L2 Graphics ar...

Documents
Mnemos
== Contours gr...

Il Overview fr...
Group 2
Result graphics
Control panels
I AGLKS

Attributes

| Attribute [vaiue

ibutes

Adtr

[Links

z
[100%][] Resize][roman

Fig. 5.1.1. The template page "Graphics group".

Quick start OpenSCADA 135

The "Graphics group" template page provides an opportunity to link up to eight signals for simultaneous
display them on the diagram. Elements at the top will automatically hide for unspecified links.

Let's create the new group of graphs "Graphics 2" in the template container "Graphics group" of the first
group of the root page of "Signal groups (template)". To do this, let's in the context menu of the "Graphics
group" item select "Add visual item" (Fig.5.1.2). To enter the ID and name of the new visual item the
dialog will appear (Fig.5.1.3). Enter the ID "2" and the name "Graphics 2".

Edit Project \Widget Window View Help QTStarter

seam L LT

=B . Signal groups (template)
£l MM Root page (S0}
[l Group 1

- “isual tem changes clear
Control panels
- - “isual tem properties Ctrl+P
< — B visual item edit Ctri+E
....... Sy o 5
bbb Attributes """]
‘E Library: mnEls 4
8 | Attribute | Value Library: AGLKS ’
=] i ggraph R
ST fri_tmp Library: Main r
- - Parent Twlb MIO Library: test 3
£l - Roat Box
3| i Name Graphlcm Library: originals 4
wf Wisual tem cut Ctri+X
- Description Pagest .
_ | Misual item copy Ctri+C
- Enabled true | Visual tem paste Ctrl+
- Active false
E.] Geometry [0, 0, a0 . Load from DB
& Tip [l | @ savetoDB Ctri+S
S g ﬁ. Hefresh prqects
S e R [T OT pEgE [100%|*| Resize|[.|[roman|

Fig. 5.1.2. Adding the "Graphics 2" group of graphs.

u Erter new widget'sipage's identifier and name.
D |2

Name: | Graphics 2| |

W Ok ||xcnﬂ|
A

Fig. 5.1.3. Input dialog of the ID and name.

Quick start OpenSCADA 136

After confirming the name input it will be created the new page. However, for its activation, we need to
enable it. You can enable this page in the dialog of the properties editing page (Fig.5.1.4). To open this
page it is possible by selecting the menu item 'Visual item properties "in the context menu of the newly
created page.

T Project page: /prji_tmplSO/pg_so/pg_1/pg_ggraphipg_2

Widget l Attributes | Process | Links]

— State
Enabled: o
Parent widget: [- | v]
Pagetype: | Standard [<]
— Configuration
Icl: 2
Roat: Box
Path: fpri_tmplSOipg_soipg_1/pg_ggraphipg_2
MName: Graphics 2
Description:

Pages template: "Graphics group”

COwner, group: [rnmﬂn | "] [UEEFE | T]

Access: [‘ufiew and cortrol | v] [‘u‘iew and control | v] [‘u‘iew | v]

Fig. 5.1.4. Dialogue of the properties editing of the visual element.

After enabling the page you are ready to set links to the created in the previous chapter parameters of
controllers. To do this, without leaving the dialog to edit the properties of the newly created page
(Fig.5.1.4), click on the "Links" tab (Fig.5.1.5). On this tab, we can see the tree with the elements "ell" ...
"el8". Unwinding any of the elements we'll see the "Parameter" branch, in this branch we need to specify or
select the address of our attributes "Ti" and "To". Total we will fill the four elements. When filling out the
elements the part of properties must be specified as constants. For example, it is necessarily needed to be
specified:

« name - "val:AT101 1 T1"

+ ed-"val:deg.C"

« max - "val:150" (for Ti) and "val:100" (for To)
« min - "val:0"

If you foresee the existence of the attributes specified in the controller parameter's template as constant,
it will be possible to specify only parameter, and the attributes will be set automatically.

Quick start OpenSCADA 137

Project page: /pri_tmpls0ipg_so/pg_1/pg_ggraphipg_2

[Widget | Attributes Process Links |
Mame ‘alue =
El el
El- Parameter Custom: valb AT101_1 Ti, , , proc/LogicLevhM1 01/7ATT ...
< name valAT101 1 Ti
HMHH
ﬂMin
- addr pro/LogicLeviM101/AT101 _1Ti
- ed valdeg.C
- Max val150
< mir val0
- pModes,
- pModeC
- prec
WMEI
- color #ae7ic3 o
- digComs
- digRevers
- digstts
- el2
El- Parameter Custom: valb AT101_1 Ta, , , proc/LogicLevBM101 /AT ...
o name val: AT101_1 To
o aMax
- aMin
addr prevLogicLevM101 /AT101_1/To
~oed val:deg.C -
- max val:100 -

Fig. 5.1.5. The "Links" tab of the dialog of edit the properties of visual item.

Quick start OpenSCADA 138

Having finished the links entering, we can see the result of our efforts. To do this we'll close the editing
properties dialog and run the "Signal groups (template)" for execution, about the run button we remember
from the previous chapters. Then let's choose the graphics and switch to the second page. With error-free
configuration, we should see something similar to that shown in Fig.5.1.6.

Signal groups (template)

File Alarm View Help

Graphics group:

1143 1144 11:47 11:48 1150

4vB7Q 0 «ue
Fig. 5.1.6. The created group of graphs with the four signals linked.

roman

Quick start OpenSCADA 139

5.2. The creation of the new frame, the mnemonic scheme

Let's raise the bar and create the new frame, on which we'll put the basic elements of our controllers'
values displaying. Such frames are usually called the mnemonic schemes and in addition to the dynamics
displaying, and even in the first place, contain the static image of the technological process in the
mnemonic representation. We are not going to focus on the creation of statics and we'll add the dynamic
elements and link them to the parameters of our controllers. We'll put the created frame to the tree of
already known to us project.

New frames, destined later to be placed in the project, are to be created in the library of widgets. Let's
create the new library of widgets "KM 101" by the selecting of the vertical tab "Widgets" and in the context
menu of the window of widgets' libraries click "New Library" (Fig.5.2.1). In the dialog of entering the
name we'll indicate the identifier "KM 101" and the name "KM 101" and then confirm.

Fie Ecit Project Widget Window View Help QTStarter \

SAIDRNRAN L L CENGEE -

.E '''''''''''''''''''''''' 'A'ﬁﬂ'lt rrrrrrrrrrrrrrrrrrrrrrrr

ﬁ- Mame Type

= e — S
EERINTY 8 rew library

@ | [AGL :

E- .. Mair'" Add visual item Cirl+l

s | & 7 ' Delete visual tem Ctri+D

= m E “isual tem changes clear

B visual tem properties Ctrl+P
H Visual tem edit Cirl+E

Library: doc
Library: mnEls
- | Library: AGLKS
Library: Main
&4 Library: test
{23 Library: originals
© Visual tem cut Cirk+X
| Wisual item copy Cirl+C

Attributes

Links

W' Wisual item paste Ctrl+\

a Load from DB
savetoDB Ctri+S

<% Refresh libraries

Press to create the new widgets library.

Fig. 5.2.1. Adding the new library of widgets.

Quick start OpenSCADA 140

Next we'll add the new frame "AT101" by selecting "Library: originals" -> "Elements box" in the
context menu of the created library "KM101" (Fig.5.2.2). In the dialog of entering the name we'll indicate
the identifier "AT101" and the name "AT 101" and then confirm. At the heart of any frame and the page
must be based on an element of "Elements box" ("Box"), and therefore we have chosen it.

File Edit Project Widget Window \View Help QTStarter |
: i = i e

[} Documents Library
- Mnemo elements Library
Bl AGLKS Likrary
. Main elements Library
@ Tests Library
_w Drlglnsl widget's library Library

T

m New library
M Add visual item Ctrl+l
B4 Delete visual item Ctrl+D
m Visual item changes clear

[visual tem properties Ctri+P
] | et ﬁ “Visual item edit Ctri+E

e Attributes Library: doc 4
g Library: mnEls r
3 | attribute | valug
= Library: AGLKS 3
I
Library: Main b
@ Library: test

W Library: originals

Library: KM101

o Visual tem cut Cirh+X
1 wisual tem copy Ctri+C
i:' “Visual item paste Ctrl+Y
#& Load fromDB
4 savetoDB Ctrli+S
P'IE-SS P r— ﬁ Refresh libraries Bl Elemerts box

Fig. 5.2.2. Adding the new frame.

Immediately after the creation of the new frame element it is necessary to set its basic properties,
characteristic to the mnemonic scheme frame. Properties or attributes of any visual element can be specified
in the toolbar "Attributes", having pre-selected the visual element. Let's select the created frame "AT 101"
and set the following properties:

« Geometry:width - 900;

« Geometry:height - 600;

« Background:color - "#5A5A5A";
« Border:width - 1;

+ Border:color - "black".

Quick start OpenSCADA 141

The result will be an empty frame (Fig.5.2.3), ready to add items to it. To edit or view the the frame you
should in the frame's context menu select the "Visual item edit".

52 Wision developing

Fie Edit Project Widget Window Help ~QTStarter

BB REEL

»

Widgets Widget: fwl

Mame |Ty'pe |

Documents Library

Mnemo elements Library

AGLKS Library

Main elements Library

4 Tests Library

Original widget's library Library

=

KM 101 Likr

ary
jet

o Attributes
5 | attrioute Value lﬂ
E Enabled true
Active false
£} Geometry [0, 0,900,800,1,1,0,0]
X 0
¥ 0
width 900
height 600
¥ scale 1
y scale 1
z 0
margin 0
Tip [1

Context menu -
— !

gn
[100%) | Resize]] ramen]

Fig. 5.2.3. The view of the new frame and set attributes for the mnemonic scheme.

Quick start OpenSCADA 142

Now let's add on frame the elements for the value of the analog parameters displaying for our four
signals. To place an element for displaying an analog signal to the mnemonic scheme it is necessary to
select our mnemonic scheme, and then in the window's menu to select the "Widget" -> "Library: Main&"
-> "Analog show" after which the cursor with an image of this element will appear, which should be
moving to the desired location on the mnemonic scheme and then the left mouse button should be pressed.
At the time of adding the dialog asking the name of the new element will appear. We'll add this way the
four elements which we'll call: "A1 Ti", "Al To", "A2 Ti" and "A2 To". The added elements can be
subsequently positioned as needed by simply selecting and dragging them by the mouse. After such
manipulations, we should get the mnemonic scheme with the view, similar to Fig.5.2.4.

5= \ision developing

File Edit Project Widget Window \View Help QTStarter
- _ = T — —
- 1 v 7 e = :
TN EET.. O Pawsme s -
. Widgets T dge -
-E i e | =
.;'l?_’.INarne |Tgrpe | B
= == Contours group Widget
Il Result graphics Widget
& = Analog show Widget
= Bl Regulator's control p... Widget
= Il Graphics group (old) Widget
mR Regulator's control p... Widget o
Bl Overview frames pa... Widget
£ Graphics group panel Widget
I Terminator panel Widget
I Result graphic's ele... Widget
- Analog show 1 Widget
3 Tests Library
E},‘E Criginal widget's library Library
= KM 101 Likrary —
- B AT 101 IWidget L
- -
o Attributes
2 | Attribute | value = |
ﬁ Ied AT101
Path Al _KM101 hwdg_AT101
Parent fwib_ariginalsiwdg_Box
Root Box
MName AT 101
Description
Enabled true
Active false
Geometry [0, 0,900, 600,1,1,0,0]
Tip .1
Y
= -
Context menu L —
T ZEcEs 4r
100% B Resize D roman

Fig. 5.2.4. The view of the new frame and set attributes for the mnemonic scheme.

This procedure of the creating the mnemonic scheme we'll consider to be finished. Save the new library
of widgets "KM101" and proceed to the stage of the placing our mnemonic scheme in the project's tree of
"Signal groups (template)".

Let's put our mnemonic scheme to the branch of the "Signal groups (template"->"Root page (SO)"-
>"Group 1"->"Mnemos" by selecting in the context menu for the "Mnemos" item the item "Library:
KM101"->"AT 101". The identifier for the new mnemonic scheme let's set to "2" and the name field let's
leave blank. Immediately after adding it is necessary to set the basic property of the mnemonic scheme
"Page:group" to the value "so".

Next you need to make an already familiar to us the operation from the previous chapter, namely the
setting of links to the created in the previous chapter the parameters of controllers. To do this let's open the
dialogue of the properties editing of the mnemonic scheme on the "Links" tab (Fig.5.2.5). On this tab, we'll
see the tree with the elements of "Al Ti", "Al To", "A2 Ti" and "A2 To". Unwinding any of the

Quick start OpenSCADA 143

elements, we'll see the "Parameter”" branch, in this branch we are to specify or select the address of our
attributes "Ti" and "To", respectively. When filling out the elements the part of the properties must be
specified as constants. For example, necessarily must be specified:

« pName - "val:AT101 1 Ti"

T Pr oject page: /prj_tmplsOipg_soipg_1/pg_mn/pg_2

| widget | Attributes | Process | Links |

MName

“alue

El- A1 _Ti
[=}- Parameter

pErT
pMode A
pModeC
pMame
pPrec
phal
redEVAL
spMName

Eh A1_To
[=l- Parameter

pErr
pMode A
pModeC
pMame
pPrec
phal
redEVAL
spMame

Bl A2_Ti
=l Parameter

pErr
pMode
pModeC
pMame
pPrec

val:AT101_1 Ti

pro/LogicLeviKM101 /AT101 _1Ti

valAT101_1 To

pro/LogicLeviM101/AT101_1/To

valAT101_2 Ti

A Close

Fig. 5.2.5. The "Links" tab of dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 144

Now we can save our mnemonic scheme and verify what we have. To do this, we'll close the properties
dialog and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme
by the paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.2.6.

= Signal groups (template)

File Alarm View Help

“ B @ Q=¢

Fig. 5.2.6. The created mnemonic scheme with four linked signals.

roman

Quick start OpenSCADA 145

5.3. Creation of the new complex element

Let's proceed to the objectives of the third level of complexity, namely the creation of an complex
element. Creating of the new complex element, which includes a combination of basic primitives, can be
made in several stages. As an example, let's examine the task, consisting of two stages:

+ Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
+ Creation the final grouped widget "Cooler" based on the primitive "Elements box".

5.3.1. Creation the widget " Air cooler' on the basis of the primitive '""Elementary figures''.

The widget will be created in our previously made library "KM101". To do this we'll make right mouse
button click on this library and select the item "Library: originals"->"Elementary figures", as it is shown in
Figure 5.3.1.1. For a new element let's write the "air_cooler" identifier and the name "Air cooler".

H&EﬂﬁuﬁdﬁﬁgﬁmeMnTm

'''''''''''''''''''''''''''''''' m"lﬁ M R R R
ﬁ. Mame Type
|| - Documents Library
. I'I.I'Inemu elemerts Library

G2 15 Delete visual item ——
m t Wisual tem changes clear
[visualitem properties Ctrl+P
B visual item edit Ctrl+E

Library: doc
Library: mnEls
Library: KM101
Library: AGLKS
Library: Main
6 Library: test

v ¥ v v v

Aftributes

& Library: originals

Links

o Visual tem cut
j"j Yisual tem copy Ctri+C

i:' Yisual tem paste Cirl+

a Load from DB
savetoDB Ctrl+S

<% Refresh libraries

Press to add widget based at "fwib_originalsfwdg_EIFigure’.

Fig. 5.3.1.1. Adding the widget based on the primitive "Elementary figures" to the "KM 101" library.

Quick start OpenSCADA 146

After confirmation, we will have a new widget's object with the name "Air cooler". Select it in the
widget library "KM101" and open for editing via the context menu of the new element. Let us now set in
the "Attributes" tab in the "Geometry" section width and height of the widget to the 200 pixels (Fig.
5.3.1.2).

Fie Edt Project Widget Window View Help QTStarter |

=eam

>
el

- Documents Library
- Mnemo elements Library
= KM 101 Library
: Widget

[H

E- AGLKS

- Library
B Main elements Library

B gd Tests Library

- m Original widget's library Library

(][

A TR LR "5 e " et
L]
3 | Attribute Value
g

- Description

- Enabled true

- Active false

= G_eumetr-,r [0, 0,200,200,1,1,0,0]

[100%) | Resize]] ramen|

Fig. 5.3.1.2. Specifying the geometric sizes of the widget.

Now let's draw the visual presentation of the widget. This procedure can be done in two ways described
below:

+ To draw the desired image by the mouse, using the "Line", "Arc", "Bezier curve" and "Fill." The
corresponding panel ("Elementary figure tools") appears after entering the edit mode (drawing). To
enter this mode it is possible as shown it is shown in Fig. 5.3.1.3, or by double clicking the left
mouse button on the body of the widget.
« Manually fill in the "Element's list", by entering the list of required elements and coordinates of
points.

Quick start OpenSCADA 147

Type

B s
g
EINIM
& | G- Documents Library
- Mnemo elements Library
£ E KM101 Library
|
- AGLKS

[Main elements Library — -
ﬂ Tests Library : Enter for widget editing
F- % Original widget's library Library : @ Make icon from widget

Make image from widget
Zoom in (+10%!)
Zoom out (-10%)

o R AHTRES. frore ittt ettt Reset zoom (100%)
[. .
3 | attrioute Value g o Visual tem cut Crl+X
£ : 1 Visual tem copy Ctrl+C
+ Description " Visual item paste Cirl+y
= b
-
£l - Enabled true ® Losd from DB
- Active false l Save to DB
£} Geometry [0,0,200,200,1,1,0,0]
x v]
y]
- width 200
- x scale 1
“oyscale 1
] L n
Press to enter for widget editing.

Fig. 5.3.1.3. Entrance to the mode of drawing the widget, based on the primitive "Elementary figures."

In our example, we'll use the second method. To do this in the "Element's list" of the attributes inspector
let's enter the list below and press "Ctrl" + "Enter".

line:
line:
line:
:(1001140):(20180)
line:
line:
line:
line:
line:
fill:
:(501165):(100]140) :(1501165)

line

fill

(20180) : (10020)
(100120) : (180180)
(180180) :(1001140)

(100120) :(100]140)

(20180) :(180180)

(501165) :(100]140)
(100]1140) : (1501165)
(150]1165) : (50]165)

(20180) : (100120) : (180180) : (100]140)

All the points in our case are specified in the static form, since it is not provided the dynamics and
change of coordinates in the mode of execution, and all the other parameters are left by default.

Quick start OpenSCADA 148

As a consequence, our widget will take the form shown in Fig. 5.3.1.4.

/=4 Vision developing E]@E]

File Edit Project Widget Window Wiew Help QTStarter

SO DUSRNEL L Gas - G-

@ Widgets Widget: /wib_KM101/wdg_air_cooler
-‘E—‘k |Name |Type | [
i Documernts Library

Mremo elements Library
% Eh KM 10 Library
= TAT 1M Widget
= B {* Air cooler Widget

AGLKS Library

Main elements Library

L4 Tests Library

i..:z Original widget's library Liksrary
“ Attrib utes
[E]
3 | attrioute Value =
= Fill L]

Orientation a...

=
=
-

e

[100%| |*| [Resize] .| [roman]

Fig. 5.3.1.4. The image corresponding to the "Element's list" of the widget.

Quick start OpenSCADA 149

Now let's change the fill color (black, if you do not specify any other (default)) in the tab "Attributes" in
the "Fill" section to "lightgrey" (Figure 5.3.1.5). Color can be set as with # ColorKeywords color names and
in the format #RRGGBB (#RRGGBB-AAA).

Edit Project Widget Window View Help QTStarter |

?ﬁ\. SERENERREA®L O Oas -

.E Widgets ©= e e e Widget: /wlb_KM101/wdg_air_cooler
Z Ihhl'ne Type
= | & Documents Library
- Mnemo elements Library
2 | E-Km10 Library
o B AT AT 101 Widget
=
- AGLKS Library
[Main elements Library
E- g4 Tests Library
I m Original widget's library Library

Aftributes
i
:

Links
C
@

[1, #000000, Solid]
- Border [0, #000000]

= Fil lightgrey, |
§Ii-;|l'|t-;||'-:=;.-'

.0
line:(20]80):(100[20)
line:(100/20):(180}80)
line:(180|80): (100[140)

Fig. 5.3.1.5. Change the color of the fill.

Quick start OpenSCADA 150

http://www.w3.org/TR/SVG/types.html

Let's create an icon for our widget, which will be visible in the widgets' tree of the library "KM101"
(Figure 5.3.1.6).

Edit Project Widget Window View Help QTStarter

)
g INu'ne
= | B Documents Library
- Mnemo elements Library
L El KM 101 Library
o| @[T a0 Widget
E . -
- AGLKS Library
. Main elements Library - Make icon from widget
E- g Tests Lilarary , - =
E- a Original widget's library Library Make image from widget

Zoom in (+10%)
Zoom out (-10%)
Reset zoom {100%]

rrrrrrrrrrrrrrrrrrr

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Atnibutes o Visual item cut

(%]
i} 0 Wisual it
3 | Attribute Value - - =Ry
E Visual tem paste

Everts proc... ' . Load fram DB
= Save to DB
E |l & Line [1, #000000, Solid] . avete

[Border [0, #000000]

= Fill [lightgrey,]

..... Image

“ Orientation a... 0
line:(20/80):(100[20)
line:(100[20): (180[80) —

line:(180[80): (100} 40) E

| line- 4 AN AN EPOIR
Press to make icon from widget.

|1DD'A'.|E||FIesize||:||rum| o

Fig. 5.3.1.6. Creating an icon for the widget.

The process of creating the first widget is completed. We'll now turn to the stage of layout and the
creation of the resulting widget.

Quick start OpenSCADA 151

5.3.2. Creation the final complex widget ""Cooler" on the basis of the primitive ""Elements box"

The resulting widget we'll create in the "KM 101" library. To do this we must click the right mouse
button on the library and select the primitive "Elements box", as it is shown in Figure 5.3.2.1. For a new
element let's specify the identifier "elCooler" and the name of "Cooler".

- Documents
El- Mnemo elements

@
T R
o & AT m Mew library
=| - @|E Addvisualitem Ctri+l
— l AGLKS _
E}- Main o1 Delete visual tem Ctri+D

. @ T’“E isual tem changes clear
& m Oiri
. Yisual tem properties Cirl+P

[isual tem edit Cirl+E
Library: doc 3
Library: mnEls 3
Library: KM101 3
,,,,,,,,,,,,,,,,,,,, e ,
Attribute Library: Main L

@4 Library: test

®% Library: originals

o Visual ftem cut
jWI Visual tem copy Ctri+C

Links | Attributes |

" visual tem paste Ctrl+\/

& Load from DB
4 savetoDB Ctri+S

€% Refresh libraries

EX Elements box

Press to add widget based at 'fwib_originalshwdg_Box [100%| |*| Resize] . [roman]
Fig. 5.3.2.1. Adding the widget based on the primitive "Elements box" to the "KM 101" library.

After confirmation, we'll have the new widget object with the name "Cooler". Select it in the widget
library "KM 101" and open for editing. Let us now set the width and height of the widget in the 250 and
200 pixels respectively in the "Attributes" tab in the "Geometry" section.

Quick start OpenSCADA 152

Let's take the previously created element "Air cooler"(air_cooler) and drag him (clicking on it by the left
mouse button and moving the cursor of the mouse to the body of the widget, then let the button) to the
newly created widget (see Figure 5.3.2.2).

Edit Project Widget Window View Help QTStarter \

[
O
|
& || B} Documents Library
£ Mnemo elements Library
2 |2 Km0t Library
| @ EF ATi0 Widget
= = Widg
—| AT Cooler Widget
l AGLKS Library
- Main elements Likrary
-G Tests Library

m Original widget's library Library

g e ppann s
3 | Attribute Value el
:f_ I elCoaler

- Path bl _KM101 bwdg_elCooler
ol Parert Twlb_originalsiwdg_Box
|| . Name Cooler
- Description —
- Enabled true
- Bctive false
- Geometry [0,0,250,200,1,1,0,0]
Bl Tip L]
.
-~ Canteyt menu E

Fig. 5.3.2.2. Drag and Drop of the widget "air_cooler" to the widget-container "elCooler".

Quick start OpenSCADA 153

The dialogue window will appear to enter the ID and name of the new widget. ID and the name can be
set arbitrarily. We will input the "air _cooler" ID and the name we'll leave blank (it will be inherited from
parent - the element "air_cooler"). Thus, the newly-created widget inside the container "elCooler" inherits
the element - "Air cooler" ("air cooler"). After confirming the entry of ID and name the widget "Air
cooler" ("air_cooler") will be added to our widget container "elCooler" (Figure 5.3.2.3)

File Edi Project Widget Window View Help QTStarter

o Aok
. [o
e = -

'''''''''''''''''''''''''''''''' Widgets ~ "0
IName |T',rpe |

£ Documents Library
- Mnemo elements Lilarary
Eh KM 101 Library
Widget
- B-[&T Cooler 'h"'uﬁdget
- AGLKS Library
. Main elements Library

ﬂ Tests Lilarary
-84 Original widget's library Likrary

]
LE]
2 | Attribute Value [~ |
| air_cooler
- Path fwvlb_KM101 wdg_air_cooler .
- Parent fwib_originalsiwdg_ElFigure —
- Root ElFigure
- Mame Air cooler
- Description
- Enabled true
- Bctive false
- Geometry [0, 0,200,200 ,1,1,0,0]
- Tip .1
Y
- Contest ment E
100% E| Resize Drumm 2

Fig. 5.3.2.3. Adding the inherited widget "air cooler".

Let's set on the attributes panel of the widget in the "Geometry" section the coordinates "x" and the "y"
of upper left corner of the widget to 25 pixels and 0 respectively.

Next, unwind the library "Mnemo elements", find there the "Cooler" element (cooler2) and drag it to the
widget-container. This element will dynamically display the productivity of the air cooler. As the result it
will appear the dialog window for entering the ID and name of the new widget. Enter the ID "cooler2" and
the name again let's leave blank. Thus, the newly-created widget inside the container "elCooler" will inherit
the element of the library "Mnemo elements" - "Cooler" ("cooler2"). After confirming the entry of the ID
and name the widget "Cooler" ("cooler2") will be added to our widget-container "elCooler". If necessary,
raise the widget "cooler2" over the widget "air cooler" within the widget-container "elCooler" from the
toolbar below. Let's specify in the "Attributes" tab in the "Geometry" section the coordinates "x" and "y" of
the upper left corner of the widget "Cooler" to the 75 and 30 pixels respectively. Change in the 1nher1ted
widget "Cooler" alpha channel (transparency) of the fill color. To do this in the "Attributes" tab in the fields
"Colorl" and "Color2" we'll change the colors by the adding "-200" to them, where the 200 - the value of
transparency ("0" - fully transparent, while "255" - the fully opaque), as it is shown in Fig. 5.3.2.4.

Quick start OpenSCADA 154

Projects

Wiclgets

Aftributes

Links

Ihh!m Type
- = Line Widget
-" Back arrowi{volumed) Widget
= Rounded rectangle (... Widget
E Line-pipe horizortal{... Widget
o Ruller Widget
| F’ipe Cross Widget
- E!quf lime Widget
Iﬂ - Scale Widget
Crane Widget
o Arrow Widget
- [Alarming Widget
- b Valve Widget
S pelorane Widoet
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, TR LR """ e s e e e e
Attribute Walue
arc:(78.19139.74:(v8.19)60....
arc:(45.540.63): (53 4240 6.
arc: (59 4|46 .59):(50 4/53.41 ..
line:(53.42|59 4):(60.2678.1...
line:(46.58|59.4).(39.7478.1...
- Element's list arc:(53.4250 4):(46 58|59 4
arc:(B0.26[78.19).(39.74|78....
line:(40.7]53.68):(21 81|60.2...
line: (40.6]46.59):(21.81|39.7...
arc:(40.7]53.68):(40 B|46 59,
arc: (21 81060.267%:(21 .81|39....
- Color 1 #ffT00-200
..... Rotation speed 0

Fig. 5.3.2.4. Change the fill colors transparency in the inherited widget "cooler2".

Quick start OpenSCADA 155

Now let's add to the widget-container "elCooler" two text fields based on the primitive "Text", in order
to display the input and output temperatures of the flow. To do this in the library "KM 101" we'll select the
widget "Cooler" and then click on the visual items toolbar on the icon of the primitive "Text", as it is shown
in Figure 5.3.2.5.

Fi Edit Project Widget Window ‘“iew Help QTStarter
.E '''''''''''''''''''''''''''''''' Widgets ~- 0 0n s .. T Iy T —
TE' Mame |Tvpe |
2 || G} Documents Library
—| - Mnemo elements Library
@ | =1 KM 101 Library
R
=) @ [&F AT 101 Widget
= “ 0 Air cooler Widget
— | E Cooler Wiclget
B AGLKS Library
E}- Main elements Library
B gd Tests Library
H Criginal widget's library Library
o Attributes
2 | Attribute Value |~ |
| - elCooler
| - Path Fwlla_KM101 fwdg_elCooler
@ -~ Parent fwib_originalsiwdg_Box
=l - Root Box
—|| - Mame Coaoler -
- Description
- Emabled true
- Active false —
EJ Geometry [D 0,230,200,1,1,0,0] E
El- Tip
HJ%%hndTJJ
Press to add widget based at 'wib_originalsiwdg_Text'. |1I}I}'L|E||Ram||:||lum1| A

Fig. 5.3.2.5. Adding the new element to the container, based on the primitive "Text."

Quick start OpenSCADA 156

The dialog of the ID and name of the newly created element entering will appear. Enter the ID "Ti" for
the first text field, and the name field we'll leave blank. Let's define the geometric sizes and the coordinates
of the upper-left corner of the widget, as it is shown in Fig. 5.3.2.6

File Edit Project Widget Window View Help | QTStarter |

P WAl 7272171t &%) Wd Widget: aib_KM101iwdg_elCooler
T‘.f MName |T',rpe |
2 || & Documents Library
El- Mnemo elements Library
g E- KM 101 Library
g ®-[EF At Widget
=| - Aircooler Widget
— E Cooler Widget
Bl AGLKS Library
[Main elements Library
Tests Library
m Original widget's library Library
o s :
2 | Attribute Value l
£ | - Enabled true :
- Active false
E]' Geometry [5,20,70,35,1,1,0,0]
210 . - 5
=1 :
3 —_ a0

- wicth 70

lD%%H—EHUIDIDI

[100%]F]Resize] Jraman]

Fig. 5.3.2.6. Specifying the geometry of the widget "Ti".

Quick start OpenSCADA 157

Let's change the size of the font for this element and make it bold (Fig. 5.3.2.7). Note that the modified
field in the inherited widgets are highlighted in blue for easy tracking of changes and their subsequent
"cleaning" (rollback) with right mouse button click on the changed attribute.

& Vision develuping
File Edit Project Widget Window View Help QTStarter

588 #QIHHWQL

S e

.m@f

E
g
£ [Name
o =".‘ Back arrow{volumed) Widget
- = Founded rectangle (... Widget
-E E Line-pipe horizortal(... Widget
z .. — Ruler Widget
= =
(2] = . Pipe-cross Widget
el e E!ll_.Jff—_lir‘_Il.? _____ Widoet
'''''''''''''''''''''''''''''' Aftributes "
Adttribute Walue

B Background [,] AaBbCcDdJEeFf

Links | Aftributes]
3
=
8

- Border [0, 2000000, Solid]
Arial 11
- Color #000000
- Qriemtation a... 0
-~ Ward wrap true
- Alignment Center
- Text Text field

lD%ﬂhEdeﬂ

Fig. 5.3.2.7. Changing the font size for the widget "Ti".

|1H-I}1L||E||Hestze||:||rum| S

Quick start OpenSCADA 158

Now we'll change the field "Text" of the "Ti" widget, indicating the presence of the argument "%]1" in it,
in which it will be subsequently transferred the real value of the input temperature (Fig. 5.3.2.8).

-- Border
- Font m Arial 141000
‘- Orientation a... 0
- Word wrap true
- Blignment Center

Links | Attibutes |

~:~,;
= | Mame
= | E- Documents Library
Bl Mnemo elements Library
Library
Widget
Widget
Widget
: Library
-- Main elements Library
ﬁ Tests Library
a Original widget's library Library :
'''''''''''''''''''''''''''''' s
Attribute | Value -
- Background [,]

-D%%H-EEUIDIDI

Edit Project Widget Window View Help QTStarter \

[__ﬁ Widget: fwlb_KM101/wdg_elCooler

o o
g dea. H

Fig. 5.3.2.8. Changing the field "Text" and an indication of the argument's presence in it for the widget

"Ti"

Quick start OpenSCADA 159

Next in the list of attributes of the "Ti" widget in the section "Number of arguments" let's enter "1" and
configure the argument (Figure 5.3.2.9). The number "300.25" is entered only the with the purpose of
clarity, in the execution mode it will be changed by the real value of the input temperature.

Fie Edt Project Widget Window View Help QTStarter |

Projects

| widgets

Bl Documents

-- Mremo elements

Bl KM 101

= [&% AT101
w1 Ajr cooler

IE Cooler

- AGLKS

- Main elements

-9 Tests

a Original widget's library

Library
Library
Library
Widget
Widget
Widget
Library
Library
Library
Library

Links | Atiributes }

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, AETBLRRE e e s s
Attribute Value -
----- Crientation a... 0
..... Ward wrap true
----- Alignmert Center
Pl
..... Text deg. C
Argumerts n... 1
- Argument 0 [Real, 300.25, 3;1,2]
- type Real
- value 30025 -

I PEEINTE R

[100%] '] Resize] roman]

Fig. 5.3.2.9. The configuration of the argument for the "Ti" widget.

Quick start OpenSCADA 160

Now we'll copy the "Ti" widget in order to create an equivalent widget "To" (output temperature), as it is

shown in Figure 5.3.2.10.

': Wdgels "o s
| e
=
o || - Documents
- O
—| & Mnemo elements Library T
2 | & Km0 Library ! Delete visual item
2| @-[EF aTin Widget B visual tem e
= L7 Air cooler Widget _
= @ Cooler Widget - Visual item properties
El- AGLKS Library [BH visual tem edit
E}- Main elements Library :
B gd Tests Library ; View
m COriginal widget's library Library E Make icon from widget
Make image from widget
------------------- E zmmn +1u“
. Biirbules TFr et T, : ()
‘E 4 Zoom out (-10%)
a
1%: i — Reset zoom (100%)
I Ti
=L 2
__| i~ Path Fwlls_KMA 01 fwdg_elCooler)... &f Visual item cut
Parent fwib_originalsiwdg_Text A S S
= = isual item copy
21l Root Text || =EE
— Mame : ' Visusal tem paste
Load from DB
i l Saveto DB
- Enabled true b
- Active false -
D Geometry [5 20,70,35,1,1,0,0] E
- Tip b

ID%E‘::H-

wl 7080

Press to make visual tem copy.

[100%] F[Resize] [oman]

Fig. 5.3.2.10. Copying of the "Ti" widget.

Quick start OpenSCADA 161

Let's paste the widget in the widget-container "Cooler" in the library "KM 101" (Fig. 5.3.2.11). In the
dialog of the ID and the name entering for the newly created widget in the field "ID" we'll write "To", and
the name field we'll leave blank.

Edit Project Widget Window View Help QTStarter |

DERREE L O o GRE

o R Widgets "7 .. [_‘J Widget: iwlb_KM101/wdg_elCooler
§ o
) MName |T'|rpe |
& || B} Documents Library
E- Mnemo elements Library
@ | - KM 101 Library
8 = @ AT 101 Widget
= i i g
= "_|'" Air cooler Wiclget
& oL T E New library
G- Main elements | M Add visual item Ctrid
B g Tests]
& B origina wid 3% Delete visual item Cirl+D
- Visual tem changes clear
[visualtem properties Ctr+P
B4 visual item edit CirlE
Library: doc
—————————————————————————————— Library: mnEls
W
L
E Atril Library. KM101
B Library: AGLKS
- Path Library: Main
- Parent
2l . Root @d Library: test
= - MName i3 Library: originals
e &b Visual tem cut Ctri+X
' Wisual tem copy Cirl+C
ir;ﬁl:d "Ti Visual tem paste k‘ Ctrl+
El- Geometry @ Load from DB
& Tip
#§ savetoDB Ctrl+S
- Context menu | 5% Refresh libraries
jv—)

Press to make visual tem paste.

[100%] | Resize] [|roman|

Fig. 5.3.2.11. Paste the copied widget to the widget-container "Cooler" of the library "KM 101".

Quick start OpenSCADA 162

Let's change the geometry of the "To" widget, as it is shown in Fig. 5.3.2.12.

m Widgets " e e
2
s Name |T\rpe |
& | & Documents Library
E}- Mnemo elements Library
w | = KM101 Library
E @- [@F AT 101 Widget
= ;
= Lo Bir cooler Widget
Bl AGLKS Likrary
- Main elemerts Library
ﬂ Tests Library
a Original widget's library Library

= Geometry

[Links | Attriutes |

- Context menu

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Atibutes
Adtribute value =
- Enabled true
- Active false

-D%%H-EEUIDIDI

Edit Project Widget Window View Help QTStarter |

300.25
deg. C

[ro0%%] | Resize] [ramar]

Fig. 5.3.2.12. Changing the geometry of the "To" widget.

Quick start OpenSCADA 163

Now let's add the widget based on the primitive "Form's elements", which will be used as the ComboBox
to select the productivity values of the cooler. The identifier will be "cw", and the "Name" field we'll leave

blank. (Figure 5.3.2.13)

[} Documents Library
- Mnemao elements Library

= Eh- KM 101 Library
= AT101 Widget
= <1 Air cooler

- AGLKS

(- Main elements Library

a Tests Library

m Original widget's library Library

300.25
deg. C

300.25
deg. C

s, AHTBULES oo am e
£
2 | Attribute Value
§ - I elCooler
- Path Hevlb_KM1D1iwdg_elCooler
@ Parent fwllb_originalsfiwdg_Box
= Root Box
= Name Cooler
- Description
- Enahbled true
- Metive false
[Geometry [0,0,250,200,1,1,0,0]
& Tip .1
.
- Context menu E
-

Press to add widget based at "fwib_originalsiwdg_FormEl'.

[100%| [Resize][.[roman| _/

Fig. 5.3.2.13. Adding the widget based on the primitive "Form's elements".

Quick start OpenSCADA 164

Let's set the parameters of the "Geometry" section of the "Attributes" tab for the newly added widget:

ngno o nen

coordinates "x", "y" of the upper left corner, width and height of 60, 158, 60 and 40, respectively. Let's
change the "Elemetnt type" to the Combo Box, as it is shown in Fig. 5.3.2.14

Fie Edit FProject Widget Window View Help QTStarter

= eamu
, 91

.E '''''''''''''''''''''''''''''''' Widgets ~'- "0 rn s
TE' MName |Tﬂ:e |
& | - Documents Library
- Mnemo elements Library
@ | =} KM 101 Library
A AT 101 Widget
3 om :
= - “ Air cooler
o AGLKS
[Main elements Library
| & a Tests Library
g Bliributes Tt et e,
2 | attribute Value
£ — width &0
- height 40
@ X scale 1
E y scale 1
I 5 o
o margin 0
2} Tip I.]
- Context menu
- Events proc...
| Element type (IR -
- Value Line edi
- Wigw Text edit
Chek box
- Config Button

TP RN YT

Scroll Bar |

[100%) | Resize][] roman| |
Fig. 5.3.2.14. Change the "Geometry" and "Element type" for the newly created widget.

Quick start OpenSCADA 165

Let's fill the fields: "Value", "Items" and "Font", as it is shown in Fig. 5.3.2.15. In addition, it is
important to raise the combobox above all elements and make it active. To activate the combo box widget,
you need to set the appropriate property for it.

Fie Edi Project Widget Window View Help QTStarter

ey EAR

.E '''''''''''''''''''''''''''''''' Widgets */-0 000t [.l__ﬁ Widget: /wib_KM101/wdg_elCooler
ﬁ. Marme |Type | L~ |
& || E- Documents Library
- Mnemo elements Libyrary
2 = KM 101 Library
= - [T AT 101 Widget
= -~ Air coaler Widget
- AGLKS Library E
-- Main elements Library I~
| & Gd Tests Library Il
g Aftributes
3 | atrioute | vaiue -
E -y scale 1
= 0
- - margin]
= | B Tip []
-
- Context menu
- Events proc...

- Elementtype Combo box

0 ot

T PEENT TN

[100%]Resize] [romen]

Fig. 5.3.2.15. Filling the parameters of the "cw" ComboBox.

Quick start OpenSCADA 166

To display the cooler productivity dimensions we'll add the widget on the basis of the "Text" primitive.
Let's make the same procedure as for the "Ti" widget. The identifier of the newly created widget will be
"dimension", the geometry: coordinates of the upper-left corner "x", "y" will be set to the 125 and 168,
respectlvely, while width and height - at 60 and 20, respectively. Let's change the font size to "14 bold", and
in the field "Text" let's type "rpm", that will be our dimension (Fig. 5.3.2.16).

Edit Project Widget Window View Help QTStarter \

[-Lﬁ Widget: fwib_KM101/wdg_elCooler

- Documerts Library

. Mnemo elements Library

2] El KM 101 Library

|

2| @[A0 Widget

= | | < Air cooler Widget
B AGLKS Library h
[Main elements Library 1~
Bl (G4 Tests Library I
'''''''''''''''''''''''''''''' Attributas
Adtribute Value -

-~ Context menu

Links | Aftributes]

- Events proc...

[} Background [.1

[l Border [0, #000000, Solid]
- Fort m Arial 141000
- Color #000000

- Orientation a... 0
~ Word wrap true
- Alignment Center

‘o Arguments n..

HD%%\I-EHUIJJ

100% El Resize |:| roman
Fig. 5.3.2.16. Adding the "dimension" widget, based on the primitive "Text" and changing of its settings.

Quick start OpenSCADA 167

To add the processing logics for the widget "Cooler" (elCooler) we'll open the dialog of the properties
editing of the visual element and select the "Process" tab. On this tab we can see the tree of widget's
attributes and the field for the program code for the attributes' processing. To solve our task, we must add
three attributes: Ti, To, Cw (Fig. 5.3.2.17). To add an attribute you should unwind the root element ".",
select any element inside the root one and click "Add attribute" button below.

= Library widget: elCooler

Widget | Attributes I Process | Links

Id |Name |Datﬂ type Work area Proc Caonfig Caonfig template l;]
hackColor Background.color Color | Mot
hackimg Backgroundimage Image | Mot
hordWidth Border: width Integer 0;0 Mot
bordColor Border:color Color | Mot
hordStyle Border:style Select integer 0;1;2;3,4,5,6,7;8]... Mot I:I
Ti Input temperature Real 0:0 V Input link Parameter|Ti
To Output temperature Real 0;0] Input link Parameter|To
L. Cw Productivity Integer L Full link Parameter|Cw

Aded attribute] [Delete attribute I

Procedure language: |§JavaLikeCaIc.JavaScript |'] Procedure calc (ms). | -1]

Fig. 5.3.2.17. Adding the three attributes for the element "elCooler" of the library "KM 101".

Quick start OpenSCADA 168

Further we'll enable the processing of "value" attribute of combo box "cw", as it is shown in Fig.
5.3.2.18. Similarly, enable the processing of the "argOval" attribute for Ti and To, as well as the "speed"
attribute of the "cooler2" element.

% Library widget: elCooler

Widget | Aftributes | Process | Links

Id |Nﬂme |Dﬂtﬂ type Work area Proc Config Config template I:]
evProc Events process String | Mot
elType Element type Select integer 0,1,2,3,4,5,6,7]Li...) Mot
: String v]
tems kems String | Mot
font Fort Font | Mot
dimension |:|
air_cooler
Ti ’E
To -
Add attribute] [Delete attribute I
Procedure language: | JavalikeCalc JavaScript |v] Procedure calc (ms): [-1]

Fig. 5.3.2.18. The enabling of the processing of the "value" attribute of the combo box "cw".

At the end let's set the user programming language for the program to the "JavaLikeCalc.JavaScript" and
write the program to process this widget:

Ti argOval = Ti;
To_argOval To;

ev_wrk=ev_ rez="";

off=0;

while (true)

{
ev_wrk=Special.FLibSYS.strParse (event,0,"\n",off);
if(ev_wrk == "") break;
if(ev_wrk == "ws CombChange:/cw") Cw = cw_value;
else ev _rez += ev_wrk+"\n";

}

cw_value = Cw;

cooler2 speed = Cw/5;

Quick start OpenSCADA 169

The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library will have the
form shown in Fig. 5.3.2.19.

Widget | Aftributes | Process | Links |

Id |Name |Data type Work area |Proc |Conﬁg Caonfig template l:]
© - backimg Background:image Image | Mot
- bordWidth Border:wicth Integer 00 Mot
- hordColor Border: color Caolar | Mot
- hordStyle Border: style Select integer 0:1;2,3.4,5.6,7:9|... Mot
= Ti Input temperature Real ;0] V Input link Parameter|Ti
o Output temperature Real ;0] V’ Input link Parameter|To
Productivity Integer ;0] V Full link Parameter|Cw
cw
- dimension
B To
B cooler2
Add attribute] [Delete attribute l
Procedure language: | JavalikeCalc JavaScript | '] Procedure calc (ms). | -1]
Ti_argQval = Ti,

To_argOval = To;

ev_wrk=ev_rez=
off=0;
whileftrue)

{

ev_wrk=Special FLibSY'S strParse(event,0,"\n" off);

ifi{ ev_wrk =="") break;

if{ ev_wrk == "ws_ComhChange:jicw") Cw = cw_value;

else ev_rez+= ev_wrk+"\n"
}
cw_value = Cw;,
cooler2_speed = Cwi5;

Fig. 5.3.2.19. The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library.

Let's close the dialogue of the properties of visual element editing, create an icon on the basis of our
element, close the inner editing window and save it all.

The development of the complex element is finished.

Quick start OpenSCADA 170

5.3.3. Adding the complex element to the mnemonic scheme

To test the operability and evaluate the results of our efforts let's add the created widget to the mnemonic
scheme, developed in chapter 5.2. We'll repeat this operation for two coolers "AT101 1" and "AT101_2".

To do this we'll open the frame of mnemonic scheme "AT 101" for editing. Then grab by the "mouse"
our complex element and drag to mnemonic scheme, where we drop it in the desired position. In the dialog
we'll enter the identifiers "AT101 1" and "ATI101 2" respectively. The field "Name" is blank. Added
element we'll place the way we desire. After such manipulations, we should get the mnemonic scheme with
the view, similar to Fig.5.3.3.1.
=4 \ision developing

File Edit Project Widget Window View Help QTStarter

BHoOEBERMyE L O

2 LGS Widget: jwib_KM101/wdg_AT101 =
% |Nﬂme |Type |
= Documents Library
— Mnemo elements Library
% = KM 101 Library
k) AT AT01 Widget
= Air cooler Widget
— & Cooler Widget
AGLKS Library
- Main elements Library
4 Tests Library @
ﬁ Original widget's library Library
- Attributes
L4
3 | Attribute Value [|
E Ied AT101
— Path Twlb_KM1 01 hwelg_AT101
@ Parent Iwib_originalsiwdg_Box
= Root Box
= Name AT 101
Description
Enabled true
Active false
Geometry [0,0, 900, 600,1,1,0,0]
Tip [:1
Caontext menu
Everts proc... n
Page [.] @ -
T L= e e i IWCACACA 1 4 trr nn
- Y e e .J| “IRE N |

[100%][|[Resize] [roman]
Fig. 5.3.3.1. The view of the mnemonic scheme with complex elements.

Quick start OpenSCADA 171

Let's save the new mnemonic scheme and close its window. Then move on to the project and open this
mnemonic scheme in the project's tree "Signal groups (template)"->"Root page (SO)"->"Group 1"-
>"Mnemos"->"AT 101". As you can see, our new elements are appeared here automatically. And we only
need to connect the links to the new elements. To do this we'll open the dialog of editing the properties of
the mnemonic scheme on the "Links" tab (Fig.5.3.3.2). On this tab, we can see the tree with the elements of
"AT101 1" and "AT101 2". Unwinding any of the elements, we'll see the "Parameter" branch just with the
"Ti", "To" and "Cw" attributes, thus we can simply specify the address of the parameter
"prm:/LogicLev/KM101/AT101 1" in the "Parameter" field and attributes will be placed automatically.

[deet | Attributes | Process J Links l

Mame | “alue
= AT101_1
=} Parameter pro:/LogicLevMM101/AT109_1
Ti prom:LogicLeviM101/AT101 _1Ti

To prm:/LogicLeviM1 01/AT101_1/To
Cw prm:LogicLevMb 01/4T101 _1/Cw
= ATI01 2
¢ B Parameter iprm:LogicLevM101/4T101 2
Ti prom:LogicLeviiM1 01/AT101 _20Mi
Ta prm:LogicLevMi 01/4T101_2iMTo
Cw pro LogicLeviiM1 01 /AT101 _2i1Cw

B A1 _Ti
= Parameter
pErr
pha...
pha...
pMame valAT101_1 Ti
pPrec
pval prclogicley MM 01/AT101 1T
redEvVAaL
spMName
Al _To
A2 _Ti
A2 _To

®H-H-E

Fig. 5.3.3.2. The "Links" tab of the dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 172

Let's save our mnemonic scheme and verify what we have. To do this, close the dialog of the properties
and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme with the
help of paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.3.3.3.

=2 Signal groups (template)

File Alarm View Help

d0: B

] |

=vBy@ 0 =xue

roman

Fig. 5.3.3.3. The resulting mnemonic scheme.

On this mnemonic scheme through our complex elements we can not only observe but also to control the
productivity of coolers, simply by changing the value in the combo box. Changing the productivity, we can
see the changes in temperature. History of changes we can see on the created in the chapter 5.1 the group of
graphs.

6. Recipes

This section is intended to provide the descriptions of recipes for solving the common problems and
tasks of the user. Recipes to be placed in this section may be offered by the users.

Conclusion

This document describes in detail the basic process of creating the user interface elements, with
preparation and configuration of the data source. In general, you can quickly get an idea of the work with
the OpenSCADA system, and purposefully look for solutions of associated problems.

Quick start OpenSCADA 173

Module of subsystem “Archives”<FSArch>

Module: FSArch

Name: Arhivator on the file system
Type: Archive

Source: arh_FSArch.so

Version: 1.4.1

Author: Roman Savochenko

Archive module. Provides archiving functions for messages and values on the file
system.

License: GPL

Description:

The module is designed for archiving messages and values of OpenSCADA on the file system.

Any SCADA system provides the ability to archive the collected data, i.e. formation of history of the
changes (dynamics) of processes. Archives conditionally can be divided into two types: archives of
messages and archives of values.

A feature of the archives of messages is that so-called events are archived. The characteristic feature of
the events is its time of occurrence. The archives of messages are usually used for archiving, messages in
the system, i.e. conducting of logs and reports. Depending on the source the messages can be classified
according to different criteria. For example, this may be the reports of emergency situations, the reports of
actions of the operators, reports of the glitches of connection and others.

A feature of the archives of values is their frequency, measured in the time lag between two adjacent
values. Archives of values are used for archiving the history of continuous processes. As the process is
continuous, it can only be archived by introducing the notion of quantization of time interviewing, because
otherwise we get the archives of infinite dimensions in view of continuity of the nature of the process. In
addition, practically, we can get value from the time limited by the data sources. For example, a fairly high-
quality data sources in the industry, are rarely allowed to receive data at a frequency of more than 1kHz.
And this is without taking into account of the sensors themselves, which have even less qualitative
characteristics.

For conducting of archives in the system OpenSCADA the subsystem «Archives» is provided. This
subsystem, according to the types of archives, consists of two parts: an archives of messages and archives
of values. The subsystem, in general, is a module that allows you to create archives based on the different
nature and methods of storing of data. This module provides a mechanism for the archiving on the file
system for both: for the flow of messages, and for the flow of values.

1. Message Archiver

Archives of messages are formed by archiver. There can be the set of archivers, with individual settings,
allowing to share archiving of different classes of messages.

The archiver of messages of this module allows you to store data in XML files or in the flat-text format.
Markup language XML is a standard format that is easily understood by a lot of exterior applications.
However, opening and reviewing of the files in this format requires considerable resources. On the other
hand, the flat-text format requires far fewer resources, although not uniform, but also requires knowledge of
its structure to deal with.

In any case, both formats are supported and the user can select any of them in accordance with his
requirements.

Files of the archive are named by archivers based on the date of the first messages in the archive. For
example so: <2006-06-21 17:11:04. Msg>.

Module of subsystem “Archives”<FSArch> 174

Files of the archive can be limited in size and time. After exceeding the limit a new file is created.
Maximum number of files in a directory of the archiver can also be restricted. After exceeding the limit on
the number of files old files will be deleted!

In order to optimize the use of disk space archivers support package of old archives by gzip packer.
Packaging is made after a long non-use of the archive.

When you are using the archives in the form of XML, appropriate files are loaded entirely! For a long
time unused archives unloading timeout of access to the archive is used, after the exceeding of which the
archive is unloaded from memory and then is packaged.

Module provides additional settings for the archiving process (Fig. 1).

fi- D QpenSCADA QTCfg: Demo statuion

File Edit Wiew Help QTStarter

88000 =x Ll B0 8O

Mame .
| p— : Message archivator: Test
Elé Demo statuion
-5 Data Bases Archivator | Messages
i security
Bl Transports End: 25.05.2010 12:23:41
-2 Transport protocols]
: i Begin: .05. 15q:
J Data acquisition 20.05.2010 17:54:01
El-[| Archives Archivator files size (kB): 470.54
B Module: _ Archiving time (msek): 4.487
E} ¥ File systemn arch
. El-Message archiva —Config
i i i MNetRequsts :
D test
i i StatErrors Name: |Test
- lYalue archivator 5 i tion:
-5 To DB archivato -
- alue archive:
- 9 specials
G- | User interfaces
i &9 Modules sheduler
B @ Loop Address: | ARCHIVES/MESS/TEST/]
- @& Loop SSL , a
B pLc Message level: [IIJ lT]
Message categories: [“']
To start: ||
—Additional options
¥ML archive files: | |
Maximum archive file size (kB): [1024 l:]
Maximum files number: [30 l%]
File's time size (days): [30 l%]
Pack files timeout (min): [10 l%]
Check archives period {min): [EU l%]
Use info files for packed archives: | |
[II [IE] [Check archivator directory nuwl %
-

Homen

Fig.1. Additional settings of an archiving process of messages by module FSArch.

Module of subsystem “Archives”<FSArch> 175

Those parameters include:
« Selecting of XML-format archive files.
+ The maximum size of a single archive file.
+ The maximum number of archived files.
- Limiting the size of the archive over time.
- Timeout of package of archive files.
- The frequency of inspection of files by archiver to search for new archives and deleting the old
ones.
« The info-files using for packed archive files.
- The command of immediately verification of directory of archiver. It can be used with the
placement in the directory of archiver of files of archives from other stations.

Module of subsystem “Archives”<FSArch> 176

1.1. File format of archive messages
The table below shows the syntax of the archive file based on the XML-language:

Tag Description Attributes Contains
Version — version of the archive file;
The root element. Begin — the start time for the archive (hex — UTC in
FSArch Identifies the file as seconds from 01/01/1970); (m)

belonging to the module. |End — the end time for the archive (hex — UTC in
seconds from 01/01/1970).

tm — time of creation of the message (hex — UTC in
seconds from 01/01/1970);

tmu — microseconds of message's time;

lv — message level

cat — category of message.

Tag of the single
message.

Text of
message

Archive file on the basis of the flat text consists of:
header in the format: [FSArch <vers> <charset> <beg tm> <end tm>]
Where:
+ <vers> — version of the archiving module;
<charset> — code page of the file (usually UTFS);
<beg tm> — UTC start time for the archive from 01.01.1970, in hexadecimal form,;
<end_tm> — UTC end time for the archive 01.01.1970, in hexadecimal form.

records of the messages in the format: [<tm> <lev> <cat> <mess>|
Where:
<tm> — message time in format <utc_sec:usec>, where:
utc_sec — UTC time from 01.01.1970, in hexadecimal form;
usec — microseconds of time, in decimal form.
<lev> — the level of importance of the message;
<cat> — category of the message;
<mess> — text of the message.

Text of the message and its category are coded to exclude separator symbols (space character).

Module of subsystem “Archives”<FSArch> 177

1.2. Example of the archive of messages file

Example of the contents of an archive file in format of the XML language:

<?xml version='1.0' encoding='UTF-8' ?>

<FSArch Version="1.3.0" Begin="4a27dfbc" End="4a28c990">

<m tm="4a28cd01" tmu="942937" 1lv="4"
cat="/DemoStation/sub_DAQ/mod DiamondBoards/">dscInit error.</m>

<m tm="4a28cdl2" tmu="466631" lv="4"
cat="/DemoStation/sub_Transport/mod Sockets/out HDDTemp/">Connect to Internet
socket error: Operation now in progress!</m>

</FSArch>

Example of the contents of the archive file in the format of flat text:

FSArch 1.3.0 UTF-8 4a27dfbb 4a28cdl2

4a28cdl11:295857 1 /DemoStation/ Start!

4a28cdl11:296091 /DemoStation/sub Transport/ Start$%20subsystem.

4a28cdl11:304391 /DemoStation/sub DAQ/mod DAQGate/cntr test/ Enable%20controller!

4a28cdl11:306362 /DemoStation/sub DAQ/mod ModBus/cntr testTCP/ Enable%20controller!

4a28cdl11:310956 /DemoStation/sub DAQ/mod ModBus/cntr testRTU/ Enable%20controller!

4a28cdl11:313845 /DemoStation/sub DAQ/mod BlockCalc/cntr Anastlto2node/ Enable
%20controller!

4a28cdl11:531765 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM102cntr/ Enable
$20controller!

4a28cd11:557546 1 /DemoStation/sub DAQ/mod BlockCalc/cntr Anastlto2node cntr/ Enable
%20controller!

4a28cdl11:616320 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM101l/ Enable%20controller!

4a28cdl11:770404 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM102/ Enable%20controller!

4a28cd11:935745 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM201/ Enable%20controller!

4a28cd12:64148 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM202/ Enable%20controller!
4a28cdl12:212514 1 /DemoStation/sub_ DAQ/mod BlockCalc/cntr KM301l/ Enable
%20controller!

4a28cd12:331423 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM302/ Enable%20controller!

4a28cd12:462627 1 /DemoStation/sub DAQ/mod System/cntr AutoDA/ Enable$%20controller!

4a28cdl12:466631 4 /DemoStation/sub Transport/mod Sockets/out HDDTemp/ Connect%20to
%20Internet%$20socket%20error:%200perations20nows20in%20progress!

4a28cd12:499705 1 /DemoStation/sub DAQ/mod SoundCard/cntr test/ Enable%20controller!

4a28cd12:502482 1 /DemoStation/sub DAQ/mod LogicLev/cntr experiment/ Enable
%20controller!

4a28cd12:620560 1 /DemoStation/sub DAQ/mod JavaLikeCalc/cntr testCalc/ Enable
%20controller!

4a28cdl12:624907 1 /DemoStation/sub DAQ/mod Siemens/cntr test/ Enable%20controller!

4a28cd12:644620 1 /DemoStation/sub DAQ/mod DAQGate/cntr test/ Enable%20controller!

4a28cd12:665980 1 /DemoStation/sub Archive/ Start$%$20subsystem.

4a28cdl12:843813 1 /DemoStation/sub DAQ/mod BlockCalc/cntr Anastlto2node/ Start
%20controller!

4a28cd12:845059 1 /DemoStation/sub DAQ/mod BlockCalc/cntr KM102cntr/ Start
$20controller!

4a28cd12:845555 1 /DemoStation/sub DAQ/mod BlockCalc/cntr Anastlto2node cntr/ Start
%20controller!

4a28cdl12:845983

4328cdl2:846778

4a28cdl12:847440

4a28cd12:849979

4328cdl2:850851

4328cdl2:851417

4a28cd12:852073

4a328cd12:854718
%20controller!

4a28cd12:889380 1 /DemoStation/sub Archive/ Start%20subsystem.

4a28cd12:909319 1 /DemoStation/sub UI/mod VCAEngine/ Start%20module.

= e e

/DemoStation/sub DAQ/mod BlockCalc/cntr KM101l/ Start%20controller!
/DemoStation/sub DAQ/mod BlockCalc/cntr KM102/ Start%20controller!
/DemoStation/sub DAQ/mod BlockCalc/cntr KM201l/ Start%20controller!
/DemoStation/sub DAQ/mod BlockCalc/cntr KM202/ Start%20controller!
/DemoStation/sub DAQ/mod BlockCalc/cntr KM301/ Start%20controller!
/DemoStation/sub DAQ/mod BlockCalc/cntr KM302/ Start%20controller!
/DemoStation/sub DAQ/mod System/cntr AutoDA/ Start$%$20controller!
/DemoStation/sub DAQ/mod LogicLev/cntr experiment/ Start

e e

Module of subsystem “Archives”<FSArch> 178

2. Values Archiver

Archives of values are formed particularly by archivers of the values for each registered archive. There
cen be a lot of archivers with individual settings that allow to divide the archives by various parameters,
such as the accuracy and depth.

Archive of values is an independent component, which includes buffer processed by archivers. The main
parameter of archive of value is a source of data. As a source of data may make the attributes of the
parameters of subsystem “Data acquisition”, as well as other external data sources (passive mode). Other
sources of data could be: network archivers of remote OpenSCADA systems, environment of programming
of systems OpenSCADA etc. No less important parameters are the parameters of the archive buffer. From
the parameters of the buffer the opportunity of working of archivers depends on. Thus, the frequency of
values in the buffer should be no more than the frequency of the fastest archiver, a buffer size not less than
double the amount for the slowest archiver. Otherwise, the possible loss of data!

The overall scheme of archival of values vividly depicted in Fig. 2.

Parameter (logical, physical) External

Attribute 1 Attribute 2 Attribute 3 source

. . i
Archive Archive Archive
I Buffer | attr 1n | 1| BYTe | cattr 20 «attr 3n»
N, LS A

F.arch F.arch 1

¢
Archive
Buffer {Ext sre.»

-~

DL

i
;

(=
—

Archivafor (period 1

Farch P.arch "
[I

Omsd, depth 1hour File sy stem

-~

id

9 Archijvator (period i s depth Tmonth) F,-mem
p
il
T T - r
L Archivator (period 1min., depth Tyear) S)

Fig.2. The overall scheme of process of archival values of module FSArch.

Files of archives are named by archivers based on the date of the first value in the archive and archive
identifier. For example in this way: <Memlnfo use 2006—06—17 17:32:56.val>.

Files of archives can be limited in time. After exceeding the limit the new file is created. Maximum
number of files in a directory of archiver also may be limited. After exceeding the limit on the number of
files old files will be deleted!

In order to optimize the use of disk space archivers support package of old archives by gzip packer.
Packaging is made after a long non-use of the archive. For fast archives connection allow to other systems
you can enable info-files using for packed files, that prevent all files forward unpackaging at other system.

Module of subsystem “Archives”<FSArch> 179

Module provides additional settings for the archiving process (Fig. 3).

ri 0 OpenSCADA QTCfg: Demo statuion

File Edit Wiew Help QTStarter
83000 r= Ll'200 2D
Mame

L:.|‘ Cemo statuion

- :ﬁ Data Bases

{2 security

) Transports

'H Transport protocols
=

J Data acquisition
|| Archives
EF Module:
= [u¥ File system arch
: "'Message archiva
= alue archivator
, 1h
""-'i To DB archivato
- Value archive:
G @4 Specials
" !] User interfaces
¥ Modules sheduler
- Loop

#

=

- Loop S5L

e
.
i

' PLC

Value archivator: 1s

Archivator Archives

— State

Runing: ||
Archiving time (msek): 2. 413

Archivator DB: [“'.“'

M

Full archives size (MB): 14.7305

— Config
ID: 1

Mame: |1s

Description:

Second's archive

Value period (sec): [1]

Period archiving (sec): [60

=

Address: | ARCHIVES/VAL/1s

To start: |E|

— Additional options

File's time size (hours): [SUU

Maximum files number: [100

Mumberic values rounding (%): [U.Ul

Pack files timeout (min); [10

l%]

Check archives period (min): [60

=

Use info files for packed archives: [+

[Check archivator directory nuwl

Fig.3. Additional settings of an archiving process of values by module FSArch.

Module of subsystem “Archives”<FSArch> 180

2.1. File format of archive values

To implement the archiving to the file system the following requirements are to be done:
quick (easy) access to add to the archive and reading from the archive;
the possibility of changing the values of the existing archive (to fill holes in duplicate systems);
cycle (size restrictions);
the possibility of the compression by the method of packaging the same values sequence that
preserves the possibility of quick access (consistent packaging);
the possibility of packaging obsolete data by standard archivers (gzip, bzip2 ...), with the
possibility of extracting on access.

In accordance with the above requirements archiving is organized by method of plurality of files (for
each source). Cyclical of archive sold at the file level, ie a new file is created, and the oldest one is
removed. For fast compression the method of tightening to the last equal value is used. For this purpose, the
bit archiving table is provided with the size of one to one with the number of stored data. Ie each bit
corresponds to the single value in the archive. The presence of bit indicates the presence of value. For the
thread of the same values bits reduced to zero. In the case of the string archive the table is not a bit but the
byte one and contains the length of the appropriate value. In the case of reception of the thread of equal
values, the length will be zero and the first same value will be read. As the table is bite one, the archive will
be able to keep strings with the length more than 255 characters. Thus, the methods of storage can be
divided into a method of fixed and not fixed data size. The overall structure of the archive is shown in Fig.
4.

Archive's file structure

File header (80 Byte)

Pack table
Table size for data:
Fix = Nval'8HboolfNval®a8)
noFix = Nval *ValSize

Follow packed data massif

Fig. 4. The overall structure of the value archive.

When you create a new archive file there is formed: the title (the structure of the title is in the table 1),
zero bit table of package of the archive and the first false value. Thus, the archive will be initialized with
false values. In the future, the new values will be inserted in the area of values with adjustment of index
table of packaging. It follows that the passive archives will dwindle in the files with the size of the title and
the bit table.

Table 1. The structure of the header of archive file

Field Description Size in bite(bit)
ftp System name of the archive («OpenSCADA Val Arch.») 20
archive [Name of the archive to which the file belongs. 20
beg Start time of the archive data (Mxc) 8
end End time of the archive data (mkc) 8

Module of subsystem ‘“Archives”<FSArch> 181

Field Description Size in bite(bit)
period |Periodicity of the archive (mkc) 8
vtp Type of value in the archive (Boolean, Integer, Real, String) 3)
hgrid |Criterion of using of hard grid in the buffer of the archive (1)
hres Critgrion of using of time of high resolution (mcs) in the buffer of the 1)
archive
reserve Reserve 14
term | The symbol of the end of the header of file (0x55) 1

Explaining of the mechanism of consistent packaging is given in Fig. 5. As can be seen from the figure a
sign of the package contains a length (not fixed types) or a sign of the package (fixed types) of the
separately taken value. This means that to obtain the desired value of displacement it is necessary to sum up
the length of previous valid values. The implementation of this operation each time and for each value is
highly invoice operation. Therefore, the mechanism of caching of displacement of the values is provided.
The mechanism caches displacement of values through predefined their quantity, as well as cashes the last

value for which the access is made (separately for reading and writing).

Fixed type values packing No fixed type values packing

Time sl Value e Time N Value Lo

bit massif Byte massif
10010 l 9 9 10010 l 0 7 0
10020 l 14 14 10020 0 0 l: Stop
10030 0 14 45 10030 1] |:Stop 2:Frrorl
10040 l 45 / 51 10040 0 |:Stop / 0
10050 l 51 <E= 10050 8 2:Errorl <EVAL=
10060 0 51 10060 l 0
10070 0 5l 10070 0 0
10080 l <E= 10080 1] <EVAL>
10090 0 <E= 10090 0 <EVAL=
10100 0 <E= 10100 0 -CfEVAI_Z"'f

Fig. 5. The mechanism of follow packaging of values.

Changes of the values in the existing archive is also provided. However, given the necessity to
implement the shifting of the tail of the archive, it is recommended to perform this operation as sparingly as
possible and with as far as possible large blocks.

Module of subsystem “Archives”<FSArch> 182

3. Efficiency

In the design and implementation of the module it was built mechanisms improving the process of
archiving.

The first mechanism is a mechanism of block (frame-accurate or transactive) location of data in the files
of the archives of values. Such an arrangement allows to achieve a maximum speed of archiving, and thus
allows to archive more data streams at the same time. The experience of the practical using showed that the
system of K8-3000 with a regular IDE hard drive is able to archive to 300000 data streams at a frequency
of 1 second, or K5-400 system with the IDE drive (2.5”) can archive to 100 parameters with 1 millisecond
intervals.

The second mechanism is the package of current values, and outdated files of archives to optimize the
use of disk space. There are two packaging mechanisms: the consistent package (archives of values), and a
mechanism of finish packaging of archives by means of standard packer (gzip). This approach allowed to
achieve high productivity in the process of archiving of current data with the effective mechanism of
consistent compression. And finish packaging by means of standard packer of obsolete archives completes
the overall picture of the compact storage of large volumes of data. Statistics of practical using, in real noise
signal (the worst situation), showed that the extent of consistent packaging is 10%, and the extent of the full
packaging was 71%.

Module of subsystem “Archives”<FSArch> 183

Module of subsystem “Archives” <DBArch>

Module: DBArch

Name: Arhivator on the DB
Type: Archive

Source: arh DBArch.so
Version: 0.9.2

Author: Roman Savochenko

Archive module. Provides archiving functions for messages and values on the
DB.

License: GPL

Description:

The module is designed for archiving messages and values of OpenSCADA to a database maintained by
OpenSCADA.

Any SCADA system provides the ability to archive the collected data, i.e. formation of history of the
changes (dynamics) of processes. Archives conditionally can be divided into two types: archives of
messages and archives of values.

A feature of the archives of messages is that so-called events are archived. The characteristic feature of
the events is its time of occurrence. The archives of messages are usually used for archiving, messages in
the system, i.e. conducting of logs and reports. Depending on the source the messages can be classified
according to different criteria. For example, this may be the reports of emergency situations, the reports of
actions of the operators, reports of the glitches of connection and others.

A feature of the archives of values is their frequency, measured in the time lag between two adjacent
values. Archives of values are used for archiving the history of continuous processes. As the process is
continuous, it can only be archived by introducing the notion of quantization of time interviewing, because
otherwise we get the archives of infinite dimensions in view of continuity of the nature of the process. In
addition, practically, we can get value from the time limited by the data sources. For example, a fairly high-
quality data sources in the industry, are rarely allowed to receive data at a frequency of more than 1kHz.
And this is without taking into account of the sensors themselves, which have even less qualitative
characteristics.

For conducting of archives in the system OpenSCADA the subsystem «Archives» is provided. This
subsystem, according to the types of archives, consists of two parts: an archives of messages and archives
of values. The subsystem, in general, is a module that allows you to create archives based on the different
nature and methods of storing of data. This module provides a mechanism for the archiving on the file
system for both: for the flow of messages, and for the flow of values.

1. Message Archiver

Archives of messages are formed by archiver. There can be the set of archivers, with individual settings,
allowing to share archiving of different classes of messages.

The archiver of messages of this module stores data in a database table, which is named by the following
way: DBAMsg {ArchID}. Where:
« ArchID — archiver identifier.

The size of the table of archive may be limited in time. After exceeding the limit the old records will be
deleted!

Module provides additional settings for the archiving process. This module has only one such parameter
and it etermines the size of the archive over time.

Table of the database archiver has the following structure: {TM, TMU, CATEG, MESS, LEV}. Where:

Module of subsystem “Archives” <DBArch> 184

TM — UTC time of the message, seconds from (01.01.1970). In the DB, containing a specialized
type of storage date and time, can be used this specialized type.

TMU — microseconds of time

CATEG — message category.

MESS — text of the message.

LEV — level of the message.

2. Values Archiver

Archives of values are formed particularly by archivers of the values for each registered archive. There
cen be a lot of archivers with individual settings that allow to divide the archives by various parameters,
such as the accuracy and depth.

Archive of values is an independent component, which includes buffer processed by archivers. The main
parameter of archive of value is a source of data. As a source of data may make the attributes of the
parameters of subsystem “Data acquisition”, as well as other external data sources (passive mode). Other
sources of data could be: network archivers of remote OpenSCADA systems, environment of programming
of systems OpenSCADA etc. No less important parameters are the parameters of the archive buffer. From
the parameters of the buffer the opportunity of working of archivers depends on. Thus, the frequency of
values in the buffer should be no more than the frequency of the fastest archiver, a buffer size not less than
double the amount for the slowest archiver. Otherwise, the possible loss of data!

The overall scheme of archival of values vividly depicted in Fig. 1.

Parameter (logical, physical) Extemal

Attribute 1 Attribute 2 Attribute 3 source

. . i
Archive Archive Archive
‘ Buffer]{{attr_1 » | 1| BUFFer | eattr 25 wattr3n
L LS

—-,

1\ ’
Archive
Buffer {Ext src s

S

A . -
o T
o
L Archivator (period 190ms, depth 1houn File system
o T,
ECaI] N
L Archfvator (period if's, depth Tmonth) File systom
P
i
L Archivator (period 1min., depth Tyear) S et ‘)

Fig.1. The overall scheme of the process of archiving by module DBArch.

Archive of this module stores data in a database table, which is called by the following way:
DBAVI {ArchID} {ArchivelD}. Where:
ArchID — identifier of the archiver of values.
ArchivelD — identifier of the archive.

The size of the table of archive may be limited in time. After exceeding the limit the old records will be
deleted!

Module provides additional settings for the archiving process. This module has only one such parameter
and it determines the size of the archive over time.

Module of subsystem “Archives” <DBArch> 185

Table of database archiver of values is as follows: {TM, TMU, VAL). Where:
TM — UTC time of the value, the second from (01.01.1970). In the databases, containing a
specialized type of storage date and time, it can be used this type of specialization.

TMU — Time value in microseconds.
VAL — The value, type of value is determined by the type of the column.

3. Informational table of the archival tables

To store the beginning, end and other information of archives in archival tables the informational table
with the name of the module is created: «DBArch". This table has the structure: {TBL, BEGIN, END,

PRM1, PRM2, PRM3). Where:
TBL — Name of the table of the archive.

BEGIN — Beginning of data in the archive.
END — End of data in the archive.

PRM1 — Optional parameter 1.

PRM?2 — Optional parameter 2.

PRM3 — Optional parameter 3.

Module of subsystem “Archives” <DBArch> 186

Module of the subsystem “DB” <DBF>

Module: DBF

Nmae: DB DBF

Type: DB

Source: bd DBF.so
Version: 2.0.2

Author: Savochenko Roman

DB module. It provides the support of *.dbf files, version
3.0.

License: GPL

Description:

The module is designed to provide in the system OpenSCADA support of the type of database
files *.dbf. The module is based on the library for work with dbf files for “Complex2" firm
“DIYA” Ltd. The module allows you to perform operations on databases, tables and contents of
tables.

1. Operations over the database

The operations of opening and closing of the database is supported, with the possibility of
creating a new database when you open and delete existing at the close. In terms of the subsystem
“DB” of system OpenSCADA opening of DB is its registration for further using of it in the system.

Under the DB, in the case of the dbf-files it is meant the directory containing the dbf-files.
Therefore, operation of the creating and deleting of the database — creates and deletes the directory
where the table (dbf-files) are stored. The role of the address of database plays the full name of the
directory with dbf-files. Access to the database is defined by the system rights of access to the
directory.

The module supports coding of data in the correct code page. To this purpose, for the database as
a whole, you can specify a working code page. During the work it will be carried out data coding,
database coding, from the DB code page to the system code page of OpenSCADA and backwards.

2. Operations over the table

The operations of opening and closing of the table with the possibility of creating a new table
when you open and deleting the existing one at the closing are supported.

Actually dbf-file is the table. Creation and deletion of tables implys creation and deletion of dbf-
file. Table name is the name of dbf-file in the directory of DB. Access to the table are define by the
rights of access to dbf-file.

3. Operations over the contents of the table

Scanning of the records of the table;
Request the values of these records;
Setting the values of these records;
Removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s)
fields. Thus, the operation of request of the record implys the preset of key columns of the object
TConfig, which will fulfill the request. Creating a new record(string) is the installation of the values

of record, which does not exist.

The module allows you to dynamically change the structure of the database tables DBF. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
reduced to the the required structure of record. In the case of the request of the value of the record, and
mismatching of the structures of record and the table there will be available only to the values of common
elements of the record and table. The module does not track the order of the elements in the record and in
the structure of the table!

While access to the values of the tables the synchronization is used by through the capture of the
resource to have access to the table. This avoids the destruction of data in the case of multi-access!

The types of the elements of dbf-file that correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of system OpenSCADA | Type of field of dbf-file
TFId::String “C”

TF1d::Integer, TF1d::Real “N”

TF1d::Boolean “L”

4. Productivity of DB

Measurement of productivity of DB were carried out by the test “DB” of the module of system tests
"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8-3000+,256M,120G
Creation of the 1000 records (sek): |1.07
Updating of the 1000 records (sek): |1.6
Getting of the 1000 records (sek): 1.0
Deleting of the 1000 record (sek): |0.95

Module of the subsystem “DB” <DBF> 188

Module of the subsystem “DB” <MySQL>

Module: MySQL

Name: DB MySQL

Type: DB

Source: bd MySQL.so
Version: 1.6.2

Author: Savochenko Roman

Description: | DB module. It provides the support for DB MySQL.
License: GPL

Module <MySQL> gives to the system OpenSCADA support of DB MySQL. MySQL database
is a powerful multi-platform database available for free license. Manufacturer of MySQL database
is the company MySQL AB http://www.mysqgl.com. The module is based on the library with API of
the manufacturer of DB MySQL. The module allows you to perform operations over databases,
tables and contents of tables.

1. Operations over the database

The operations of opening and closing of the database is supported, with the possibility of
creating a new database when you open and delete existing at the close. In terms of the subsystem
“DB” of system OpenSCADA opening of DB is its registration for further using of it in the system.
It also supported the operation of requesting the list of tables in the database.

DB MySQL address by string of following type: [<host>; <user>; <pass>; <bd>; <port>;
<u_sock>;<names>]. Where:
« host — the name of the host on which the database server MySQL works;
user — the name of the user of database;
« pass — user password to access the database;
bd — the name of the database;
- port— port to listen to by the database server (default is 3306);
u_sock — the name of UNIX-socket in the case of local access to the database
(/Var/hb/mysql/mysql sock).
names — MySQL SET NAMES charset.

In the case of local access to the database in the same host, you must use the UNIX socket. For
example: [;roman; 123456, OpenSCADA; ;/var/lib/mysql/ mysql.sock]

In the case of remote access to the database you must use the host name and port of the server of
the database. For example: [server.nm.org,roman;123456;OpenSCADA;3306]

2. Operations over the table

The operations of opening and closing of the table with the possibility of creating a new table
when you open and deleting the existing one at the closing, and also the operation of the requesting
of the table's structure are supported.

http://www.mysql.com/

3. Operations over the contents of the table

scanning of the records of the table;
request the values of these records;
setting the values of these records;
removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables MySQL. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is realised support multilanguage text variables. For fields with multilanguage text variable
create the column of separated language in format <lang>#<FIdID> (en#NAME). In this time the base
column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB MySQL correspond to types of elements of system OpenSCADA in the
following way:

Ti‘;ﬁﬁfg’;:;‘gg;‘gzhe Types of fields of DB MySQL
TFId::String char (n), text, mediumtext
TFId::Integer int (n), DATETIME [for fields with a flag TFId::DateTimeDec]
TF1d::Real double(n, m)
TF1d::Boolean tinyint(1)

4. Access rights

MySQL database provides a powerful mechanism for the separation of access, which is to selectively
identify the access for user of the database to specific SQL-commands. The following table lists the
operation over the database and the required access to the commands of these operations.

Operation SQL-commands

Creation of the database and tables CREATE
Deleting of the database and tables DROP

Adding of records INSERT

Deleting the values of records DELETE

Getting the values of records SELECT

Setting the values of records UPDATE
Manipulation with the structure of the table |ALTER

Module of the subsystem “DB” <MySQL> 190

5. Productivity of DB

Measurement of productivity of DB were carried out by the test “DB” of the module of system tests
"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8_3000+,5ifg$/1(’l(}c22?1?’ MySQL MySQL 4.0.24 (remote)
Creation of the 1000 records (sec.): 0.67 0.99
Updating of the 1000 records (sec.): 0.67 1.33
Getting of the 1000 records (sec.): 0.38 0.49
Deleting of the 1000 record (sec.): 0.23 0.34

Module of the subsystem “DB” <MySQL> 191

Module of the subsystem “DB” <SQLite>

Module: SQLite

Name: DB SQLite

Type: DB

Source: bd SQLite.so
Version: 1.6.2

Aurhor: Savochenko Roman

Description: |DB module. It provides the support for DB SQLite.
License: GPL

Module <SQLite> gives to the system OpenSCADA support of DB SQLite. DB SQLite is a small,
embedded database which supports the SQL-queries. SQLite DB is distributed under a free license. To
familiarize with the database it is possible on the website of the database — http://sqlite.org. The module is
based on the library with API of the manufacturer of DB SQLite. The module allows you to perform
operations over databases, tables and contents of tables.

1. Operations over the database

The operations of opening and closing of the database is supported, with the possibility of creating a new
database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

SQLite database is addressed by specifying the name of the database file in the following format:
[<FileDBPath>]. Where:
FileDBPath - full path to DB file (./oscada/Main.db).
Use empty path for a private, temporary on-disk database create.
Use ":memory:" for a private, temporary in-memory database create.

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

2. Operations over the table

The operations of opening and closing of the table with the possibility of creating a new table when you
open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

3. Operations over the contents of the table

scanning of the records of the table;
request the values of these records;
setting the values of these records;
removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables SQLite. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be

Module of the subsystem “DB” <SQLite> 192

http://sqlite.org/

set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure

of the table!

The module is realised support multilanguage text variables. For fields with multilanguage text variable
create the column of separated language in format <lang>#<FIdID> (en#NAME). In this time the base
column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present

then will used value for base language.

The types of the elements of DB SQLite correspond to types of elements of system OpenSCADA in the

following way:

The types of fields of the system OpenSCADA | Types of fields of database SQLite
TFId::String TEXT

TF1d::Integer, TF1d::Boolean INTEGER

TFld::Real DOUBLE

4. Access rights

Access rights to the database are defined by the rights of access to the separately taken file of the
database. Module supports the work with SQLite database files in read-only mode, such as demonstrations.

5. Productivity of DB

Measurement of productivity of DB were carried out by the test “DB” of the module of system tests
"SystemTests", by performing operations over the records of the structure: <name char (20), descr char

(50), val double (10.2), id int (7), stat bool>.

Operation K8-3000+,

256M, 120G, SQLite 3.4.2

Creation of the 1000 records (sec.): |0.45

Updating of the 1000 records (sec.): |0.50

Getting of the 1000 records (sec.): 0.2

Deleting of the 1000 record (sec.): 0.2

Module of the subsystem “DB” <SQLite> 193

Module of the subsystem “DB” <FireBird>

Module: FireBird

Name: DB FireBird

Type: DB

Source: bd FireBird.so
Version: 0.9.5

Author: Savochenko Roman

Description: | DB module. It provides the support for DB FireBird.
License: GPL

Module <FireBird> gives the system OpenSCADA support of DB FireBird and InterBase. DB FireBird
is a small, embedded database, with the functions of a network database that supports SQL-queries. DB
FireBird is built on a commercial DBMS Interbase and distributed under a free license. To familiarize with
the database it is possible on the website of the database — http://www.firebirdsql.org. The module is based
on the library with API of the manufacturer of DB. The module allows you to perform operations over
databases, tables and contents of tables.

1. Operations over the database

The operations of opening and closing of the database is supported, with the possibility of creating a new
database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

DB FireBird is addressed by specifying the database file name, username and password. In general, the
address database is written in this way: [<file>,;<user>;<pass>]. Where:
- file — the full name of the database file;
user — user of the database on behalf of which the access is made;
pass — password for the user on behalf of which the access is made;

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

2. Operations over the table

The operations of opening and closing of the table with the possibility of creating a new table when you
open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

3. Operations over the contents of the table

scanning of the records of the table;
request the values of these records;
setting the values of these records;
removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables FireBird. Thus, in the

Module of the subsystem “DB” <FireBird> 194

http://www.firebirdsql.org/

event of a discrepancy of the table and the structure determined by record, the structure of the table will be
set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is realised support multilanguage text variables. For fields with multilanguage text variable
create the column of separated language in format <lang>#<FIdID> (en#NAME). In this time the base
column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB FireBird correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the system OpenSCADA | Types of fields of database FireBird
TF1d::String VARCHAR, BLOB SUBTYPE TEXT
TF1d::Integer INTEGER

TF1d::Real DOUBLE

TF1d::Boolean SMALLINT

4. Access rights
Access rights to the database are defined by the rights of DB.

5. Productivity of DB

Measurement of productivity of DB were carried out by the test “DB” of the module of system tests
"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8-3000+, 256M, 120G, FireBird FireBird 2.0.3 (Remote
2.0.3 (Local SuperServer) SuperServer)
Creation of the 1000 records (sec.): |1.23 2.76
Updating of the 1000 records (sec.): |4.43 6.92
Getting of the 1000 records (sec.): |2.31 4
Deleting of the 1000 record (sec.): |1.01 2.39

Module of the subsystem “DB” <FireBird> 195

Module of the subsystem “DB” <PostgreSQL>

Module: PostgreSQL

Name: DB PostgreSQL
Type: DB

Source: bd PostgreSQL.so
Version: 0.9.0

Author: Maxim Lysenko

Translated: Maxim Lysenko
Description: |DB module. It provides the support for DB PostgreSQL.
License: GPL

Module <PostgreSQL> gives to the system OpenSCADA support of DB PostgreSQL. PostgreSQL
database is a powerful multi-platform database available for free license. Manufacturer of PostgreSQL
database is the PostgreSQL Global Development Group www.postgresql.org. The module is based on the
library with API of the manufacturer of DB PostgreSQL. The module allows you to perform operations
over databases, tables and contents of tables.

1. Operations over the database

The operations of opening and closing of the database are supported, with the possibility of creating a
new database when you try to open one and delete the existing at the close. In terms of the subsystem "DB"
of system OpenSCADA opening of DB is its registration for further using of it in the system. It also
supported the operation of requesting the list of tables in the database.

DB PostgreSQL address by string of following type:
[<host>;<hostaddr>;<user>;<pass>;<bd>;<port>;<connect_timeout>]. Where:

host - the name of host to connect to. If this begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored.

hostaddr - Numeric IP address of host to connect to. This should be in the standard IPv4 address
format, e.g., 172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP
communication is always used when a nonempty string is specified for this parameter.

user - the name of the user of database;

pass - user password to access the database;

bd - the name of the database;

port - port to listen to by the database server (default is 5432);

connect_timeout - maximum wait for connection, in seconds. Zero or not specified means wait
indefinitely. It is not recommended to use a timeout of less than 2 seconds.

In the case of local access to the database in the same host the address string should be as follows:
[;roman;123456;0penSCADA;;10]

In the case of remote access to the database you must use the address and port of the server of the
database. For example:[server.nm.org;192.168.2.1;roman;123456;0penSCADA;;10]

2. Operations over the table

The operations of opening and closing of the table with the possibility of creating a new table when you
open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

Module of the subsystem “DB” <PostgreSQL> 196

http://www.postgresql.org/

3. Operations over the contents of the table

scanning of the records of the table;
request the values of these records;
setting the values of these records;
removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implys the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the PostgreSQL database tables. Thus, in
the event of a discrepancy of the table and the structure determined by record, the structure of the table will
be set to the required structure of record. In the case of the request of the value of the record, and
mismatching of the structures of record and the table there will be available only to the values of common
elements of the record and table. The module does not track the order of the elements in the record and in
the structure of the table!

The module provides the support of multilanguage text variables. For fields with multilanguage text
variables the columns of the appropriate language are created in format <lang>#<FIdID> (en#¥NAME). In
this time the base column contain value for base language. The columns of other languages are created by
needs, at the time of saving to DB and execution OpenSCADA with appropriate language. In the case of the
value's absence for the language it will be used the values for basic language.

The types of the elements of DB PostgreSQL correspond to types of elements of system OpenSCADA in
the following way:

The types of fields of the
system OpenSCADA Types of fields of DB PostgreSQL
TF1d::String character(n), character varying(n), text

integer, bigint, timestamp with time zone [for the fields with the flag

TFld::Integer TFId::DateTimeDec]

TF1d::Real double precision
TF1d::Boolean smallint
4. Access rights

PostgreSQL database contains some mechanism of separation of access, which is to specify the user
privileges for database. The table below lists the necessary privileges for the work in the OpenSCADA.

Operation SQL-commands
Creation of the DB CREATEDB
Creation of the connection [LOGIN

5. Productivity of DB

Measurement of productivity of DB were carried out by the test "DB" of the module of system tests
"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>. OpenSCADA was launched with the demo configuration.

Operation Il(’?)-s::gggg(’ff?\;[,(llozcgg’ PostgreSQL 8.3 (remote)
Creation of the 1000 records (sec.): |0.89 1.04
Updating of the 1000 records (sec.): |1.02 1.1
Getting of the 1000 records (sec.): 0.61 0.63
Deleting of the 1000 record (sec.): |0.36 0.4

Module of the subsystem “DB” <PostgreSQL> 197

The module of subsystem “Data acquisition”

<DiamondBoards>
Module: DiamondBoards
Name: Diamond cards of data acquisition
Type: DAQ
Source: daq DiamondBoards.so
Version: 1.2.1
Author: Roman Savochenko

Translated: |Maxim Lysenko

Provides an access to the cards of data acquisition from Diamond Systems. Includes
support for Athena motherboard.

License: GPL

Description:

The module provides for the system OpenSCADA support of dynamic data sources, based on the cards
for data collection of Diamond Systems company (http://diamondsystems.com). The module is built on the
basis of auniversal driver of the manufacturer of board. Universal driver is available for almost all known
software platforms in the form of a library. Universal driver has been received at
http://www.diamondsystems.com/support/software. The driver was included in the distribution kit of
OpenSCADA, therefore, for the building of the module external libraries are not required.

The boards of data acquisition of Diamond Systems represent the modules of expansion of the PC/104
format. Boards may include: analog 1O (input/outputs), digital IO, and counters. Complete set of cards can
vary greatly. There can be contained only one type of IO or many others. In addition, the function of data
acquisition can be given to the system boards of this company. For example, the motherboard Athena
contains: 16 AL, 4 AO, 24 DIO.

The module provides support for analog and digital 10. The of analog inputs (Al) is supported in two
modes: direct acquisition and the acquisition on interruption. The method of the acquisition on interruption
allows to achieve the maximum frequency of interrogation which is supported by the hardware. In the case
of Athena, the frequency achieves 100 kHz. The process of acquisition on interruption data becomes the
second frames and placed in the archives buffer.

In the case of interrogation of the analog channels on interruption is not possible to configure
individually each channel. Such an opportunity is provided only through direct interrogation.

Discrete channels are usually bi-directional and grouped into 8 channels. Each group of channels can be
separately designate direction. The module provides the ability to configure a group of discrete parameters.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

The module of subsystem “Data acquisition” <DiamondBoards> 198

http://www.diamondsystems.com/support/software
http://diamondsystems.com/

1. Data controller of Diamond boards

Board of Diamond Systems configured by creating the controller in the system OpenSCADA and
configuration of it. Example of the tab of configuration of the controller of the board is shown in Figure 1.

i

File

88000 == L

QT Configurator of OpenSCADA: Demo station

Edit “iew Help QTStarter

| Mame

=

i Demo station

=, DataBases

EE Security

g Transports
@i Transport protocols
/| Data acquisttion

=l Module:
Data sources gate
ModBus
DCON cliert
SHMP cliert
Block based calculator
¥ SystemDA
Sound card
Logic level
Java-like based calcula
Siemens DAQ
Diamond DA boards

test

Template library:
[| Archives
&9 Specials

[User interfaces
@9 Modules sheduler

o-E-E-E-H

&

068882

E-EH-E

.ﬁ

200 @28

Controller: test

Controller l Parameters | Board config]

ICuntruller DE: l '

Ad

—Config
D test

Mame: [

Description:

To enable: [|
To start: ||

S

Preferable run: | =High level= n
Diamond system board: | ATHEMA n

Analog parameters' table: [DiamPrma_test

Loop
=) | oop SSL Digital parameters' table: [DiamPrmD_test]
oy
6 FLXB Data emulation: | |
" Met book
Base board address: [UKESU]
Interrupt vector: [5 |$]
Digit 10 config byte: [nxu]
AJD interrupt mode: [+
AJD voltage range: | 10v n
AD oty [Bpolr |~
: | [I'I] AD convertion rate (Hz): [SUU |$] [|
3
#Foman]
——

Using this form, it can be set:

Fig.1. Tab of configuration of the controller/board of Diamond Systems.

+ The statis of the controller(card), as follows: Status, "Enable", "Run" and the name of the
database containing the configuration.
+ Identifier, name and description of the controller(card).
« The status, in which the controller is to be transfered at the boot time:"To enable" and "To start".

+ Horizontal mode of redundancy and performance preference of the controller.

+ Type of the card of Diamond Systems company.

The module of subsystem “Data acquisition” <DiamondBoards> 199

« The names of tables for storing of the configuration of analog and discrete parameters of the
controller.

+ The switching on of high-speed emulation mode of the data source.

 Base address and hardware interruption of the board(for the acquisition on interruption).

+ Sign of the acquisition of analog inputs on the interruption and the frequency of data acquisition
on the same channel.

+ The overall configuration of the converter of analog inputs on the following structure: the range
of input voltage, polarity and amplification of the channels.

In the mode of direct interrogation of analog inputs hardware interrupt of the card, frequency of analog

inputs i

nterrogation and the strengthening of the analog converter are not available.

To configure ports of digital inputs / outputs on the controller's page there is the tab of the configuration

(fig. 2).

-+ QT Configurator of OpenSCADA: Demo station 4

File Edit View Help QTStarter

: i~ —= —= . e
B 8000 AX Lk L'200 28
|Nﬂme [3
ModBus Controller: test
DICOM client
SHMP cliert [Cortroller | Parameters] Board config l
Block based calculal o _
R System D& —Digital 1O ports. Select input!
Sound card Port A [|
Logic level
Java-like based calc Port B: [
Siemens DAQ Partc1: []
=} Diamond DA boards
: Port C2: [|
Templa

[] Archives
({9 Specials
I!l User interfaces

J Mocules shecduler
O an

KD

omr

Fig.2. Tab of configuration of digital inputs / outputs ports.

The module of subsystem “Data acquisition” <DiamondBoards> 200

2. Parameters of the Diamond controller

Module provides the information on two types of parameters: the digital and analog. Each type of the
parameter is stored in the database and, consequently, has its own tab configuration. Tab of the
configuration of analog parameters is presented in Fig.3. Configuration tab of digital parameters is
presented in Fig.4.

OT Configurator of Open5CADA: Demo station
File Edit View Help QTStarter

880U RX L4 |EB0CL 2D

|Name B

lw Transport protocols
[l | Data acquisition

Parameter: ail

Parameter | Atributes | Archiving |

El- Module: —
Data sources gate State
MocBus
DCON client TYPE a_prm
SHMP cliert
Elock based calculal — Config
¥ SystemDA ID: ai
Sound card
Logic level ame:
Java-like based calc Description:
Siemens DAQ
=} Diamond DA boards
=) test
ail
di1
Template library:
1 H —
] .ﬁ.rchl_xres To enable: []
G Specials
| User interfaces Analog parameter type: [Input |v]
_ & Modules sheduler - Cchannel [IIJ l%]
Loop -

[«I*]

Jfonen]

Fig.3. Tab of the configuration of analog parameters.

Using the form of configuration of analog parameters it can be set:
+ Mode of the parameter, namely "Enabled" and type of the parameter.
« Id, name and description of the parameter.
« The state in which the parameter is to be transfered at boot time: "To enable".
+ The orientation of the parameter - "Input" or "Output".
« Physical channel of the parameter.
« Strengthening of the channel in the case of input(for direct interrogation).

To access the values of analog parameters are attributes must be formed. For analog inputs:
« the percentage value (value);
- input voltage (voltage);
« ADC code (code).

For analog outputs are set:
- the percentage value (value);
+ output voltage (voltage).

The module of subsystem “Data acquisition” <DiamondBoards> 201

-4 QT Configurator of OpenSCADA: Demo station

File Edit “iew Help QTStarter

88000 Ll B00L @O
Name -]

a4 Transport protocols
Bl | Data acquisition
=l Moduale: —
Data sources gate _ State
ModBus
DCOM client Type! d_prm
SMMP client
Block based calculal —Config
¥ SystemDA D gi1
Sound card
Logic level Marme:
Java-like based cald Description:
Siemens DAG
Diamond DA boards
) test
ail
dil
Template library:
[] Archives o

.ﬁ

Parameter: di1

Parameter Atributes | Archiving]

®-H

I B T o O R R

To enahle:
(L4 Specials 0
I!] User interfaces Digital parameter type: [Input |v]
¥y Modules sheduler E Port: [A |v]
Loop A
[I'I] Channel: [EI l%]

o]
s,

Fig.4. Configuration tab of digital parameters.

Using the Configuration tab of digital parameters there can be set:
+ Mode of the parameter, namely, "Enable" and the type of parameter.
+ Id, name and description of the parameter.
+ The state in which the parameter is to be transfered at boot time: "To enabled".
+ The orientation of the parameter - "Input" or "Output".
« Physical port and number of the channel.

To access the values of digital parameters the attribute, which provides the input value or inserts the new
one, must be formed.

Links

Used version the Linux driver from Diamond systems: dscud5.91linux.tar.gz

The patch for build driver at kernel Linux 2.6.29, used for data gathering by interrupt: lastkernels.patch

The module of subsystem “Data acquisition” <DiamondBoards> 202

http://wiki.oscada.org/Doc/DiamondBoards/files?get=lastkernels.patch
http://wiki.oscada.org/Doc/DiamondBoards/files?get=dscud5.91linux.tar.gz

The module of subsystem “Data acquisition”

<System>
Module: System
Name: Data acquisition of OS
Type: DAQ
Source: daq_ System.so
Version: 1.7.2
Author: Roman Savochenko

Translated: |Maxim Lysenko

Provides data acquisition from the OS. Supported data sources of OS Linux: HDDTemp,
LMSensors, Uptime, Memory, CPU etc.

License: GPL

Description:

The module is a sort of gateway between the system OpenSCADA and OS (operating system). The
module receives data from various data sources of the OS and allows to manage components of the OS (in
the future).

The module provides the ability to automatically search for the supported and active data sources with
the establishment of parameters for access to them as well as the implementation of the function of the
horizontal reservation, namely, working in conjunction with the remote station of the same level.

The module of subsystem “Data acquisition” <System> 203

1. The controller of data

To add a data source of operating system there is created and configured the controller in the system
OpenSCADA. Example of the configuration tab of the controller of the given type depicted in Fig. 1.

| QT Conflgurator of OpenSCADA: Demo station

File Edit View Help QTStarter
=% L4200 8
8BO0C0CO =X L' BOO
Mame B
| : : o Controller: Active data
= é Demo station
[=
-i Data Bases Controller Parameters
Eﬁﬂ Security
'5} Transports _ State
&y Transport protocols Status: Started. Get data 2.119 ms.
[l || Data acquisition
- Module: Enable: [+
Data sources gate i
ModBus Run: |v/]
DCON client Cortroller DB: [*.* | v]
SNWP client
Block based calculator — Caonfig
= §§ SystemDA D:
= Active data -+ AutoDA
Station up time Mame: [Adive data
HD statistic: sda D o
System up time escription:
Interface statisti Active data of operation system.
CPU Load :0
Data sensors
Full CPU Loacd
Interface statisti
Memary info
Sound card To enable: W
Logic level i
Java-like based calculata To start. (W]
e (0|
Diamond DA boards
Template library: Preferable run: | <High level= ﬂ
[£) Archives . Auto create active DA [wf]
(i) Specials
[User interfaces System parameteres table: [AutuDAprm
_ @ Modules sheculer * Reguest data period (ms): [1000 I%]
Loop il T
[III] Request task priority: [U lT]
fomar]
.

Fig.1. Tab of configuration of the controller.

From this tab you can set:
- The state of the controller, as follows: Status, "Enable","Run" and the name of the database
containing the configuration.
« Id, name and description of the controller.
+ The state in which the parameter is to be transfered at boot time: "To enable", "To start".
+ Horizontal reservation mode and preference of the performance of the controller.
- Feature “Automatic search of active data sources and the creation of parameters for them”.
« Name of table to store the configuration of the controller parameters.
« The period and the priority tasks of the interrogation of data sources.

The module of subsystem “Data acquisition” <System> 204

2. Parameters

Module System provides only one type of parameters — “All parameters”. Additional configuration fields
of the parameters of the module (Fig. 2) are:

+ part of the system;

- optional (depending on the data source).

File Edit “iew Help QTStarter
| = & 20 2R
85 00O = o U@
MName . n
| . 2] Parameter: Station up time
= G Demo station
-
-4 Data Bases Parameter | Atrbutes | Archiving |
s, Security
'5? Transports — State
a Transport protocols TYPE: st
= J Data acquisition
El- Module: Enable: [+
Data sources gate
MocBus —Config
DCON client ID: UpTimeStation
SNMP client
Block based calculator || Mame: | Station up time
El R System DA Description:
= Active data
Station up time
HD statistic: sda
System up time
Interface statisti
CPU Load :0
Data sensors i
Full CPU Load [~ To enable: v/
Interface statisti{ v System part: [Up time |v] [Staticn |v]
Jpoman]

Fig.2. Tab of configuration of the parameter.

The table below there is a list of supported data sources of the operating system, the value of the
additional configuration field and attributes of the parameters.

Value of the additional

Data source configuration field

Attributes of the parameter Demands

Name/number of the
process. It can be a
number of processor or to
be «in general» for all
processors <gen>.

Processor unit
(CPU)

[real] load:Load (%)
[real] sys:System (%)
[real] user:User (%)
[real] idle:Idle (%)

Memory

(MEM) Not used

[dec] free:Free (kb);
[dec] total:Total (xb);
[dec] use:Used (kb);
[dec] buff:Buffers (xb);
[dec] cache:Cache (xb);
[dec] sw_free:Swap, free
(xb);

[dec] sw_total:Swap, total
(xb);

[dec] sw_use:Swap, used
(xb).

The module of subsystem “Data acquisition” <System> 205

Data source

Value of the additional
configuration field

Attributes of the parameter

Demands

Attributes are defined by

The library libsensors or
program mbmon is used.

Sensors Not used sensors that are available on the |Higher priority in the use is
(sensors) motherboard. For each sensor |given to the library libsensors,
the unique attribute is created. |because mbmon has problems
on multicore architectures.
* [string] disk:Name;)
HDD HDD. Disks, available in |* [string] ed:Unit of It must b.e installed cqnﬁgured
temperature i and running as a service
(hddtemp) the system. measurement; program hddtemp
* [real] t:Temperature.
* [dec] full:Seconds full;
. Uptime: * [dec] sec:Seconds;
Uptime . NG .
(uptime) Syst'em, * [dec] min:Minutes;
Station. * [dec] hour:Houres;
* [dec] day:Days.
Attributes are defined by
HDD Smart |Disk. Disks, available in |[SMART-fields available for this |It must be installed and
(hddsmart) |the system. disc. For each field the unique |available smartctl utility.
attribute is created.
HDD Disk or partition. Disks |Attributes:
statistics or partitions, available in |* [dec] rd:Read (K0);
(hddstat) the system. * [dec] wr:Written (KO0).

Net statistics
(netstat)

Network interface.
Network interfaces,
available in the system.

Attributes:
* [dec] rcv:Recieved (K6);
* [dec] trns:Transfered (KO0).

The module of subsystem “Data acquisition” <System> 206

The module of subsystem “Data acquisition”
<BlockCalc>

Module: BlockCalc

Name: Block calculator.
Type: DAQ

Source: daq BlockCalc.so
Version: 1.4.0

Author: Roman Savochenko

Translated: |Maxim Lysenko

Description: |Provides a block calculator.
License: GPL

The module of subsystems «DAQ» BlockCalc provides the system OpenSCADA with the mechanism
for creating custom calculations. The mechanism of calculations based on the formal language of block
circuits(functional blocks).

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

Languages of block programming based on the notion of circuits(functional blocks). Moreover,
depending on the substance of the block, block circuits may include: logic, relay logic circuits, a model of
technological process, and more. The essence of the block circuit is that it contains a list of blocks and
relations between them.

From a formal point of view a block is an element(function), which has inputs, outputs, and an algorithm
for computing. Basing on the concept of programming area, block is a frame of values associated with the
object of function.

Of course, the inputs and outputs of blocks may be needed to be connected for a solid block scheme. The
following types of links are provided:
Interblock, connecting the input of one block to the output of another one, the input of one block
to another one's input and output of one block to the input of another one;
Interblock remote, connection of blocks of controllers of different block circuits of the module;
Coefficients, the transformation of input into the constant, all inputs / outputs by default are
initiated as a constant;
External attribute of the parameter.

Conditionally, connections of blocks can be represented as links between the blocks as a whole(Fig. 1)
or detailing of the links(Fig. 2). In the process of binding parameters of blocks the connection of parameters
of any type is acceptable. Thus, in the process of computation automatically casting of types will be done.

The module of subsystem “Data acquisition” <BlockCalc> 207

1
———> PP3 - KSH6 [Node_20,

Block scheme of node between compresors' stages

KRD2 = Pipel >

| KSH21 - Sep2

> PP5 ——>
_L). KSH28 Liquiddrug

Fig. 1. The general connection between the blocks of block scheme

Fa > Fi Pao Pi Fa
e LF « Fi F < Fi F
Source = - Diafragm = - Krane =
{{Tow)
Function Function Function
Block: Source PP3 Block: PP3 Block: KSH6

Fig. 2. Detailed links between blocks

The module of subsystem “Data acquisition” <BlockCalc> 208

1. The controller of the module

Each

controller of this module contains the block circuit, which he computes with the specified period.

In order to provide calculated data in the system OpenSCADA the parameters can be created in the
controller. Example of the configuration tab of the controller of the given type depicted in Fig. 3.

¢« | QT Conflgurator of OpenSCADA: Demo station

File Edit View Help QTStarter

OO0 RX L4200 2@

Mame
| . : a Controller: KM101
= é Demo station
-
S Data Bases Carntroller Parameters | Blocks scheme]
ﬁ_ﬁﬁ Security
'5? Transports — State
=gl T rt protocal .
) (@ Transport protocols Status: Started. Cale time 209 us.
- | Data acquisition
El- Module: Enable: [+
Data sources gate i
ModBus Fun: W]
DCON client Controller DB: | MySQL Anasthlode! |+ |
SMMP cliert
=} Block based calculal —Config
Commanstation o
KN D2cntr - KM
Commanstation Mame: [
K101
K102 Description:
KM201 Compressor KM101 technology.
KmM202
KM301
KmM302
¥ SystemDA
Sound card
Logic level To enable: [+
Java-like based calc)
Siemens DAQ To start: v/
Diamond DA boards Redundant: n
Template library:
| Archives Preferable run: | =High level= :
(J Specials Parameters takle: [Anastﬁwmjrm]
[User interfaces
% Modules sheduler Block's table: [Anasﬂ'{w 01_blocks]
Loop T Calc period (ms): [5 I%]
Loop S5L [| o -
PL¥E — Calc task priority: [U lT]
[III]H teration number into cale period: [1 |$]

fomar)

Fig. 3. Tab configuration of the controller.

From this tab you can set:

The state controller, as follows: State, “Enabled”, “Running” and the name of the database

containing the configuration.

.

Id, name and description of the controller.

The state, in which the controller is to be translated at boot time: “Enabled” and “Running”.
Horizontal mode of redundancy and performance preference of the controller.

The names of tables to store the parameters and blocks of the controller.

The period, priority and number of iterations in one cycle of calculating task of the block scheme

of the controller.

The module of subsystem “Data acquisition” <BlockCalc> 209

2. The block scheme of the controller

The block scheme is formed by means of the tab controller's blocks, configuration of the block (Figure
4) and its connections (Fig. 5).

Blocks of block scheme can connect both among themselves and to the attributes of the parameters.
Blocks themselves do not contain the structure of input/output(IO), but contain values, based on the 10-
structure of related function. Function for linking with a block is used from the object model of the system
OpenSCADA.

Any block may at any time be removed from the process and be reconfigured and then may be again
included in the process. Communications between the blocks can be configured without exception blocks
from the processing and stopping of the controller. All 10 values without connections can be changed
during processing.

Using tab of the blocks you can:
+ Add/remove a block in the block scheme.
+ To monitor the total number, number of enabled and the number of processing blocks.

r}* O OpenSCADA QTCFg: Deme statuion

File Edit Wiew Help QTStarter

8B VOO=xX L8O 2
=]

Block: KPP101

/5 Transports

o Transport protocols Block 10 Links
J Data acquisition
=) Adodule: — State
D'ata sources gate
ModBus Enable: EI
DCON client
Process:
SHMP client]
IGP DAS hardware — Config
[=}- Block based calculatar K
Commaonstation - KPP101
KM102entr Name: |KPP101
Commaonstation {cnt)
=

Km101 Description:
P, ter:
; Sf:::_e " Surge protect control crane of compressor KM101.

Compressor KM101 st
Compressor KM101 st
- KPP101

K5H104 (cantral mec

Baffle 100 To enable: El

Aircooler AT101_1 To process: EI

AircoolerAT101_2

Mode 3.1 Prior blochk: [|v]

KESH105 {cantrol mec Function: pag. Uil (el q ”
KSH101 (control mec Q. JavalikeCalc.lib_techApp fnc_klap

-
K5H104
a [«I*]

ﬂ raman
—_—

Fig. 4. Configuration tab of the block scheme.

Using the form of block configuration it can be set:
« The state of the block, as follows: “Enabled” and “Processed”.
+ Id, name and description of the block.
+ The state in which the block is to be translated at boot time: “Enabled” and “Running”.
«+ Set block which must calc before this block.
+ Appoint a working function from the object model. Back to the function for familiarization.

The module of subsystem “Data acquisition” <BlockCalc> 210

- T Confilgurator of OpenSCADA: Demeo station

File Edit View Help QTStarter
Oamk 4260 @
88 00O = % L O W
__ 2 Block: KPP101
|- ~/| Data acquisition
= Module: :
Data sources gate | ml m“ Links [3
ModBus
DCON client Show
SHNMP client Hidden: [
=] Block based calculator
Commonstation —lo
Commonst D[Free
Commonstation (crtr) Input flow (tonesh). | Free n
= KM101 Input pressure (ata): [anal | v] [nnde4_1 Po2 | v]
Parameter:
5 Block: Input temperature (K): [Local |v] [AT1 01_2.To |v]
Compressor KM101 stage 1 Output flow (tonesi): |Local v | [node3_t1 Fi2 v
Compressor KM101 stage 2
KPR 01 Output pressure (ata): [Free |+
KSH104 (control mechanism) ——
Baffle 100 Output temperature (K): ﬂ
Air cooler AT101_1 out ; -
Ajr cooler AT101_2 n
Mode 3.1 Output pipe length (m): ﬂ
KSH105 (control mechanism))
KSH1D1 (control mechanism) Valve 1 cutset (m2): [Free ||
KSH1 01 Valve 2 cutset (m2): [Free | v
KSH104 |
Node 4.1 Valve 1 open (%): [Free ||
KSH108 .
KSH106 (control mechanism) Velve 2open (%) [Free |~
KSH102 (control mechanism) Norm density of environs (kgim3): [Free |+
Separator C1011 -
Separator C101/2 - Linearity coefficient:
[Il [III] Compressibilty coefficient (0...1): n @
o]

Fig. 5. Configuration tab of links of the block of the block scheme.

Using the configuration tab of links of the block of the block scheme the links can be set for the
parameter of each block separately.

The following types of links are supported:
+ Inter-block. Connecting the block input to the output of another block, the input of one block to
another's input and output of one block to the input of another.
- Distant inter-block. The connection of blocks from various controllers of the module.
+ Ratio. The transformation of the input to a constant. All inputs/outputs by default are initiated as
constants.

- External attribute of the parameter.
To set values for the parameter of the block there is the corresponding tab (Fig.6).

In accordance with the custom functions in the system OpenSCADA the four main types of 10 are
supported: integer, float, boolean and string.

The module of subsystem “Data acquisition” <BlockCalc> 211

-+ QT Conflgurator of OpenSCADA: Demeo station
File Edit View Help QTStarter

88 0COO

| Data acquisition
= Module:

=% L&l 200 28

= Block: KPP101

—| | Bleck | IO | Links |

Data sources gate
ModBus =
DCON client - Show Wl
SHMP client Hidder: [|
[=] - Block hased calculator
Commonstation ~l0
K1 02entr _
i fow toreshy: 0]
Commonstation (cntr) i nput flow (toneskh)
= KM101 Input pressure (ata). 27,2158
Parameter: .
=) Block: Input temperature (K): 302,264
Compressor KM101 stage 1 Output flow (tonesh): 2 gagoq
Compressor KM101 stage 2
KPP101 Output pressure (ata). | 5.21357

KSH104 (control mechanism) ——

Baffle 100 I U b
Air cooler AT101_1 Output pipe cutset (m2): | 0.071

Ajr cooler AT101_2

Mode 3.1 Output pipe length (m):
KSH105 (control mechanism))
KSH101 (control mechanism) T) R
KSH10 Valve 2 cutset (m2): | 0.001

KSH104 ||
KSH106 }

KSH108 (control mechanism) Valve 2 open (%): C]

K5H102 {control mechanism) Morm density of environs (kg/m3):
Separator C101 1 -

Separator C101/2 - Linearity coefficient:

E‘ | i | [‘ I U] Compressibilty coefficient (0..1):

KD

*Jroman

Fig. 6. Configuration tab of values of parameters of block of the block scheme.

The module of subsystem “Data acquisition” <BlockCalc> 212

3. Parameters of the controller

The module provides only one type of parameters — the “Standard”. The parameter used to reflect the
data, calculated in the blocks, on the attributes of the controller's parameters. Example of the configuration

tab of the parameter is shown in Fig.7.

-+ OT Configurator of OpenSCADA: Demo station

File Edit View Help QTStarter
O=rx Ll /200 2@
g g G G w | = X oy u | & t.9
2] Parameter: KSH21
[=]-- Block based calculstar
= Commonstation - —
5. Parameter: Parameter Atributes | Archiving |
F2 i
F3 — State
Fd TYRE std
KSH21
KSH22 Enakile: El
PTOED4
F7 & — Config
L1 D Kooz
T_PP1
T_PP3 Mame: [HSH21
T_PP3 o Description:
P_PP1
P_PP3
P_PPS
P3
P4
PT1E05
Pi
FT0404 To enable: ||
PTO406 Blocks' 10s:
Ti
KSH1 K21 mra.com: com
KSH2 K21 v st_open:st_open
PTOS03 - KLL2 1M st_close:st_close
KSHS -
foman]

Fig. 7. Configuration tab of values of parameters of the controller.

From this tab you can set:
+ The state of the parameter, as follows: “Enabled” and type of the parameter.
+ 1d, name and description of the parameter.
+ The state in which the parameter must be translated at boot time: “Enabled”.
« The list of attributes that are reflected on the parameters of the blocks. It is created as the list of
elements in the format: <BLK>.<BLK 10>:<AID>:<ANM>. Where:
- <BLK> - block ID, block schemes ID; for constant value set to:
"*s' - string type;
"*1' - integer type;
"1' - real type;
"*b' - boolean type.
+ <BLK IO> - parameter of the block or of the the block scheme; for constant value set to
attribute value;
« <AID> — attribute of the parameter ID;
+ <ANM> — name of the attribute of parameter.

The module of subsystem “Data acquisition” <BlockCalc> 213

4. Copying of the block schemes

To simplify and expedite the development of complex and repetitive block schemes the mechanism of
copying of the elements of block scheme both individually and block schemes entirely is provided. The
mechanism of copying is integrated into the kernel of OpenSCADA and operates transparently.

The module of subsystem “Data acquisition” <BlockCalc> 214

The module of subsystem “Data acquisition”

<JavalLikeCalc>
Module: JavalikeCalc
Name: Calculator based on Java-like language.
Type: DAQ
Source: daq JavaLikeCalc.so
Version: 1.8.0
Author: Roman Savochenko

Translated: |Maxim Lysenko

Provides based on java like language calculator and engine of libraries. The user can
create and modify functions and libraries.

License: GPL

Description:

The module of controller JavaLikeCalc provides a mechanism for creating of functions and libraries on
Java-like language. Description of functions on Java-like language is reduced to the binding parameters of
the function with algorithm. In addition, the module has the functions of the direct computation by creation
of the computing controllers.

Direct computations are provided by the creation of controller and linking it with the function of this
module. For linked function it is created the frame of values, with which the periodically calculating is
carried out.

The module implements the functions of the horizontal redundancy, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational function, in
order to shockless catch of the algorithms.

Parameters of functions can be freely created, deleted or modified. The current version of the module
supports up to 65535 parameters of the function in the sum with the internal variables. View of the editor of
functions is shown in Figure 1.

The module of subsystem “Data acquisition” <JavalikeCalc> 215

File Edit “iew Help QTStarter

8 8000 =+ 120 2R

|Name B . .
Sound card Function: Diaphragm
Logic level -
=) Java-lke based calculator Function FhLLL Execute
Controller:
El- Library: 10:
Report's documents EI Jl | Mame |T3rpe| Mode | Hicle |Defau|t |
- Technological devices :
Lag e 1 F| Input floww (tones/h) Real Output [v]
Moise (2 harmonic + rg N NP
Ball crane 2 |Pi Input pressure (ata) Real Input 1
Separator ||
Valve 3 |[Fo Output flow (tonesih) Real Input 0
Lag (clear) |
g:t::;:zélr?i:?;) 4 |Po Output pressure (ata) Real Output 1
Air cooler |))
Gas compressor 5 |dP Pressure differential (kPa) Real Output 0
Source (flow) —
Pipe 1-=1 6 |Scf Diaphragm cutset (m2) Real Input 01
-
E:ﬂ: 1_,3 |7_| L= Pt mina e teat (m Y Faal Inead n= E
Pipe 1-=4 Programm:
Vialve proc. mechanisi| Pot+={Po-Pot)/(0.005*10*f_fro);
Diaphragm Qr=Q0*Ri+0.01; -
Pipe 3->1 Fi=43*Sdf*sign(Pi-Pot)*pow(Q0*abs(pow(Pi, 2)-pow(Pot 2))/293 0.5):
sys_compie Fit+=(Fi-Fit){(0.005*10*_fra);
Controllers Po+=0 27*(Fit-Fo)/{S0*0* Q0 _fra);
. Service procedures Po=(Po<0)?0:(Po>200)7200:Po;
SiBmane DAQ — dP-=(clP-100 *(Pi-Po}jf_frg;
Diamond DA boards
Template library:
| Archives
& Specials "
| User interfaces E
a [I*]

[]

Jlroman]

Fig.1. View of the editor of functions.

After any program changing or configuration of parameters recompiling of the programs with
forestalling of linked with function objects of values of TValCfg is performed. Language compiler is built
using well-known generator grammar «Bison», which is compatible with the not less well-known tool
Yacc.

The language uses the implicit definition of local variables, which is to define a new variable in the case
of assigning a value to it. This type of local variable is set according to the type of the assigning value. For
example, the expression <Qr=Q0*Pi+0.01;> will define Qr variable with the type of variable QO.

In working with various types of data language uses the mechanism of casting the types in the places
where such casting is appropriate.

To comment the sections of code in the language it is provided «//» and «/ * ... * /» characters.
Everything that comes after "//" up to the end of the line and between «/ * ... * /», is ignored by the
compiler.

During the code generation language compiler produces an optimization of constants and casting the
types of the constants to the required type. Optimizing of the constants means the implementation of
computing of the constants in the process of building of the code under the two constants and paste the
result in the code. For example, the expression <y=pi*10;> reduces to a simple assignment <y=31.4159;>.
Casting the types of constants to the required type means formation of the constant in the code which
excludes the cast in the execution process. For example, the expression <y=x*10>, in the case of a real type
of the variable x, is transformed into <y=x*10.0>.

The module of subsystem “Data acquisition” <JavalLikeCalc> 216

The language supports calls of the external and internal functions. Name of any function in general is
perceived as a character, test for ownership of which by a particular category is done in the following order:
keywords;
constants;
built-in functions;
external functions, object's functions and OpenSCADA nodes functions (DOM) ;
already registered characters of variables, object's attributes and hierarchy of objects DOM;
new attributes of the system parameters;
new function parameters;
new automatic variable.

Call of the external function, attribute of system parameters is written as an address to the object of
dynamic tree of the object model of the system OpenSCADA in the form of:
<DAQ.JavaLikeCalc.lib_techApp.klapNotLin>.

To provide the possibility of writing custom procedures for the administration of the various components
of OpenSCADA module provides the implementation of API pre-compilation of custom procedures of
individual components of OpenSCADA on the implementation of Java-like language. These components
are already: Templates of the parameters of subsystem “Data acquisition” and Visual control area (VCA).

1. Java-like language

1.1. Elements of language
Keywords: if, else, while, for, break, continue, return, using, true, false.

Constants:
decimal: numerals 0-9 (12, 111, 678);
octal: numerals 0-7 (012, 011, 076);
hexadecimal: numerals 0-9, letters a-f or A-F (0x12, 0XAB);
real: 345.23, 2.1e5, 3.4E-5, 3e6;
boolean: true, false;
string: «helloy.

Types of variables:
integer: -231..231;
real: 3.4 * 10308,

boolean: false, true;
string: length up to 255 symbols and without next string went.

Built-in constants: pi = 3.14159265, e = 2.71828182, EVAL BOOL(2), EVAL_INT(-2147483647),
EVAL REAL(-3.3E308), EVAL_STR("<EVAL>")

Attributes of the parameters of system OpenSCADA (starting from subsystem DAQ, as follows <Type of
DAQ module>.< Controller>.<Parameter>.<Attribute>).

The functions of the object model of the system OpenSCADA.

1.2. Operations of language

Operations supported by the language presented in the table below. The priority of operations is reduced
from top to bottom. Operations with the same priority is composed of one color group.

Symbol Onucanue
0 Call of the function.

{} Program blocks.

++ Increment (post and pre).
-- Decrement (post and pre).

The module of subsystem “Data acquisition” <JavalLikeCalc> 217

Symbol Onucanue

- Unary minus.

! Logical negation.

~ Bitwise negation.

* Multiplication.

/ Division.

% The remainder of integer division.
+ Addition

- Subtraction

<< Bitwise shift left

>> Bitwise shift right

> Greater

>= Greater than or equal to

< Less

<= Less than or equal to

== Equals

I= Unequal

| Bitwise «OR»

& Bitwise «<AND»

A Bitwise «Exclusive OR»

&& Boolean «AND»

I Boolean «OR»

2 Conditional operation (i=(1<0)?0:1;)
= Assignment.

+= Assignment with addition.

-= Assignment with subtraction.
*= Assignment with multiplication.
/= Assignment with division.

1.3. Embedded functions of language

To ensure a high speed in mathematical calculations module provides embedded mathematical functions
that are called at the level of commands of virtual machine. Predefined mathematical functions:
sin(x) - sine x;
cos(X) - cosine x;
tan(x) - tangent X;
sinh(x) - hyperbolic sine of x;
cosh(x) - hyperbolic cosine of x;
tanh(x) - hyperbolic tangent of x;
asin(x) - arcsine of x;
acos(x) - arc cosine of x;
atan(x) - arctangent of x;
rand(x) - random number from 0 to Xx;
lg(x) - decimal logarithm of x;
+ In(x) - natural logarithm of x;
exp(x) - exponent of x;
pow(x,x1) - erection of x to the power x1;
max(x,x1) - maximum value of x and x1;

The module of subsystem “Data acquisition” <JavalLikeCalc> 218

« min(x,x1) - minimum value of x and x1;

. sqrt(x) - the square root of x;

- abs(x) - absolute value of x;
sign(x) - sign of x;

« ceil(x) - rounding the number X to a greater integer;
floor(x) - rounding the number x to a smaller integer.

1.4. Operators of the language

The total list of operators of the language:
- var - operator for variable initialise;
- if - operator of the condition "If";
- else - operator of the condition "ELSE";
« while - description of the loop while;
for - description of the loop for;
- in - for-cycle separator for object's properties scan;
« break - interrupt of the execution of the loop;
- continue - continue the execution of the loop from the beginning;
- using - allows to establish scope of functions of often used library (using Special. FLibSYS;) for
future reference only by means of the function name;
- return - interruption of the function and return of the result, the result is copied to the attribute
with the flag return (return 123;);
- new - object creation, realized object "Object" and massif "Array".

1.4.1. Conditional operators

The language of module supports two types of conditions. First — this is the operation of condition for
use within the expression, the second — a global, based on the conditional operators.

Conditions inside the expression is based on the operations of «?» And «:». As an example we'll write
the following practical expression <st open=(pos>=100)?true:false;>, which reads as «If the variable
<pos> greater than or equal to 100, the variable st open is set to true, otherwise — to false.

The global condition is based on the conditional operators «if» and «else». An example is the same
expression, but written by other means <if(pos>100) st open=true; else st open=false;>. As shown, the
expression is written in a different way, but is read in the same way.

1.4.2. Loops

Two types of loops are supported: while, for and for-in. The syntax of the loops corresponds to
programming languages: C++, Java, and JavaScript.

Loop while generally written as follows: while(<condition>) <body of the loop>,

Loop for is written as follows: for(<pre-initialization>,;<condition>,;<post-calculation>) <body of the
loop>;

Loop for-in is written as follows: for(<variable> in <object>) <body of the loop>,

Where:
<condition> - expression, determining the condition;
<body of the loop> - the body of the loop of multiple execution;
<pre-initialization> - expression of pre-initialization of variable of the loop;
<post-calculation> - expression of modification of parameters of the loop after the next iteration;
<variable> - variable, which will contain object's properties name at scan;
<object> - object for which properties scan gone.

The module of subsystem “Data acquisition” <JavalLikeCalc> 219

1.4.3. Special characters of string variables

The language supports the following special characters of string variables:
"\n" - line feed;
"\t" - tabulation symbol;
"\b" - culling;
"\f" - page feed;
"\r'" - carriage return;
"\\" - the character itself '\'.

1.5. Object

The language provides the data type "Object" support. The data type "Object" is associated container of
properties and functions. The properties can support data of fourth basic types and other objects. The access
to properties is doing through the dot to object <obj.prop> and also by property placement into the rectangle
brackets <obj["prop”]>.It is obvious that the first mechanism is static, while the second lets you to specify
the name of the property through a variable. Creating an object is carried by the keyword <new>: <varO =
new Object()>. The basic definition of the object does not contain functions. Copying of an object is
actually makes the reference to the original object. When you delete an object is carried out the reducing of
the reference count, and when a reference count is set to zero then object is removed physically.

Different components can define basic object with special properties and functions. The standard
extension of the object is an array "Array", which is created by the command <varO = new
Array(prml,prm2,prm3,...,prmN)>. Comma-separated parameters are placed in the array in the original
order. If the parameter is the only one the array is initiated by the specified number of empty elements.
Peculiarity of the array is that it works with the properties as the indexes and their complete naming is
meaningless, and therefore the mechanism of addressing only by the placing the index into square brackets
<arr[1]> is accessible. Array stores the properties in its own container of the one-dimensional array.

The array provides a special property of "length" to get the size of the array <var = arr.length;>. Also,
the array provides the following special functions:

. string join(string sep = ","), string toString(string sep = ","), string valueOf(string sep = ",")
- Returns a string array elements separated by <sep> or symbol ',".
« Array concat(Array arr); - Adds to the original array of array elements <arr>. Returns the
original array with the changes.
« int push(ElTp var, ...); - Puts the item(s) <var> to the end of the array as a stack. Returns a new
array size.
- ElTp pop(), - Removing the last element of the array and returns its value as from the stack.
« Array reverse(); - Changing the order of the elements of the array. Returns the original array
with the changes.
- ElTp shift(); - The shift of the array in the top. This first element is removed and its value is
returned.
« int unshift(ElTp var, ...); - Unshift the item(s) <var> in the array. The first element to the 0, the
second one to the 1, etc.
« Array slice(int beg, int end); - Returns an array of fragment <beg> to <end>. If the beginning or
end is negative, then the count is done from the end of the array. If the end is not specified, then the
end is the end of the array.
« Array splice(int beg, int remN, ElTp vall, ElTp val2, ...); - Insert, delete or replace the elements
of array. Returns the original array with the changes. First of all the removing of the items from the
position <beg> and number <remN> is done, and then the values <vall> etc. are inserted from the
position <beg>.
« Array sort(), - Sort the array elements in lexicographical order.

The basic types have the partial properties of the object. Properties and functions of the basic types are
listed below:
- Logical type, functions:
« boolisEVal(), - Check value to "EVAL".
- string toString(); - Performs the value as the string “true” or “false”.

The module of subsystem “Data acquisition” <JavalLikeCalc> 220

« Integer and real number:

Properties:
« MAX VALUE - maximum value;
« MIN VALUE - minimum value;
+ NaN - error value.

Functions:
« boolisEVal(), - Check value to "EVAL".
« string toExponential(int numbs); - Return the string of the number, formatted in
exponential notation, and with the number of significant digits <numbs>. If <numbs> is
missing the number of digits will have as much as needed.
- string toFixed(int numbs); - Return the string of the number, formatted in the notation of
fixed-point, and with the number of significant digits after the decimal point <numbs>. If
<numbs> is missing the number of digits after the decimal point is equal to zero.
- string toPrecision(int prec); - Return the string of the formatted number with the number
of significant digits <prec>.
- string toString(int base); - Return the string of the formatted number of integer type with
the following representation base: octal , decimal, hex.

+ String:

Properties:
« int length - string length.

Functions:
« boolisEVal(), - Check value to "EVAL".
. string charAt(int symb); - Extracts from the string the symbol <symb>.
« int charCodeAt(int symb), - Extracts from the string the symbol code <symb>.
 string concat(string vall, string val2, ...); - Returns a new string formed by joining the
values <vall> etc. to the original one.
« int indexOf(string substr, int start); - Returns the position of the required string <substr>
in the original row from the position <start>. If the initial position is not specified then the
search starts from the beginning. If the search string is not found then -1 is returned.
- int lastindexOf(string substr, int start); - Returns the position of the search string
<substr> in the original one beginning from the position of <start> when searching from the
end. If the initial position is not specified then the search begins from the end. If the search
string is not found then -1 is returned.
- string slice(int beg, int end); string substring(int beg, int end); - Return the string
extracted from the original one starting from the <beg> position and ending be the <end>. If
the beginning or end is negative, then the count is conducted from the end of the line. If the
end is not specified, then the end is the end of the line.
« Array split(string sep, int limit); - Return the array of strings separated by <sep> with the
limit of the number of elements <limit>.
. string insert(int pos, string substr); - Insert substring <substr> into this string's position
<pos>.
- string replace(int pos, int n, string substr); - Replace substring into position <pos> and
length <n> to string <substr>.
+ real toReal(), - Convert this string to real number.
- int tolnt(int base = (); - Convert this string to integer number in accordance with the base
<base> (from 2 to 36). If base is 0, then the prefix will be considered a record for
determining the base (123-decimal; 0123-octal; 0x123-hex).

. string parse(int pos, string sep = ".", int off = 0); - Get token with numbet <pos> from
the string when separated by <sep> and from offset <off>. Result offset is returned to back
<off>.

« string parsePath(int pos, int off = 0), - Get path token with numbet <pos> from the
string and from offset <off>. Result offset is returned to back <off>.

. string path2sep(string sep = "."); - Convert path into this string to separated by <sep>
string.

For access to system objects (nodes) of the OpenSCADA the corresponding object is provided which is

The module of subsystem “Data acquisition” <JavalikeCalc> 221

created simply by specifying the enter point "SYS" of the root object OpenSCADA, and then with the point
separator the sub-objects in accordance with the hierarchy are specified. For example, the call of the request
function over the outgoing transport is carried out as follows:
SYS.Transport.Sockets.out _testModBus.messIO(strEnc2Bin("15 01 00 00 00 06 01 03 00 00 00 05")), .

1.6. Examples of programs on the language

Here are some examples of programs on Java-like language:

//Model of the course of the executive machinery of ball valve
if(!(st_close && !com) && ! (st _open && com))
{
tmp up=(pos>0&&p0s<100) ?0: (tmp up>0&&lst com==com) ?tmp up-1./frqg:t up;
pos+=(tmp up>0)?0: (100.* (com?1l.:-1.))/(t_full*frq);
pos=(p0os>100)?2100: (pos<0) ?20:pos;
st _open=(pos>=100) ?true:false;
st close=(pos<=0) ?true:false; lst com=com;
}
//Valve model
Qr=Q0+Q0*Kpr* (Pi-1)+0.01;
Sr=(S_k11*1 k11+S kl2*1 k12)/100.;
Ftmp= (Pi>2.*Po) ?Pi*pow (Q0*0.75/Ti,0.5) :
(Po>2.*Pi) ?Po*pow (Q0*0.75/To,0.5) :
pow (abs (Q0* (pow (Pi, 2) -pow (Po,2))/Ti),0.5);
Fi-=(Fi-7260.*Sr*sign (Pi-Po) *Ftmp) / (0.01*1lo*frq) ;
Po+=0.27* (Fi-Fo)/ (So*1o*Q0*frq) ;
Po=(Po<0)?0: (Po>100) ?2100:Po;
To+=(abs (Fi) * (Ti*pow (Po/Pi,0.02)-To) +
(Fwind+1) * (Twind-To) /Riz) / (Ct*So*1lo*Qr*frq) ;

The module of subsystem “Data acquisition” <JavalLikeCalc> 222

2. Controller and its configuration

The controller of the module connects with the functions of libraries, built with his help, to provide
immediate calculations. In order to provide calculated data in the system OpenSCADA parameters can be
created in the controller. Example of the configuration tab of the controller of the given type depicted in
Figure 2.

;4 1 DpenSCADA QTCfg: Dema statuion

File Edit View Help QTStarer

88 0COCO ==X 1L 200 88

|Nime

=] e Demo statuion

Controller: Test calculator

=
] Data Bases Contraller Parameters | Calcing]
W Security

Transports — State

. Transport protocaols

14

- Status: Engbled.
J Data acquisition

=

0-=-3--E
S

Module: Enable: |E|
Data sources gate
ModBus e D
DCON client Cantraller DB: ["." |v]
SHMP client
ICP DAS hardware — Canfig
Block based calculator D:
R System DA - testCalc
Sound card Name: [Test calculator
Logic level L
[El- Java-like based calculad Descriptian:
"fm”‘gr-' Test calculator
: E- Test caleulatar
Library:
Siemens DAQ
Diamond DA boards
Template library: To enable: IEI
(2] | Archives
x| @ Speclals To start: I:I

8 e e oot (o

Ql' Medules sheduler

Loap Prefarable run: | <High level= n

Loop S5L Parameters table: [test[:alc_prm]
PLC
Controllers function: [Dontmller.test |V]
Cale sehedule: ['1 |v]
: I [III] lteration number in single cale: E
R —

Fig.2. Configuration tab of the controller.

From this tab you can set:
« The state of the controller, as follows: Status, «Enabled», «Running» and the name of the
database containing the configuration.
« Id, name and description of the controller.
+ The state, in which the controller must be translated at boot: «Enabled» and «Runningy.
+ Horizontal mode of redundancy and performance preference of the controller.
- Name of table to store the settings.
+ Address of the computational function.
« Period, priority and number of iterations in one cycle of computing task.
+ Automatic synchronization period of blocks with the database.
+ Save/load controller to/from the database.

The module of subsystem “Data acquisition” <JavalLikeCalc> 223

Tab “Calculations” of the controller (Fig. 3) contains the parameters and the text of the program, directly
performed by the controller. Also for monitoring of execution the time of calculating of the program is

shown.

- L QT Configurator of OpenSCADA: Demo station
Edlit

File View Help QTStarter

88000 ==

|Name |T'grpe B
= o Demo station Local g
= Data Bases Subsys
';:ﬂf, Security Subsys
'f, Transports Subsys
e Transport protocols Subsys
El- |+ Data acquistion Subsys
= Moduie: Module
Data sources gate Module
ModBus Module
DICOM cliert Mocdule
SHNMP client Module
Block based calculator Module
% SystemDA Module
Sound card Module
Logic level Module
= Java-like based calculator Mocdule
= Controffer: Control
=] Test calculator Control
test Parame
Library: Likrary
Siemens DAQ Module
Diamond DA boards Module
Template iibrary: Templ
[] Archives Subsa
i) Specials Subsy:
I!l User interfaces Subsys
@Y Modules sheduler Subsys
=N |oop RemotE
=) | oop SSL Remote ™

AL 200 2O
Controller: Test calculator

[Controller | Parameters] Calcing l

Data:

B Ied | Mame | Type | Mode | Walue B
;f_stop Function stop flag Boolean | Input 0

:ou‘f Out Real Output 30

;test Test String Cutput 13.0453833253334
Enffset Offset Integer Input 100

P;gramm:

out+=10;

if{out=100) out=C;

test = rand{offset*D .4},
fval="Test",

IModBus Unidrive pos pos=out;
IModBus testRTU test pos=out;

fAf(val=="Test1" || val=="Test2") test="TestN", else test="Test",

A Foran

3. The parameter of the controller and its configuration

Fig.3. Tab “Calculations” of the controller.

Parameter of the controller of the module executes the function of providing the access to the results of
computation of the controller to the system OpenSCADA by attributes if the parameters. Configuration tab
contains only one specific field of the, set the controller only contains a field of listing the parameters of
calculated function, which should be reflected.

The module of subsystem “Data acquisition” <JavalLikeCalc> 224

4. Libraries of functions of module

The module provides a mechanism to create libraries of user functions on Java-like language. Example
of the configuration tab of the library is depicted in Figure 4. The tab contains the basic fields: status,
identifier, name and description, and also address of the table, in which the library is kept. In the
“Functions” tab of the library besides the list of functions the form of copying functions is contained.

<+ | QT Configurator of OpenSCADA: Demo station

File Edit View Help QTStarter

880000 RX Lkl /200 B0

MName EB . -
| Function’s library: Controller
@ Transport protocols Sul
- || Data acquisition Sul— Ui Functions
=l Moduie: Mo
Data sources gate Mo _ Siate
ModBus Mo
DCOM client Mo Accessing: [
SHMP client Mo . _ -
Block based calculator Mo Library DE: [*.*.Ilb_ControlIers |v]
¥ System DA Mo " Canfig
Sound card Mo -
Logic level Mo - Controller
=1 Java-like hased calculator Mo .
1 - | Controll
Controller: Cor— ame [orrorers]
=l Library: Lik Description:

Report's documents Lib Programms of controlers based on JavalLikeCalc.

Technological devices Lib
SYS_compile Lik
= Controllers Lik

testl Fur

test Fun o
Service procedures Lik[7

I p——— 1Y)

#[formen]

Fig.4. Tab of the configuration of the library.
5. User functions of the module

Function, as well as the library, contains the basic configuration tab, tab of the formation of the program
and the parameters of function (Fig. 1), as well as the performance tab of the created function.

The module of subsystem “Data acquisition” <JavalikeCalc> 225

The module of subsystem “Data acquisition”

<LogicLev>
Module: LogicLev
Name: Logic level
Type: DAQ
Source: daq LogicLev.so
Version: 1.1.2
Author: Roman Savochenko

Translated: |Maxim Lysenko

Description: |Provides the logical level of parameters.
License: GPL

The module is a pure logic-level implementation mechanism, based on the templates of parameters of
the subsystem “Data acquisition — DAQ”. The implementation of the module is based on the “Logical level
of the parameters of the system OpenSCADA” http://diyaorg.dp.ua/oscadawiki/Doc/LogParmUrov.
Practically, this module is an implementation of the subsystem “Options” of the project without templates
and putting it into the module.

The module provides a mechanism for the formation of the parameters of subsystem “DAQ”, based on
other sources of the subsystem at the level of the user. Actually, the module uses templates of subsystem
“DAQ” and the specific format for the description of references to the attributes of the parameters of
subsystem “DAQ”.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

The module of subsystem “Data acquisition” <LogicLev> 226

http://diyaorg.dp.ua/oscadawiki/Doc/LogParmUrov

1. Data controller

For addition of the data source of parameters of the logical level the controller in the system
OpenSCADA is created and configured. Example of the configuration tab of the controller of the type is
depicted in Figure 1.

= OT Conflgurator of OpenSCADA: Demo station

File Edit View Help QTStarter
=% L&l 20 2
88000 X Ll 20O
Mame B
| _ : 2 Controller: Experimental
= 6 Demo station
-
4 Data Bases Cortroller Parameters
ER, Security
i Transports — State
@i Transport protocols Status: :
. UE Started. Calc time 0.434238 ms.
£l +| Data acquistion
B Module: Enable: [+
Data sources gate i
ModBus Run: |
DCON client Controller DB: [*.* |v]
SHWP client
Block based calculator ~— Config
R Systemn DA ID:)
Sound card - experiment
- Logic level Mame: [Experimental
E imental
2 xpeFréme s Description:
F4 It have the group of experimental parameters.
TPP1
TPP3
TPPS
P PP1]
P PP3
F PF5 To enable: [+
Cl KSHE
P;SE To start: ||
P4 ewrdart [0 |+
Account node 1
=] Preferable run: | =High level= n
Ti . -
PTO503 Parameteres table: [LogLeuPrm_experlment
Crane KSHY E Request data period (ms): | 1000 E
F PP1 i
[Il—l [IE] Request task priority: _E
o]
_

Fig.1. Configuration tab of the controller.

From this tab you can set:
- The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
+ Id, name and description of the controller.
« The state, in which the controller must be translated at boot: «To enable» and «To starty.
+ Horizontal mode of redundancy and performance preference of the controller.
« Name of table to store the settings.
« The period and the priority of the task of the interrogation of data sources.

The module of subsystem “Data acquisition” <LogicLev> 227

2. Parameters

Module LogicLev provides only one type of parameters — “Standard”. Additional configuration fields of
the parameters of the module (Fig. 2) are:
+ mode of the parameter;
. address; in the event of the template — this is the address of the template, and in the case of direct
reflection — this is the address of the parameter.

-+ | OT Configurator of OpenSCADA: Demo station
File Edit View Help QTStarter

880U LA 200 @8
[+]

| Mame

Parameter: Crane KSH7

DCOM client

SMMP client

Elock based calculator

$ SystemDA

Sound card Wl Pl

Logic level TYPE: gtd

=) Experimental
F3 Enable: ||
F4
TPP1
T PP3 IO Ky
TPPS
F PP Mame: | Crane KSH7

P PP3 Description:
P PPS
Close KSHE Closing crane KSHY.
P3 T
P4

Account nocde 1
Pi

Ti

PTOS03

Crane RS @ Mode: Template |~ | [base digitBlock -]

Parameter | Afributes | Archiving | Template config |

0-H-5-EE

~Canfig

To enable: [

foman

Fig.2. Configuration tab of the parameter.

When building a template for the controller the peculiarity of the link format of the template must take
into account. Reference should be written in the form: <Parameter>|<identifier>, where:
<Parameter> - line, characterizing the parameter;
<Identifier> - id of the attribute of parameter.

This record allows to group multiple attributes of a source parameter and assign them only by the choice
of the parameter. e in the configuration dialog of the template (Fig. 3)it will be shown only parameter. This
does not preclude the possibility to assign the attributes of the parameter each separately, in addition, if you
miss in the configuration of the template the description of the links in the specified format, it will be
assigned an attribute of the parameter (Fig.4).

The module of subsystem “Data acquisition” <LogicLev> 228

File

Edit ‘iew Help

QTStarter

QT Configurator of OpenSCADA: Demo station

TRENS

Mame

[«

P PP
PEP3
PEPS

- =% Ll 200 29

Parameter: Crane KSH7

Parameter

Atributes | Archiving | Template config |

n I “\ra-like based cal

Cloge KSHE

P3

P4

Accourt node 1

Only atributes are to be shown: ||

Parameters

Pi F:rane: [BlockCalc . Anastito2node KLUT7
Ti

FBPi
F PP3
F PPS

[

Fig.3. Configuration tab of the template of parameter.

QT cConfigurator of OpenSCADA: Demo station

File Edit

Wiew Help

QTStarter

TRENS

MName

=% L&l |200 28

[+] Parameter: Crane KSH7

P PP1

P PP3

P PPS

Close KSHE

P3

P4

Accourt node 1

Parameter Atributes | Archiving I Template config l

Only atributes are to be shown: [+

—Parameters

Pi Command "Open': [E!IcckCaIc.AnasﬂthHcde.KLIJ?.ccm
Ti

Command "Close" [E!IcckCaIc.AnasﬂtoZnode.KLlJ?

Command "Stop™ [BlockCale Anast1toZnode KLU7

State "Opened™ [E!IcckCalc.Anasﬂ to2node KLUT .st_open

State "Closed" [E!IockCaIc.Anaaﬂtczncde.KLlJT.at_clcse

Fig.4. Configuration tab of the template of parameter. Show only attributes.

The module of subsystem “Data acquisition” <LogicLev> 229

In accordance with the template underlying the parameter, we get the set of attributes of the parameter
Fig.5.

QT Conflgurator of OpenSCADA: Demeo station
Fie Edt Wiew Help QTStarter

88000 =X hdl 200 @0

Mame — [+ Parameter: Crane KSH7

P PP3 4] ;
P PP5 Parameter Atributes l Archiving | Template config]

Close KSHE

F3 A T

P4 _

Account node 1 MName: [Crﬂne KSH7?
Pi Description:

Ti .

PTOS03 . Closing crane KSHT .

FPRA
F PP3
F PPS
Java-like based calculator Error: g
Siemens DAGQ e
Diamond DA boards Command "Open”. ||
Template library:
[| Archives
) Specials Command "Stop™; ||
I User interfaces
@Y Modules sheduler
Loop

Command "Close™ ||

State "Opened". OFf

State "Closed™. On

[III] Hold command time (s): [5 |$]

() |

IR

(~ 5@

fonar]
.

Fig.5. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition” <LogicLev> 230

The module of subsystem “Data acquisition”
<SNMP>

Module: SNMP

Name: SNMP client

Type: DAQ

Source: dag SNMP.so
Version: 0.4.1

Author: Roman Savochenko

Translated: |Maxim Lysenko

Provides an implementation of the client of SNMP-
service.

License: GPL

Description:

SNMP protocol was designed to verify the operation of network routers and bridges in 1988.
Subsequently, the scope of the protocol coverage and other network devices such as hubs, gateways,
terminal servers, and even devices that are remotely related to the network: printer, uninterruptible power
supplies, PLC, etc. In addition, the protocol allows the possibility of changes in the functioning of these
devices. At this time, SNMP protocol is standardized as RFC-1157, -1215, -1187, -1089.

This module provides the ability to gather information from various devices on the SNMP protocol.
Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

1. SNMP

The main interacting “individuals” of the protocols are the agents and management systems. If we
consider these two concepts in the language of «client — server», then the server role is played by agents,
that is the same devices for the survey of the state of which the protocol has been developed. Accordingly,
the role of the clients is played by the management systems — network applications which are necessary to
gather the information about the functioning of agents. In addition to these two entities in the model of the
protocol it can be identified as two more: control information and the protocol for data exchange.

All information about the objects of system-agent is contained in the so-called MIB (management
information base) — the base of control information, in other words, MIB is the totality of objects (MIB-
variables) accessible to the reading-writing operations.

For this time there are four base of MIB:
1. Internet MIB — database of objects for providing the diagnosis of errors and configurations. It
includes 171 objects (including objects of MIB I).
2. LAN manager MIB — database of 90 objects — passwords, sessions, users, shared resources.
3. WINS MIB - database of objects required for the operation of a WINS server.
4. DHCP MIB — base of objects required for the operation of the DHCP server that serves for
dynamic allocation of IP addresses on the network.

1.1. MIB

All names of MIB have a hierarchical structure. There are ten root aliases:
1. System — the group of MIB II contains the seven objects, each of which serves to store
information about the system (OS version, time, etc.).
2. Interfaces — contains 23 objects necessary for the conduct of network interfaces of agents (the
number of interfaces, the size of MTU, the rate of transmission, physical addresses, etc.).

The module of subsystem “Data acquisition” <SNMP> 231

3. AT (3 objects) — are responsible for the broadcast address. No longer used. Was included in the
MIB I. In SNMP v2 this information was transferred to the MIB for the relevant protocols.

4. IP (42 objects) — data on the passing IP packets (number of requests, responses, offcast
packages).

5. ICMP (26 objects) — information about control messages (incoming/outgoing messages, errors,
etc.).

6. TCP (19) — all that relates to the same-name transport protocol (algorithms, constants,
connections, open ports, etc.).

7. UDP (6) — the same one for UDP protocol (incoming/outgoing datagram, ports, errors).

8. EGP (20) — data about the traffic Exterior Gateway Protocol (used by routers, object stores
information about the received/sent/ offcast frames).

9. Transmission — is reserved for specific MIB.

10. SNMP (29) — statistics on SNMP — incoming/outgoing packets, limiting package size, errors,
data on the process request, and much more.

1.2. Addressing

Each of the root alias appears in the form of tree growing down. For example, to the address of the
administrator you can contact by the means of the way: system.sysContact.0, to the time of the system:
system.sysUpTime.0, to the description of the system (version, kernel and other information about the OS):
system.sysDescr.0. On the other hand, the same data can be specified in the point notation. So,
system.sysUpTime.0 value corresponds to 1.3.0, because the system has an index “1” in groups of MIB II,
and sysUpTime — 3 in the hierarchy of the group system. Zero at the end of the path indicates the scalar
type of data storage. During the work symbolic names of the objects are not used, that is, if the manager
asks the agent the contents of the parameter system.sysDescr.0, then in the query string the link to the
object will be converted to “1.1.0”, and will not be handed over «as is».

In general, there are several ways to write the addresses of MIB-variable:

« 1 Direct code addressing — “.1.3.6.1.2.1.1” (root alias System). With this addressing each MIB
variable is coded by the identifier, and the full address is written in the form of a sequence of
identifiers separated by point, from left to right. This record of the address is the main and all other
ways of recording are given to it.

2 Full character, in accordance with the previous code — “.iso.org.dod.internet.mgmt.mib-2.system”.

+ 3 Addressing from the root alias — “system.sysDescr”. 4 Addresses of the MIB base — “SNMPv2-
MIB:: sysDescr”.

1.3. Interaction

In the SNMP client interacts with a server on a request-response principle. On its own, the agent is able
to initiate only one action, called a trap interrupt. In addition, all the actions of agents are to respond to
requests sent by managers.

There are 3 main versions of the protocol SNMP (vl & v2 & v3), which are not compatible. SNMP v3
supports encryption of traffic, which, depending on implementation, uses the algorithms DES, MDS5. This
leads to the fact that while transfer the most critical and important data is unavailable for listening. As a
transport protocol the UDP protocol is usually used in the SNMP. Although, in fact, SNMP supports a
variety of other lower-level transport protocols.

1.4. Authorization

One of the key concepts of SNMP is the notion of group. Procedure of the authorization of the manager
is a simple test for membership of a particular group from the list, which belongs to the agent. If the agent
does not find a group of the manager in its list, their further interaction is impossible. By default, the group
used: private and public.

The module of subsystem “Data acquisition” <SNMP> 232

2. Module

This module supports the work with the SNMP protocol of version 1. Currently it is only supported the
reading of MIB-parameters. In addition, a list of types of MIB-parameters is restricted by the list:
ASN OCTET _STR, ASN INTEGER and ASN_COUNTER. Support of the other types and recording are
scheduled in the following versions of the module.

2.1. Controller of data

For addition of the SNMP data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller is depicted in Figure 1.

| QT Conflgurator of OpenSCADA: Demo station

File Edt View Help QTStarter

8800 RX Ll /B0L B0

|Nﬂme
= 6 Demo station

.E

Controller: localhost

E Data Bases Controller Parameters
E}B Security
9 Transports —State B
a Transport protocols Status. started. Gather data time 13.351 ms. B
= =4 Data acquisition)
EIJ Module: Enable: ||
Data sources gate Run; EI
ModBus
DCOM client Controller DB: [*.* | T]
=1 SNMP client
) localhost ~ Config
system IC: jocalhost
Block based calculator
W systemDA Name: |
Sound card Description:
Logic level
Java-like based calcula
Siemens DAQ
Diamond DA boards

Template library:

[] Archives

(L3 Specials To enable: | |

[User interfaces
@Y Modules shaduler

E3]

To start: | |

8 Loop Redundant: n

Loop SSL Preferable run: | <High level= n

A PLXB

" Net book Parameteres table: [SNMPPrm_Iucalhust]
Gather data period (s): 10 F
Gather task priority: [U I%]

Remote host address: [Incalhust

Server community: [public

] oD Param's attributes imit: | 100 =

I [*I*]HH

EI roman

Fig.1. Configuration tab of the controller.

From this tab you can set:
- The state of the controller, as follows: state, «Enable», «Run» and the name of the database
containing the configuration.

The module of subsystem “Data acquisition” <SNMP> 233

+ 1d, name and description of the controller.

- The state, in which the controller must be translated at boot: «To enable» and «To starty»

+ Horizontal mode of redundancy and performance preference of the controller.

« Name of table to store the configuration of the parameters of the controller.

« The period and the priority of the task of data acquisition.

+ Address of remote host, a group of access and restriction on the number of attributes in the one
parameter.

2.2. Parameters

Module SNMP provides only one type of parameters — “Standard”. An additional configuration field of
the parameter of the module(Fig. 2) is a list of MIB-parameters, the branches of which are to be read.

e O Configurator of OpenSCADA: Demo station
File Edt “iew Help QTStarter

88000 LI 200 29D

| Mame [3

= 6 Derno station
"'.ﬁ Data Bazes

{1, Security
i/ Transports _ State
o Transport .pr:.ntncnls Type: std
J Data acquisition
=l Moduwie: Enable: v

Data sources gate

ModBus — Config
DCOM client
SMMP client
= localhost Mame:

Parameter: system

Parameter Atributes | Archiving |

o-x8-m--H

m

Block based caicuial Description:

¥ SystemDA

Sound card

Logic level

Java-like based calc

Siemens DAQ

Diamond DA boards
Template library: To enable: /]

[] Archives QID list (next line separated).

({9 Specials

I User interfaces

€Y Modules sheduler
Loop
£10 -
-

o B T B T

gystem

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition” <SNMP> 234

In accordance with a specified list of MIB-parameters is carried out a survey of their branches and the
creation of the attributes of the parameter. Further, updating of the values of parameters is carried out.
Attributes are named in accordance with the code addressing of MIB-parameters, as the ID, and the
addressing from the base of MIB objects in the name of the attribute(Figure 3).

File Edit View Help QTStarter

8800V Ll 20V B0

|Name

= e Demo station
"; Data Bases
l:ﬂf) Security

Parameter: system

Parameter Atributes Archiving

'5? Transports 2 symtam
w0 Transport protocols
£l +/| Data acquistion Mame: [
=l Module: Description:
Data sources gate
ModBus
DCOM client
= SHMP client
=1 localhost
system
Block based calculator Error: g
¥ SystemDA
Saund card ShMPv2-MIB: sysDescr.0: Linux roman.diya.org 2.6.27-std-ll-alt16 #1 SMP PREEMPT
Logic level Tue Apr 21 18:32:42 UTC 2009 iG86
Java-like based calculal SNMPv2-MIB: sysContact.0: Me <me@somewhere.org>
Siemens DAQ
Diamand DA boards SHMPv2-MIB:: sysMame.0: roman.diya.org
. Tem,qrate Iibrary: SMNMPv2-MIB: sysLocation.0: Right here, right now.
| Archives
() Specials SNMPv2-MIE:: sysORDescr.1: The SNMP Management Architecture MIB.
El User interfaces SMMPY2-MIB: sysORDescr2: The MIB for Message Processing and Dispatching.

@9 Modules sheduler) B .
SMMPv2-MIB: sysORDescr.3. The management information definitions for the

Loop SHMP User-based Security Model.
Loop S50 ~)
. PL¥B SNMPv2-MIB: sysORDescrd. The MIB module for SHMPv2 entities
" Met book SNMPv2-MIB: sysORDescrS The MIB module for managing TCP implementations
SMMPv2-MIB:: sysORDescr.6: The MIB module for managing IP and ICMP
implementations
SNMPv2-MIB: sysORDescr™ The MIB module for managing UDP implementations
rF
[II EII] SNMPv2-MIB: sysORDescr8 yjew-based Access Control Model for SHMP. 3

Jlromen|

Fig.3. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition” <SNMP> 235

The module of subsystem “Data acquisition”

<Siemens>
Module: Siemens
Name: Siemens DAQ
Type: DAQ
Source: daq_Siemens.so
Version: 1.2.3
Author: Roman Savochenko

Translated: |Maxim Lysenko

Provides a data source PLC Siemens by means of Hilscher CIF cards by using the
MPI protocol and Libnodave library for the rest.

License: GPL

Description:

The primary aim of creating the module is to provide support for industrial controllers of firms Siemens
of series S7(S7-300, S7-400). Historically, access to the controllers of the firm in the Profibus network is
made only through its own communication processor (CP5412, CP5613, etc.) and the protocol S7. These
communications processors and API to the protocol S7 are rather expensive, in addition to the drivers for
the communication processors and S7 API are closed and are only available for the platform Intel +
Windows (I met the information on opportunities to buy for Linux).

As an alternative to these decisions of the company Siemens, which allows you to fully work with the
controllers of Siemens, is the range of communication products of fitm Hilscher (http:/hilscher.com),
through the communications processors CIF of series PB(Profibus) and the library Libnodave
(http://libnodave.sourceforge.net).

Feature of Hilscher products is completely open specification of the protocol of exchange with the
communication processor, the unified driver for all cards CIF, the availability of drivers for many common
operating systems(OS) and openness of the driver for OS Linux(GPL).

The basis of the module is the driver of version 2.621 of Hilsher, kindly provided by Hilsher in the face
of Devid Tsaava for the 2.6 series kernels of OS Linux. Everything needed files to building are included in
the module and it is don't needed to satisfy any special dependencies. The driver version 2.621 for the CIF
cards is available for download cif2621.tgz.

The range of boards of CIF family of firm Hilsher and unified driver supports the widest range of
equipment. To lay support all these features in this module without having all the equipment on hand, it is
not possible. Therefore, the support of the equipment will be added on demand and availability of
equipment. As of version 1.1.0 module provides support for data sources on the network via Profibus or
MPI by means of MPI protocol at the network speed of 9600Bod to 12MBod. In particular, supported and it
is carried out check on the controllers of the Siemens company of family S7 (S7-300, S7—400).

Library Libnodave is an implementation of the MPI, S7, ISO-TSAP and others protocols by means of
revers-engineering, that are used in interaction with the controllers of Siemens. Library supports many MPI
and USB adapters, as well as ProfiNet. Communication processors firm Siemens, on platforms other than
Windows, the library doesn't support. At this stage, module support the protocol ISO-TSAP (ProfiNet)
through the library Libnodave. Library Libnodave fully incorporated in this module and does not require a
special permit of any dependencies during building and in the performance.

The module of subsystem “Data acquisition” <Siemens> 236

http://wiki.oscada.org/Doc/Siemens/files?get=cif2621.tgz
mailto:DTsaava@hilscher.com
http://libnodave.sourceforge.net/
http://hilscher.com/

1. Communication controllers CIF

CIF family card driver supports the ability to install up to 4 CIF boards. In order to control the
availability of cards in the system and their possible configurations, the module provides a form of control
and configuration of the CIF-cards(Fig. 1).

- QT Configurator of OpenSCADA: Demo station = =]

File Edit Miew Help QTStarter

MName [:]
= 6 Demo station
:ﬁ Data Bases

% Security

;f Transports
e Transport protocols
ﬂ Data acquisition

=l Module:
Data sources gate
ModBus
DCON client
SNMP client
Block based calculal
& SystemDA
Sound card

0-&-E-E-E

FH-&H

Logic level

O &5HHB-BE

test
Diamond DA boards
Template library: e
| Archives
4 Specials

| User interfaces
@y Modules sheduler @

i aD

E-E-E

880C0COF=%x1Lal 82800 29

Module: Siemens

Cantrollers

Profibus] CIF [Help]

Status
F{:IF driver:

Off

CIF devices:

l Board |

Firmware name | Firmware version | Physical address PE address | PB speed

Mo device 1] o] 10 1.5MBaud

Mo device 1] o] o] 9600Baud

Mo device 1] o] o] 96006aud

Mo device 1] 0 o] 9600Baud

[]

Jome
S

Fig.1.

Configuration tab of CIF-boards.

The module of subsystem “Data acquisition” <Siemens> 237

Use this form you can verify the existence of communication processors and their configuration, and
configure the network settings of PB Profibus in the form of addresses of communication processor and
speeds of bus Profibus. In the other tab of the module(Fig.2) you can verify the presence of various stations
in the network Profibus.

#+ QT Conflgurator of OpenSCADA: Demo station
File Edit View Help QTStarter

88V L1t Ll /200 @0

| Mame B

= i Demo station

Module: Siemens

=
{4 Data Bases Cortrallers Profibus CIF Help
EB Security
i/ Transports CFF device: |0 =

a Transport protocols
El- | Data acquisition
= Module:
Data sources gate
ModBus
DCON client
SHMP cliert
Block based calculator
¥ System DA
Sound card
Logic level
Java-like based calculs
Siemens DAQ
= - test
test
Diamond DA boards
Template library:
[] Archives
(L) Specials
!] User interfaces -
@y Modules sheduler E

<] (1]
[)

Life stations list:
15:Board 0is not present.

&-H

0 =525

foman)
s

Fig.2. Monitoring tab of Profibus network.

The module of subsystem “Data acquisition” <Siemens> 238

2. The controller of the data source

To add a data source it is created and configured the controller in the system OpenSCADA. Example of
the configuration tab of the controller of this type is depicted in Figure 3.

¢« QT Conflgurator of OpenSCADA: Demo station

File Edit “iew Help QTStarter

8800 L &L 200 20

|Name
= 6 Demo station

Controller: test

W Dsta Bases Controller Parameters
EE Security
g Transports — State B
wi Transport protocols Status: Enabled
=l +| Data acquisttion)
Bl Module: Enable: [+
Data sources gate
ModBus Run: ||
DCON cliert Controller DB: [*.* |v]
SHWP client
Block based calculat —Config
¥ SystemDA D test
Sound card
Logic level Name: [
Java-like based calo L
£} Siemens DAQ Description:
= test
test

Diamond DA boards
Template library:

[Archives

(4 Specials

[4| User interfaces To enable: [+
& Modules sheduler To start: []

=N | oop

8 Loop SSL ﬂ
" PLXE Preferable run: | =High level=

-

1 Met book

®H-E-E-E

Parameteres table: [CIFPrm test

Request data period (ms). | 1000
Reqguest task priority: _

Asynchronous write mode: ||

Connection type: | IS0O_TCP n

Remote controller address: [192168212

(7] (D) | |stceu n
| J -
7 o

Fig.3. Configuration tab of the controller.

Using this tab you can set:
« The state of the controller, as follows: State, «Enable», «Run» and the name of the database
containing the configuration.
« Id, name and description of the controller.
« The state, in which the controller must be translated at boot: «To enable» and «To start».
- Name of table to store the configuration of the parameters of the controller.
« The period and the priority of the task of data acquisition.
« The mode of the asynchronous recording in the remote controllers.
+ Connection type. Supported CIF_PB and ISO_TCP

The module of subsystem “Data acquisition” <Siemens> 239

« Address of the industrial controller. If the connection type CIF it is the address of the network
Profibus, and in the case of ISO_TCP it is the [P-address in the Ethernet.

+ Slot CPU in which the central processor of the controller is placed.

+ CIF card used for access to the industrial controller through CIF communication processors.

3. The parameters of the data source

Given the high intellectuality of data sources in the face of industrial controllers of Siemens S7-300 and
S7-400, the options are executed on the basis of templates. This approach allows us to go beyond a rigid
list of types of parameters, which limits the possibilities of the controllers, and provide users with the ability
to build the necessary types of parameters independently or use the library of already been developed types
of parameters (templates).

Accordingly, the module provides only one type of parameters — “Logical”. Additional configuration
fields of the parameters of the module(Figure 4) is the field of selection of template of the parameter.

File Edit “iew Help QTStarter

8800 =R L&l @0 2

| Mame B

= l& Demo station
~ Data Bases
s, Security

4 Transports _ State
w Transport protocols
/| Data acquisition

El- Module: Enable: [+
Data sources gate
ModBus — Config
DCON client ID: test
SMMP cliert
Block bazed calculato Mairme:
¥ System DA
Sound card
Logic level
Java-like based calcul
Siemens DACQ

=) test

test
Diamond DA boards

Template library: To enable:]

_| Archives Parameter template: [S?.test |v]

(L4 Specials

4| User interfaces E
-

Modules sheduler
(1 [+]*]
[]

Parameter: test

Parameter Template config | Atributes | Archiving |

TYRE! |ogic

0-&-H-H-H

®-H

Description:

O-B-F-&-EH-E2E

7 fomar

Fig.4. Configuration tab of the parameter.

To configure a template of parameter it is made the appropriate tab. The contents of this tab is defined by
the configuration of the template that is the corresponding link fields and fields of setting the constants are
formed.

Types of links depend on the type of parameter in the template (boolean, integer, real and string) and the
definition of link value(for the group of links). Definition of the group link in the template is written in the
format: "<Name of the link>|<The offset in the database>|<The size of the value>", where:

« <Name of the link> — Name of the group link. All links with the same name are grouped and

The module of subsystem “Data acquisition” <Siemens> 240

http://wiki.oscada.org.ua/Doc/LogParmUrov?v=91z

shown as a link to the database or database with the specified offset.

« <The offset in the database> — Name of the offset in the data block (DB). If the only database in
the configuration of the template is specified the offset will be specified for the parameter, but if in
the configuration of the template the offset will be specified too, the both offsets are summarized

together. This approach allows to access a variety of structures in the single data block.

« <the size of the value> — Optional field that specifies a custom size of the value in the controller.

The following sizes of types of values are provided:

« Integer: — 1 byte(signed), 2 byte(signed by default) and 4 byte(signed).

+ Real: — 4 byte(float by default), 8 byte(double).
« Boolean: — always one byte (with a bit through the point — DB1.10.1).
« String: — 10 byte(by default) and 1-200 can be set.

An illustrative example of the overall process of the configuration of parameter form the template and to

the values is shown in Figures from 5 to 8.

urator of O

enSCADA: Demo station

g

[~

z

File Edit Wiew Help QTStarter
3 K"‘-\\ —/ @ 'xl
B BOOCOU =X Ll 200 @28
Mame
| . - = Parameter template: Test
=l @ Demo station
-'::
S Data Bases Template o
e, Security
i Transports 10
s Transport protocols -
= J Data acquisition D Il .Name | Type |Mnde| Attribute | Access | Walue
) Moduie: 1 fif_frq ;Function caleulate o Input | Mo attribute Constant 1000
Data sources gate [— frequency (Hz)
ModBus 2 |f_stat Function startflag Boolean Input No attribute Constant 0
DCOM client |
SMMP client . .
Block based calculato 3 |f_stop Function stop flag Boolean |Input Mo attribute Constant | 0
¥ SystemDA |) . .
Sound card 4 |f_err Function error String Input No attribute Constant 0
Logic level — .)
Java-like based caleul 5 |in Input Integer Input |Full access Link DE Test|4
El- Siemens DAQ |
Cl- test g |ini Input Integer Input |Full access Link DE Test|g
test —
Diamond DA boards 7 |in2 Input2 Integer Input |Full access Link DB Test|a
= Template library: !
=l 57 g [in3 Input3 Integer Input Full access Link DB Test|10
Simple Al —
Manual input of Al g |in4 Input4 Integer Input Full access Link DB Test12
Test
Main templates —
) Archives Programm language:
(iJ Specials Programm:
[4| User interfaces
& Modules sheduler
=) | oop T
=) | oop SSL [a]
" PLXE ™)

Jfoman

The module of subsystem “Data acquisition” <Siemens> 241

Fig.5. Example of the template with grouping.

OT Configurator of OpenSCADA: Demo station

File Edit View Help QTStarter
88000 RZT LILLZ200 @O

MName [:]
5 Module: Parameter: test
Data sources gate
ModBu Template config | Atributes | Archiving |
DCOM cliert
SHMP client Only DB offsets are to be shown: ||
Block based calculato Parameters
¥ SystemDA
Sound card DB Test: [DE”]
Logic level
Java-like based calcul
= Siemens DAQ
=] test
test

Diamond DA boards
Bl Template library:

(=T
Simple Al -
Manual input of Al &

] 1[»

Fig.6. Configuration tab of the template of parameter

OT Configurator of OpenSCADA: Demo station

File Edit View Help QTStarter
= . = | a2
88000 ==X &l |2
Mame [:]
T Parameter: test
Data sources gate
ModE!us g Parameter] Template config l Atributes | Archiving]
DCON client S n
SMMP client Only DB offsets are to be shown: EI
Block based calculato _ Parameters
¥ SystemDa
Saund card Input; [DEM 4]
Logic level input1: [DB1.6]
Java-like based calcul
£} Siemens DAG 1t Input2: | DB1.8 |
- test =
Input3: | DB1.10 |
Diamond Inputd: | DB1.12 |
= Template library:
=57 Inputs: | DB1.14 |
Simple Al)
Manual input of Al Inputs: [DE” 16]
Test — Input?: | DB1.18 |
Main templates
7] Archives Inputd: | DB1.20 |
(9 Specials R Inputs: [DB1.22]
!] User interfaces il
#a Mordules shedular Il Input1 0: [DE” 24]
nm Elz] Input11: [DEH a5] EJ
9 famar]
—_—

Fig.7. Configuration tab of template of the parameter with an indication of the parameters separately.

The module of subsystem “Data acquisition